Bi-Atom Electrocatalyst for Electrochemical Nitrogen Reduction Reactions
Corresponding Author: Bin‑Wei Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 106
Abstract
The electrochemical nitrogen reduction reaction (NRR) to directly produce NH3 from N2 and H2O under ambient conditions has attracted significant attention due to its ecofriendliness. Nevertheless, the electrochemical NRR presents several practical challenges, including sluggish reaction and low selectivity. Here, bi-atom catalysts have been proposed to achieve excellent activity and high selectivity toward the electrochemical NRR by Ma and his co-workers. It could accelerate the kinetics of N2-to-NH3 electrochemical conversion and possess better electrochemical NRR selectivity. This work sheds light on the introduction of bi-atom catalysts to enhance the performance of the electrochemical NRR.
Highlights:
1 A new heteronuclear bi-atom electrocatalyst has been proposed by Ma and his co-workers.
2 The FeV@C2N bi-atom electrocatalyst achieved excellent electrochemical NRR performance.
3 The FeV@C2N bi-atom electrocatalyst could effectively suppress the side and competing HER reaction, and thus possess better electrochemical NRR selectivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Fu, P. Richardson, K. Li, H. Yu, B. Yu et al., Transition metal aluminum boride as a new candidate for ambient-condition electrochemical ammonia synthesis. Nano Micro Lett. 12, 65 (2020). https://doi.org/10.1007/s40820-020-0400-z
- J.C. Tang, S.-Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48, 3166–3180 (2019). https://doi.org/10.1039/C9CS00280D
- B.-W. Zhang, Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Fabrication of superior single-atom catalysts toward diverse electrochemical reactions. Small Methods 3, 1800497 (2019). https://doi.org/10.1002/smtd.201800497
- J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock et al. Beyond fossil fuel—driven nitrogen transformations. Science 360, 6611 (2018). https://doi.org/10.1126/science.aar6611
- S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton et al., Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018). https://doi.org/10.1038/s41929-018-0092-7
- B.-W. Zhang, H.-L. Yang, Y.-X. Wang, S.-X. Dou, H.-K. Liu, A comprehensive review on controlling surface composition of Pt-based bimetallic electrocatalysts. Adv. Energy Mater. 8, 1703597 (2018). https://doi.org/10.1002/aenm.201703597
- B.-W. Zhang, T. Sheng, Y.-X. Wang, X.-M. Qu, J.-M. Zhang et al., Platinum–cobalt bimetallic nanoparticles with Pt skin for electro-oxidation of ethanol. ACS Catal. 7, 892–895 (2017). https://doi.org/10.1021/acscatal.6b03021
- B.-W. Zhang, L. Ren, Y.-X. Wang, Y. Du, L. Jiang et al., New monatomic layer clusters for advanced catalysis materials. Sci. China Mater. 62, 149–153 (2019). https://doi.org/10.1007/s40843-018-9317-7
- B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang et al., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 9, 4082 (2018). https://doi.org/10.1038/s41467-018-06144-x
- B.H.R. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov et al., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019). https://doi.org/10.1038/s41929-019-0252-4
- B.-W. Zhang, T. Sheng, Y.-X. Wang, S. Chou, K. Davey et al., Long-life room-temperature sodium–sulfur batteries by virtue of transition-metal-nanocluster–sulfur interactions. Angew. Chem. Int. Ed. 131, 1498–1502 (2019). https://doi.org/10.1002/anie.201811080
- H.-P. Jia, E.A. Quadrelli, Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2014). https://doi.org/10.1039/C3CS60206K
- X. Tang, Z. Wei, Q. Liu, J. Ma, Strain engineering the D-band center for Janus MoSSe edge: Nitrogen fixation. J. Energy Chem. 33, 155–159 (2019). https://doi.org/10.1016/j.jechem.2018.09.008
- G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani et al., Recent advances and challenges of electrocatalytic n2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020). https://doi.org/10.1021/acs.chemrev.9b00659
- Z. Wei, J. He, Y. Yang, Z. Xia, Y. Feng et al., Fe, V-co-doped C2N for electrocatalytic N2-to-NH3 conversion. J. Energy Chem. 53, 303–308 (2021). https://doi.org/10.1016/j.jechem.2020.04.014
References
Y. Fu, P. Richardson, K. Li, H. Yu, B. Yu et al., Transition metal aluminum boride as a new candidate for ambient-condition electrochemical ammonia synthesis. Nano Micro Lett. 12, 65 (2020). https://doi.org/10.1007/s40820-020-0400-z
J.C. Tang, S.-Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48, 3166–3180 (2019). https://doi.org/10.1039/C9CS00280D
B.-W. Zhang, Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Fabrication of superior single-atom catalysts toward diverse electrochemical reactions. Small Methods 3, 1800497 (2019). https://doi.org/10.1002/smtd.201800497
J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock et al. Beyond fossil fuel—driven nitrogen transformations. Science 360, 6611 (2018). https://doi.org/10.1126/science.aar6611
S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton et al., Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018). https://doi.org/10.1038/s41929-018-0092-7
B.-W. Zhang, H.-L. Yang, Y.-X. Wang, S.-X. Dou, H.-K. Liu, A comprehensive review on controlling surface composition of Pt-based bimetallic electrocatalysts. Adv. Energy Mater. 8, 1703597 (2018). https://doi.org/10.1002/aenm.201703597
B.-W. Zhang, T. Sheng, Y.-X. Wang, X.-M. Qu, J.-M. Zhang et al., Platinum–cobalt bimetallic nanoparticles with Pt skin for electro-oxidation of ethanol. ACS Catal. 7, 892–895 (2017). https://doi.org/10.1021/acscatal.6b03021
B.-W. Zhang, L. Ren, Y.-X. Wang, Y. Du, L. Jiang et al., New monatomic layer clusters for advanced catalysis materials. Sci. China Mater. 62, 149–153 (2019). https://doi.org/10.1007/s40843-018-9317-7
B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang et al., Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 9, 4082 (2018). https://doi.org/10.1038/s41467-018-06144-x
B.H.R. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov et al., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019). https://doi.org/10.1038/s41929-019-0252-4
B.-W. Zhang, T. Sheng, Y.-X. Wang, S. Chou, K. Davey et al., Long-life room-temperature sodium–sulfur batteries by virtue of transition-metal-nanocluster–sulfur interactions. Angew. Chem. Int. Ed. 131, 1498–1502 (2019). https://doi.org/10.1002/anie.201811080
H.-P. Jia, E.A. Quadrelli, Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2014). https://doi.org/10.1039/C3CS60206K
X. Tang, Z. Wei, Q. Liu, J. Ma, Strain engineering the D-band center for Janus MoSSe edge: Nitrogen fixation. J. Energy Chem. 33, 155–159 (2019). https://doi.org/10.1016/j.jechem.2018.09.008
G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani et al., Recent advances and challenges of electrocatalytic n2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020). https://doi.org/10.1021/acs.chemrev.9b00659
Z. Wei, J. He, Y. Yang, Z. Xia, Y. Feng et al., Fe, V-co-doped C2N for electrocatalytic N2-to-NH3 conversion. J. Energy Chem. 53, 303–308 (2021). https://doi.org/10.1016/j.jechem.2020.04.014