An In-Situ Formed Tunneling Layer Enriches the Options of Anode for Efficient and Stable Regular Perovskite Solar Cells
Corresponding Author: Liyuan Han
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 10
Abstract
Perovskite solar cells (PSCs) are taking steps to commercialization. However, the halogen-reactive anode with high cost becomes a stumbling block. Here, the halogen migration in PSCs is utilized to in situ generate a uniform tunneling layer between the hole transport materials and anodes, which enriches the options of anodes by breaking the Schottky barrier, enabling the regular PSCs with both high efficiency and stability. Specifically, the regular PSC that uses silver iodide as the tunneling layer and copper as the anode obtains a champion power conversion efficiency of 23.24% (certified 22.74%) with an aperture area of 1.04 cm2. The devices are stable, maintaining 98.6% of the initial efficiency after 500 h of operation at the maximum power point with continuous 1 sun illumination. PSCs with different tunneling layers and anodes are fabricated, which confirm the generality of the strategy.
Highlights:
1 It is first disclosed that the key to the efficient regular Ag-perovskite solar cells (PSCs) is a tunneling layer (silver iodide, AgI) that is in situ formed by the natural reaction between Ag and the migrated iodide.
2 Based on the discovery, an ultrathin and uniform tunneling layer can be deposited on the fragile perovskite/charge transport layer to enrich the options of electrodes for efficient and stable regular PSCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- W. Hui, L.F. Chao, H. Lu, F. Xia, Q. Wei et al., Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371(6536), 1359–1364 (2021). https://doi.org/10.1126/science.abf7652
- J. Jeong, M. Kim, J. Seo, H.Z. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- H. Min, D. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y.L. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587 (2021). https://doi.org/10.1038/s41586-021-03285-w
- J. Peng, F. Kremer, D. Walter, Y. Wu, Y. Ji et al., Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601(7894), 573–578 (2022). https://doi.org/10.1038/s41586-021-04216-5
- N.X. Li, X.X. Niu, L. Li, H. Wang, Z.J. Huang et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373(6554), 561–567 (2021). https://doi.org/10.1126/science.abh3884
- Y.B. Wang, T.H. Wu, J. Barbaud, W.Y. Kong, D.Y. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
- H. Su, X. Lin, Y. Wang, X. Liu, Z. Qin et al., Stable perovskite solar cells with 23.12% efficiency and area over 1 cm2 by an all-in-one strategy. Sci. China Chem. 65, 1321–1329 (2022). https://doi.org/10.1007/s11426-022-1244-y
- J.W. Xiao, C.B. Shi, C.X. Zhou, D.L. Zhang, Y.J. Li et al., Contact engineering: electrode materials for highly efficient and stable perovskite solar cells. Sol. RRL 1(9), 1700082 (2017). https://doi.org/10.1002/solr.201700082
- S.H. Wang, T. Sakurai, W.J. Wen, Y.B. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5(22), 1800260 (2018). https://doi.org/10.1002/admi.201800260
- Y.M. Xu, Z.H. Lin, W. Wei, Y. Hao, S.Z. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- J.W. Li, Q.S. Dong, N. Li, L.D. Wang, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7(14), 1602922 (2017). https://doi.org/10.1002/aenm.201602922
- L. Calio, S. Kazim, M. Gratzel, S. Ahmad, Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 55(47), 14522–14545 (2016). https://doi.org/10.1002/anie.201601757
- S. Cacovich, L. Cina, F. Matteocci, G. Divitini, P.A. Midgley et al., Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale 9(14), 4700–4706 (2017). https://doi.org/10.1039/c7nr00784a
- K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
- N.N. Shlenskaya, N.A. Belich, M. Gratzel, E.A. Goodilin, A.B. Tarasov, Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. J. Mater. Chem. A 6(4), 1780–1786 (2018). https://doi.org/10.1039/c7ta10217h
- L. Fagiolari, F. Bella, Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12(12), 3437–3472 (2019). https://doi.org/10.1039/c9ee02115a
- J.J. Zhao, X.P. Zheng, Y.H. Deng, T. Li, Y.C. Shao et al., Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9(12), 3650–3656 (2016). https://doi.org/10.1039/c6ee02980a
- Z.Q. Li, Y.Z. Zhao, X. Wang, Y.C. Sun, Z.G. Zhao et al., Cost analysis of perovskite tandem photovoltaics. Joule 2(8), 1559–1572 (2018). https://doi.org/10.1016/j.joule.2018.05.001
- X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han et al., Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13, 3823 (2020). https://doi.org/10.1039/d0ee02017f
- C.H. Chiang, C.W. Kan, C.G. Wu, Synergistic engineering of conduction band, conductivity, and interface of bilayered electron transport layers with scalable TiO2 and SnO2 nanops for high-efficiency stable perovskite solar cells. ACS Appl. Mater. Interfaces 13(20), 23606–23615 (2021). https://doi.org/10.1021/acsami.1c02105
- M.S. He, J.H. Liang, Z.F. Zhang, Y.K. Qiu, Z.H. Deng et al., Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 8(48), 25831–25841 (2020). https://doi.org/10.1039/d0ta09209f
- Z.F. Zhang, J.L. Wang, L.Z. Lang, Y. Dong, J.H. Liang et al., Size-tunable MoS2 nanosheets for controlling the crystal morphology and residual stress in sequentially deposited perovskite solar cells with over 22.5% efficiency. J. Mater. Chem. A 10(7), 3605–3617 (2022). https://doi.org/10.1039/d1ta10314h
- J. Peng, D. Walter, Y. Ren, M. Tebyetekerwa, Y. Wu et al., Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371(6527), 390–395 (2021). https://doi.org/10.1126/science.abb8687
- G. Giuliano, S. Cataldo, M. Scopelliti, F. Principato, D.C. Martino et al., Nonprecious copper-based transparent top electrode via seed layer–assisted thermal evaporation for high-performance semitransparent n-i-p perovskite solar cells. Adv. Mater. Technol. 4(5), 1800688 (2019). https://doi.org/10.1002/admt.201800688
- Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga et al., Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2(13), 1500195 (2015). https://doi.org/10.1002/admi.201500195
- L.K. Ono, Y.B. Qi, S.Z. Liu, Progress toward stable lead halide perovskite solar cells. Joule 2(10), 1961–1990 (2018). https://doi.org/10.1016/j.joule.2018.07.007
- Y.G. Kim, C.H. Shim, D.H. Kim, H.J. Lee, H.J. Lee, Fabrication of transparent conductive oxide-less dye-sensitized solar cells consisting of Ti electrodes by electron-beam evaporation process. Thin Solid Films 520(6), 2257–2260 (2012). https://doi.org/10.1016/j.tsf.2011.08.096
- C. Zhang, S. Wang, H. Zhang, Y. Feng, W. Tian et al., Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy Environ. Sci. 12(12), 3585–3594 (2019). https://doi.org/10.1039/C9EE02391G
- K.R. Sui, Y.W. Shi, X.L. Tang, X.S. Zhu, K. Iwai et al., Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region. Opt. Lett. 33(4), 318–320 (2008). https://doi.org/10.1364/ol.33.000318
- J.M. Cave, N.E. Courtier, I.A. Blakborn, T.W. Jones et al., Deducing transport properties of mobile vacancies from perovskite solar cell characteristics. J. Appl. Phys. 128(18), 184501 (2020). https://doi.org/10.1063/5.0021849
- M. Yanagida, Y. Shirai, D.B. Khadka, K. Miyano, Photoinduced ion-redistribution in CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 22(43), 25118–25125 (2020). https://doi.org/10.1039/d0cp04350h
- C. Li, A. Guerrero, S. Huettner, J. Bisquert, Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6
- E. Velilla, F. Jaramillo, I. Mora-Sero, High-throughput analysis of the ideality factor to evaluate the outdoor performance of perovskite solar minimodules. Nat. Energy 6(1), 54–62 (2021). https://doi.org/10.1038/s41560-020-00747-9
- A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim et al., Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. J. Appl. Phys. 120(6), 064505 (2016). https://doi.org/10.1063/1.4960698
- J. Liu, M.D. Bastiani, E. Aydin, G.T. Harrison, Y. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFX. Science 377(6603), 302–306 (2022)
- J. Nelson, The physics of solar cells. (Imperial College Press, 2003). https://doi.org/10.1142/p276
- H. Back, G. Kim, J. Kim, J. Kong, T.K. Kim et al., Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ. Sci. 9(4), 1258–1263 (2016). https://doi.org/10.1039/c6ee00612d
- S.H. Wu, R. Chen, S.S. Zhang, B.H. Babu, Y.F. Yue et al., A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019). https://doi.org/10.1038/s41467-019-09167-0
- V.K. Kaushik, XPS core level spectra and auger parameters for some silver compounds. J. Electron Spectros. Relat. Phenom. 56(3), 273–277 (1991). https://doi.org/10.1016/0368-2048(91)85008-H
- W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, The redistribution of solute atoms during the solidification of metals. Acta Metall. 1(4), 428–437 (1953). https://doi.org/10.1016/0001-6160(53)90126-6
- K. Yagi, H. Minoda, M. Degawa, Step bunching, step wandering and faceting: self-organization at Si surfaces. Surf. Sci. Rep. 43(2–4), 49–126 (2001). https://doi.org/10.1016/S0167-5729(01)00013-9
- M.A. Zaluska-Kotur, F. Krzyzewski, Step bunching process induced by the flow of steps at the sublimated crystal surface. J. Appl. Phys. 111(11), 114311 (2012). https://doi.org/10.1063/1.4728233
- J.K. Morrod, T.C.M. Graham, K.A. Prior, B.C. Cavenett, N-type doping of zinc selenide using a silver iodide thermal effusion source. J. Crys. Growth 278(1), 278–281 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.033
- M. Chebbi, B. Azambre, L. Cantrel, A. Koch, A combined drifts and DR-UV–Vis spectroscopic in situ study on the trapping of CH3I by silver-exchanged faujasite zeolite. J. Phys. Chem. C 120(33), 18694–18706 (2016). https://doi.org/10.1021/acs.jpcc.6b07112
- A.K.K. Kyaw, D.H. Wang, D. Wynands, J. Zhang, N. Thuc-Quyen et al., Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 13(8), 3796–3801 (2013). https://doi.org/10.1021/nl401758g
- J.Y. Liao, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy Environ. Sci. 5(2), 5750–5757 (2012). https://doi.org/10.1039/c1ee02766b
References
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
W. Hui, L.F. Chao, H. Lu, F. Xia, Q. Wei et al., Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371(6536), 1359–1364 (2021). https://doi.org/10.1126/science.abf7652
J. Jeong, M. Kim, J. Seo, H.Z. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
H. Min, D. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y.L. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587 (2021). https://doi.org/10.1038/s41586-021-03285-w
J. Peng, F. Kremer, D. Walter, Y. Wu, Y. Ji et al., Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601(7894), 573–578 (2022). https://doi.org/10.1038/s41586-021-04216-5
N.X. Li, X.X. Niu, L. Li, H. Wang, Z.J. Huang et al., Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373(6554), 561–567 (2021). https://doi.org/10.1126/science.abh3884
Y.B. Wang, T.H. Wu, J. Barbaud, W.Y. Kong, D.Y. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
H. Su, X. Lin, Y. Wang, X. Liu, Z. Qin et al., Stable perovskite solar cells with 23.12% efficiency and area over 1 cm2 by an all-in-one strategy. Sci. China Chem. 65, 1321–1329 (2022). https://doi.org/10.1007/s11426-022-1244-y
J.W. Xiao, C.B. Shi, C.X. Zhou, D.L. Zhang, Y.J. Li et al., Contact engineering: electrode materials for highly efficient and stable perovskite solar cells. Sol. RRL 1(9), 1700082 (2017). https://doi.org/10.1002/solr.201700082
S.H. Wang, T. Sakurai, W.J. Wen, Y.B. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5(22), 1800260 (2018). https://doi.org/10.1002/admi.201800260
Y.M. Xu, Z.H. Lin, W. Wei, Y. Hao, S.Z. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
J.W. Li, Q.S. Dong, N. Li, L.D. Wang, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7(14), 1602922 (2017). https://doi.org/10.1002/aenm.201602922
L. Calio, S. Kazim, M. Gratzel, S. Ahmad, Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 55(47), 14522–14545 (2016). https://doi.org/10.1002/anie.201601757
S. Cacovich, L. Cina, F. Matteocci, G. Divitini, P.A. Midgley et al., Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale 9(14), 4700–4706 (2017). https://doi.org/10.1039/c7nr00784a
K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
N.N. Shlenskaya, N.A. Belich, M. Gratzel, E.A. Goodilin, A.B. Tarasov, Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. J. Mater. Chem. A 6(4), 1780–1786 (2018). https://doi.org/10.1039/c7ta10217h
L. Fagiolari, F. Bella, Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ. Sci. 12(12), 3437–3472 (2019). https://doi.org/10.1039/c9ee02115a
J.J. Zhao, X.P. Zheng, Y.H. Deng, T. Li, Y.C. Shao et al., Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9(12), 3650–3656 (2016). https://doi.org/10.1039/c6ee02980a
Z.Q. Li, Y.Z. Zhao, X. Wang, Y.C. Sun, Z.G. Zhao et al., Cost analysis of perovskite tandem photovoltaics. Joule 2(8), 1559–1572 (2018). https://doi.org/10.1016/j.joule.2018.05.001
X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han et al., Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13, 3823 (2020). https://doi.org/10.1039/d0ee02017f
C.H. Chiang, C.W. Kan, C.G. Wu, Synergistic engineering of conduction band, conductivity, and interface of bilayered electron transport layers with scalable TiO2 and SnO2 nanops for high-efficiency stable perovskite solar cells. ACS Appl. Mater. Interfaces 13(20), 23606–23615 (2021). https://doi.org/10.1021/acsami.1c02105
M.S. He, J.H. Liang, Z.F. Zhang, Y.K. Qiu, Z.H. Deng et al., Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 8(48), 25831–25841 (2020). https://doi.org/10.1039/d0ta09209f
Z.F. Zhang, J.L. Wang, L.Z. Lang, Y. Dong, J.H. Liang et al., Size-tunable MoS2 nanosheets for controlling the crystal morphology and residual stress in sequentially deposited perovskite solar cells with over 22.5% efficiency. J. Mater. Chem. A 10(7), 3605–3617 (2022). https://doi.org/10.1039/d1ta10314h
J. Peng, D. Walter, Y. Ren, M. Tebyetekerwa, Y. Wu et al., Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371(6527), 390–395 (2021). https://doi.org/10.1126/science.abb8687
G. Giuliano, S. Cataldo, M. Scopelliti, F. Principato, D.C. Martino et al., Nonprecious copper-based transparent top electrode via seed layer–assisted thermal evaporation for high-performance semitransparent n-i-p perovskite solar cells. Adv. Mater. Technol. 4(5), 1800688 (2019). https://doi.org/10.1002/admt.201800688
Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga et al., Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2(13), 1500195 (2015). https://doi.org/10.1002/admi.201500195
L.K. Ono, Y.B. Qi, S.Z. Liu, Progress toward stable lead halide perovskite solar cells. Joule 2(10), 1961–1990 (2018). https://doi.org/10.1016/j.joule.2018.07.007
Y.G. Kim, C.H. Shim, D.H. Kim, H.J. Lee, H.J. Lee, Fabrication of transparent conductive oxide-less dye-sensitized solar cells consisting of Ti electrodes by electron-beam evaporation process. Thin Solid Films 520(6), 2257–2260 (2012). https://doi.org/10.1016/j.tsf.2011.08.096
C. Zhang, S. Wang, H. Zhang, Y. Feng, W. Tian et al., Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy Environ. Sci. 12(12), 3585–3594 (2019). https://doi.org/10.1039/C9EE02391G
K.R. Sui, Y.W. Shi, X.L. Tang, X.S. Zhu, K. Iwai et al., Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region. Opt. Lett. 33(4), 318–320 (2008). https://doi.org/10.1364/ol.33.000318
J.M. Cave, N.E. Courtier, I.A. Blakborn, T.W. Jones et al., Deducing transport properties of mobile vacancies from perovskite solar cell characteristics. J. Appl. Phys. 128(18), 184501 (2020). https://doi.org/10.1063/5.0021849
M. Yanagida, Y. Shirai, D.B. Khadka, K. Miyano, Photoinduced ion-redistribution in CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 22(43), 25118–25125 (2020). https://doi.org/10.1039/d0cp04350h
C. Li, A. Guerrero, S. Huettner, J. Bisquert, Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6
E. Velilla, F. Jaramillo, I. Mora-Sero, High-throughput analysis of the ideality factor to evaluate the outdoor performance of perovskite solar minimodules. Nat. Energy 6(1), 54–62 (2021). https://doi.org/10.1038/s41560-020-00747-9
A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim et al., Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. J. Appl. Phys. 120(6), 064505 (2016). https://doi.org/10.1063/1.4960698
J. Liu, M.D. Bastiani, E. Aydin, G.T. Harrison, Y. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFX. Science 377(6603), 302–306 (2022)
J. Nelson, The physics of solar cells. (Imperial College Press, 2003). https://doi.org/10.1142/p276
H. Back, G. Kim, J. Kim, J. Kong, T.K. Kim et al., Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ. Sci. 9(4), 1258–1263 (2016). https://doi.org/10.1039/c6ee00612d
S.H. Wu, R. Chen, S.S. Zhang, B.H. Babu, Y.F. Yue et al., A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019). https://doi.org/10.1038/s41467-019-09167-0
V.K. Kaushik, XPS core level spectra and auger parameters for some silver compounds. J. Electron Spectros. Relat. Phenom. 56(3), 273–277 (1991). https://doi.org/10.1016/0368-2048(91)85008-H
W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, The redistribution of solute atoms during the solidification of metals. Acta Metall. 1(4), 428–437 (1953). https://doi.org/10.1016/0001-6160(53)90126-6
K. Yagi, H. Minoda, M. Degawa, Step bunching, step wandering and faceting: self-organization at Si surfaces. Surf. Sci. Rep. 43(2–4), 49–126 (2001). https://doi.org/10.1016/S0167-5729(01)00013-9
M.A. Zaluska-Kotur, F. Krzyzewski, Step bunching process induced by the flow of steps at the sublimated crystal surface. J. Appl. Phys. 111(11), 114311 (2012). https://doi.org/10.1063/1.4728233
J.K. Morrod, T.C.M. Graham, K.A. Prior, B.C. Cavenett, N-type doping of zinc selenide using a silver iodide thermal effusion source. J. Crys. Growth 278(1), 278–281 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.033
M. Chebbi, B. Azambre, L. Cantrel, A. Koch, A combined drifts and DR-UV–Vis spectroscopic in situ study on the trapping of CH3I by silver-exchanged faujasite zeolite. J. Phys. Chem. C 120(33), 18694–18706 (2016). https://doi.org/10.1021/acs.jpcc.6b07112
A.K.K. Kyaw, D.H. Wang, D. Wynands, J. Zhang, N. Thuc-Quyen et al., Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 13(8), 3796–3801 (2013). https://doi.org/10.1021/nl401758g
J.Y. Liao, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy Environ. Sci. 5(2), 5750–5757 (2012). https://doi.org/10.1039/c1ee02766b