Low-Temperature Soft-Cover-Assisted Hydrolysis Deposition of Large-Scale TiO2 Layer for Efficient Perovskite Solar Modules
Corresponding Author: Liyuan Han
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 49
Abstract
Perovskite solar cells with TiO2 electron transport layers exhibit power conversion efficiency (PCE) as high as 22.7% in single cells. However, the preparation process of the TiO2 layer is adopted by an unscalable method or requires high-temperature sintering, which precludes its potential use for mass production of flexible devices. In this study, a scalable low-temperature soft-cover-assisted hydrolysis (SAH) method is presented, where the precursor solution is sandwiched between a soft cover and preheated substrate to form a closed hydrolysis environment. Compact homogeneous TiO2 films with a needle-like structure were obtained after the hydrolysis of a TiCl4 aqueous solution. Moreover, by careful optimization of the TiO2 fabrication conditions, a high PCE of 14.01% could be achieved for a solar module (4 × 4 cm2) prepared using the SAH method. This method provides a novel approach for the efficient scale-up of the low-temperature TiO2 film growth for industrial applications.
Highlights:
1 A simple soft-cover-assisted hydrolysis method to prepare TiO2 films at a low temperature is proposed.
2 Compact homogeneous large-area TiO2 films with a needle-like morphology were obtained.
3 A solar module fabricated with as-prepared TiO2 films as electron transfer layers exhibited a power conversion efficiency of 14.01%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Zhou, Q. Chen, G. Li, S. Luo, T. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 25(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
- D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142–16147 (2016). https://doi.org/10.1038/nenergy.2016.142
- D. Liu, Y. Li, J. Yuan, Q. Hong, G. Shi et al., Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J. Mater. Chem. A 5(12), 5701–5708 (2017). https://doi.org/10.1039/C6TA10212C
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- F. Li, J. Yuan, X. Ling, Y. Zhang, Y. Yang, S. Cheung, C. Ho, X. Gao, W. Ma, A universal strategy to utilize polymeric semiconductors for perovskite solar cells with enhanced efficiency and longevity. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201706377
- C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8(4), 347–357 (2016). https://doi.org/10.1007/s40820-016-0094-4
- Y. Li, J.K. Cooper, W. Liu, C.M. Sutter-Fella, M. Amani et al., Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat. Commun. 7, 12446 (2016). https://doi.org/10.1038/ncomms12446
- T. Ye, S. Ma, X. Jiang, M. Petrovic, C. Vijila, S. Ramakrishna, L. Wei, Electrosprayed TiO2 nanoporous hemispheres for enhanced electron transport and device performance of formamidinium based perovskite solar cells. Nanoscale 9(1), 412–420 (2017). https://doi.org/10.1039/c6nr07369g
- J.-Y. Seo, R. Uchida, H.-S. Kim, Y. Saygili, J. Luo et al., Boosting the efficiency of perovskite solar cells with csbr-modified mesoporous TiO2 beads as electron-selective contact. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201705763
- NREL. Best research-cell efficiencies. NREL 1 (2016). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
- C. Yang, M. Yu, D. Chen, Y. Zhou, W. Wang, Y. Li, T.C. Lee, D. Yun, An annealing-free aqueous-processed anatase TiO2 compact layer for efficient planar heterojunction perovskite solar cells. Chem. Commun. 53(79), 10882–10885 (2017). https://doi.org/10.1039/c7cc01104k
- K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H.J. Snaith, Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7(3), 1142–1147 (2014). https://doi.org/10.1039/c3ee43707h
- F. Cai, L. Yang, Y. Yan, J. Zhang, F. Qin, D. Liu, Y. Cheng, Y. Zhou, T. Wang, Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer. J. Mater. Chem. A 5(19), 9402–9411 (2017). https://doi.org/10.1039/c7ta02317k
- H. Hu, B. Dong, H. Hu, F. Chen, M. Kong et al., Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air. ACS Appl. Mater. Interfaces 8(28), 17999–18007 (2016). https://doi.org/10.1021/acsami.6b02701
- I.S. Kim, R.T. Haasch, D.H. Cao, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, A.B. Martinson, Amorphous TiO2 compact layers via ALD for planar halide perovskite photovoltaics. ACS Appl. Mater. Interfaces 8(37), 24310–24314 (2016). https://doi.org/10.1021/acsami.6b07658
- D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu, C. Li, High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8(11), 3208–3214 (2015). https://doi.org/10.1039/c5ee02155c
- S.S. Mali, C. Hong, A.I. Inamdar, H. Im, S.E. Shim, Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers. Nanoscale 9(9), 3095–3104 (2017). https://doi.org/10.1039/c6nr09032j
- X. Yao, J. Liang, Y. Li, J. Luo, B. Shi et al., Hydrogenated TiO2 thin film for accelerating electron transport in highly efficient planar perovskite solar cells. Adv. Sci. 4(10), 1700008 (2017). https://doi.org/10.1002/advs.201700008
- X. Chen, L. Tang, S. Yang, Y. Hou, H. Yang, A low-temperature processed flower-like TiO2 array as an electron transport layer for high-performance perovskite solar cells. J. Mater. Chem. A 4(17), 6521–6526 (2016). https://doi.org/10.1039/c6ta00893c
- C. Liang, Z. Wu, P. Li, J. Fan, Y. Zhang, G. Shao, Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl. Surf. Sci. 391, 337–344 (2017). https://doi.org/10.1016/j.apsusc.2016.06.171
- P.S. Schulze, A.J. Bett, K. Winkler, A. Hinsch, S. Lee et al., Novel low-temperature process for perovskite solar cells with a mesoporous TiO2 scaffold. ACS Appl. Mater. Interfaces 9(36), 30567–30574 (2017). https://doi.org/10.1021/acsami.7b05718
- A.J. Hairen Tan, O. Voznyy, X. Lan, F. Arquer, J.Z. Fan, R. Quinter, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
- J.E. Bishop, D.K. Mohamad, M. Wong-Stringer, A. Smith, D.G. Lidzey, Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Sci. Rep. 7(1), 7962–7973 (2017). https://doi.org/10.1038/s41598-017-08642-2
- F. Ye, W. Tang, F. Xie, M. Yin, J. He et al., Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv. Mater. 29(35), 1701440 (2017). https://doi.org/10.1002/adma.201701440
- H. Chen, F. Ye, W. Tang, J. He, M. Yin et al., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017). https://doi.org/10.1038/nature23877
- M. Yin, F. Xie, X. Li, Y. Wu, X. Yang et al., Accurate and fast evaluation of perovskite solar cells with least hysteresis. Appl. Phys. Express 10(7), 076601 (2017). https://doi.org/10.7567/apex.10.076601
- F. Ye, H. Chen, F. Xie, W. Tang, M. Yin et al., Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci. 9, 2295–2301 (2016). https://doi.org/10.1039/c6ee01411a
- X. Zhang, J. Ye, L. Zhu, H. Zheng, X. Liu, X. Pan, S. Dai, High consistency perovskite solar cell with a consecutive compact and mesoporous TiO2 film by one-step spin-coating. ACS Appl. Mater. Interfaces 8(51), 35440–35446 (2016). https://doi.org/10.1021/acsami.6b11860
- J. Lim, J. Pyo, D. Jung, H.-S. Jung, J.-K. Lee, Preparation of mono-dispersed spherical titania nanoparticles with precise size control using ethylene glycol. J. Sol-Gel. Sci. Technol. 79(1), 89–97 (2016). https://doi.org/10.1007/s10971-016-4005-4
- J. Su, L. Guo, High aspect ratio TiO2 nanowires tailored in concentrated hcl hydrothermal condition for photoelectrochemical water splitting. RSC Adv. 5, 53012–53018 (2015). https://doi.org/10.1039/c5ra06149k
- A. Yella, L.P. Heiniger, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 14(5), 2591–2596 (2014). https://doi.org/10.1021/nl500399m
- Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin et al., Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 7(5), 052301 (2014). https://doi.org/10.7567/apex.7.052301
- J. Choi, S. Song, M.T. Horantner, H.J. Snaith, T. Park, Well-defined nanostructured, single-crystalline tio electron transport layer for efficient planar perovskite solar cells. ACS Nano 10(6), 6029–6036 (2016). https://doi.org/10.1021/acsnano.6b01575
References
H. Zhou, Q. Chen, G. Li, S. Luo, T. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 25(6196), 542–546 (2014). https://doi.org/10.1126/science.1254050
D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142–16147 (2016). https://doi.org/10.1038/nenergy.2016.142
D. Liu, Y. Li, J. Yuan, Q. Hong, G. Shi et al., Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J. Mater. Chem. A 5(12), 5701–5708 (2017). https://doi.org/10.1039/C6TA10212C
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
F. Li, J. Yuan, X. Ling, Y. Zhang, Y. Yang, S. Cheung, C. Ho, X. Gao, W. Ma, A universal strategy to utilize polymeric semiconductors for perovskite solar cells with enhanced efficiency and longevity. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201706377
C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents. Nano-Micro Lett. 8(4), 347–357 (2016). https://doi.org/10.1007/s40820-016-0094-4
Y. Li, J.K. Cooper, W. Liu, C.M. Sutter-Fella, M. Amani et al., Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat. Commun. 7, 12446 (2016). https://doi.org/10.1038/ncomms12446
T. Ye, S. Ma, X. Jiang, M. Petrovic, C. Vijila, S. Ramakrishna, L. Wei, Electrosprayed TiO2 nanoporous hemispheres for enhanced electron transport and device performance of formamidinium based perovskite solar cells. Nanoscale 9(1), 412–420 (2017). https://doi.org/10.1039/c6nr07369g
J.-Y. Seo, R. Uchida, H.-S. Kim, Y. Saygili, J. Luo et al., Boosting the efficiency of perovskite solar cells with csbr-modified mesoporous TiO2 beads as electron-selective contact. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201705763
NREL. Best research-cell efficiencies. NREL 1 (2016). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
C. Yang, M. Yu, D. Chen, Y. Zhou, W. Wang, Y. Li, T.C. Lee, D. Yun, An annealing-free aqueous-processed anatase TiO2 compact layer for efficient planar heterojunction perovskite solar cells. Chem. Commun. 53(79), 10882–10885 (2017). https://doi.org/10.1039/c7cc01104k
K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H.J. Snaith, Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7(3), 1142–1147 (2014). https://doi.org/10.1039/c3ee43707h
F. Cai, L. Yang, Y. Yan, J. Zhang, F. Qin, D. Liu, Y. Cheng, Y. Zhou, T. Wang, Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer. J. Mater. Chem. A 5(19), 9402–9411 (2017). https://doi.org/10.1039/c7ta02317k
H. Hu, B. Dong, H. Hu, F. Chen, M. Kong et al., Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air. ACS Appl. Mater. Interfaces 8(28), 17999–18007 (2016). https://doi.org/10.1021/acsami.6b02701
I.S. Kim, R.T. Haasch, D.H. Cao, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, A.B. Martinson, Amorphous TiO2 compact layers via ALD for planar halide perovskite photovoltaics. ACS Appl. Mater. Interfaces 8(37), 24310–24314 (2016). https://doi.org/10.1021/acsami.6b07658
D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu, C. Li, High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8(11), 3208–3214 (2015). https://doi.org/10.1039/c5ee02155c
S.S. Mali, C. Hong, A.I. Inamdar, H. Im, S.E. Shim, Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers. Nanoscale 9(9), 3095–3104 (2017). https://doi.org/10.1039/c6nr09032j
X. Yao, J. Liang, Y. Li, J. Luo, B. Shi et al., Hydrogenated TiO2 thin film for accelerating electron transport in highly efficient planar perovskite solar cells. Adv. Sci. 4(10), 1700008 (2017). https://doi.org/10.1002/advs.201700008
X. Chen, L. Tang, S. Yang, Y. Hou, H. Yang, A low-temperature processed flower-like TiO2 array as an electron transport layer for high-performance perovskite solar cells. J. Mater. Chem. A 4(17), 6521–6526 (2016). https://doi.org/10.1039/c6ta00893c
C. Liang, Z. Wu, P. Li, J. Fan, Y. Zhang, G. Shao, Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl. Surf. Sci. 391, 337–344 (2017). https://doi.org/10.1016/j.apsusc.2016.06.171
P.S. Schulze, A.J. Bett, K. Winkler, A. Hinsch, S. Lee et al., Novel low-temperature process for perovskite solar cells with a mesoporous TiO2 scaffold. ACS Appl. Mater. Interfaces 9(36), 30567–30574 (2017). https://doi.org/10.1021/acsami.7b05718
A.J. Hairen Tan, O. Voznyy, X. Lan, F. Arquer, J.Z. Fan, R. Quinter, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
J.E. Bishop, D.K. Mohamad, M. Wong-Stringer, A. Smith, D.G. Lidzey, Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Sci. Rep. 7(1), 7962–7973 (2017). https://doi.org/10.1038/s41598-017-08642-2
F. Ye, W. Tang, F. Xie, M. Yin, J. He et al., Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv. Mater. 29(35), 1701440 (2017). https://doi.org/10.1002/adma.201701440
H. Chen, F. Ye, W. Tang, J. He, M. Yin et al., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017). https://doi.org/10.1038/nature23877
M. Yin, F. Xie, X. Li, Y. Wu, X. Yang et al., Accurate and fast evaluation of perovskite solar cells with least hysteresis. Appl. Phys. Express 10(7), 076601 (2017). https://doi.org/10.7567/apex.10.076601
F. Ye, H. Chen, F. Xie, W. Tang, M. Yin et al., Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci. 9, 2295–2301 (2016). https://doi.org/10.1039/c6ee01411a
X. Zhang, J. Ye, L. Zhu, H. Zheng, X. Liu, X. Pan, S. Dai, High consistency perovskite solar cell with a consecutive compact and mesoporous TiO2 film by one-step spin-coating. ACS Appl. Mater. Interfaces 8(51), 35440–35446 (2016). https://doi.org/10.1021/acsami.6b11860
J. Lim, J. Pyo, D. Jung, H.-S. Jung, J.-K. Lee, Preparation of mono-dispersed spherical titania nanoparticles with precise size control using ethylene glycol. J. Sol-Gel. Sci. Technol. 79(1), 89–97 (2016). https://doi.org/10.1007/s10971-016-4005-4
J. Su, L. Guo, High aspect ratio TiO2 nanowires tailored in concentrated hcl hydrothermal condition for photoelectrochemical water splitting. RSC Adv. 5, 53012–53018 (2015). https://doi.org/10.1039/c5ra06149k
A. Yella, L.P. Heiniger, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 14(5), 2591–2596 (2014). https://doi.org/10.1021/nl500399m
Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin et al., Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 7(5), 052301 (2014). https://doi.org/10.7567/apex.7.052301
J. Choi, S. Song, M.T. Horantner, H.J. Snaith, T. Park, Well-defined nanostructured, single-crystalline tio electron transport layer for efficient planar perovskite solar cells. ACS Nano 10(6), 6029–6036 (2016). https://doi.org/10.1021/acsnano.6b01575