Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells
Corresponding Author: Liyuan Han
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 99
Abstract
Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.
Highlights:
1 A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described.
2 A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI3) perovskite solar cells with a vertical Sn2+ gradient and an enhanced electric field.
3 The solar cell with a heterogeneous FASnI3 absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Jiang, Z. Zang, Y. Zhou, H. Li, Q. Wei et al., Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology. Acc. Mater. Res. 2(4), 210–219 (2021). https://doi.org/10.1021/accountsmr.0c00111
- J. Cao, F. Yan, Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14(3), 1286–1325 (2021). https://doi.org/10.1039/D0EE04007J
- F. Gu, Z. Zhao, C. Wang, H. Rao, B. Zhao et al., Lead-free tin-based perovskite solar cells: strategies toward high performance. Sol. RRL 3(9), 1900213 (2019). https://doi.org/10.1002/solr.201900213
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13(1), 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress sn(ii) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
- S. Sahare, H.D. Pham, D. Angmo, P. Ghoderao, J. MacLeod et al., Emerging perovskite solar cell technology: Remedial actions for the foremost challenges. Adv. Energy Mater. 11(42), 2101085 (2021). https://doi.org/10.1002/aenm.202101085
- X. Jiang, H. Li, Q. Zhou, Q. Wei, M. Wei et al., One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143(29), 10970–10976 (2021). https://doi.org/10.1021/jacs.1c03032
- K. Nishimura, M.A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen et al., Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 74, 104858 (2020). https://doi.org/10.1016/j.nanoen.2020.104858
- D. Cui, X. Liu, T. Wu, X. Lin, X. Luo et al., Making room for growing oriented FASnI3 with large grains via cold precursor solution. Adv. Funct. Mater. 31(25), 2100931 (2021). https://doi.org/10.1002/adfm.202100931
- B.-B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), 2102055 (2021). https://doi.org/10.1002/adma.202102055
- T. Wu, D. Cui, X. Liu, X. Meng, Y. Wang et al., Efficient and stable tin perovskite solar cells enabled by graded heterostructure of light-absorbing layer. Sol. RRL 4(9), 2000240 (2020). https://doi.org/10.1002/solr.202000240
- Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang et al., Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139(19), 6693–6699 (2017). https://doi.org/10.1021/jacs.7b01815
- C. Ran, W. Gao, J. Li, J. Xi, L. Li et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 3(12), 3072–3087 (2019). https://doi.org/10.1016/j.joule.2019.08.023
- X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He et al., Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy Environ. Sci. 13(9), 2896–2902 (2020). https://doi.org/10.1039/d0ee01845g
- E. Jokar, P.-Y. Cheng, C.-Y. Lin, S. Narra, S. Shahbazi et al., Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition. ACS Energy Lett. 6(2), 485–492 (2021). https://doi.org/10.1021/acsenergylett.0c02305
- E. Jokar, C.-H. Chien, C.-M. Tsai, A. Fathi, E.W.-G. Diau, Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31(2), 1804835 (2019). https://doi.org/10.1002/adma.201804835
- X. Meng, Y. Wang, J. Lin, X. Liu, X. He et al., Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4(4), 902–912 (2020). https://doi.org/10.1016/j.joule.2020.03.007
- W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
- X. He, T. Wu, X. Liu, Y. Wang, X. Meng et al., Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. J. Mater. Chem. A 8(5), 2760–2768 (2020). https://doi.org/10.1039/C9TA13159K
- Q. Tai, X. Guo, G. Tang, P. You, T.-W. Ng et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58(3), 806–810 (2019). https://doi.org/10.1002/anie.201811539
- X. Meng, T. Wu, X. Liu, X. He, T. Noda et al., Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. J. Phys. Chem. Lett. 11(8), 2965–2971 (2020). https://doi.org/10.1021/acs.jpclett.0c00923
- E.W.-G. Diau, E. Jokar, M. Rameez, Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Lett. 4(8), 1930–1937 (2019). https://doi.org/10.1021/acsenergylett.9b01179
- S. Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake et al., Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8(4), 1702019 (2018). https://doi.org/10.1002/aenm.201702019
- K. Chen, P. Wu, W. Yang, R. Su, D. Luo et al., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411–418 (2018). https://doi.org/10.1016/j.nanoen.2018.05.006
- B. Li, H. Di, B. Chang, R. Yin, L. Fu et al., Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells. Adv. Funct. Mater. 31(11), 2007447 (2021). https://doi.org/10.1002/adfm.202007447
- T. Wu, X. Liu, X. Luo, X. Lin, D. Cui et al., Lead-free tin perovskite solar cells. Joule 5(4), 863–886 (2021). https://doi.org/10.1016/j.joule.2021.03.001
- M. Chen, Q. Dong, F.T. Eickemeyer, Y. Liu, Z. Dai et al., High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation. ACS Energy Lett. 5(7), 2223–2230 (2020). https://doi.org/10.1021/acsenergylett.0c00888
- T. Ye, X. Wang, K. Wang, S. Ma, D. Yang et al., Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%. ACS Energy Lett. 6(4), 1480–1489 (2021). https://doi.org/10.1021/acsenergylett.1c00342
- X. Liu, T. Wu, C. Zhang, Y. Zhang, H. Segawa et al., Interface energy-level management toward efficient tin perovskite solar cells with hole-transport-layer-free structure. Adv. Funct. Mater. 31(50), 2106560 (2021). https://doi.org/10.1002/adfm.202106560
- M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura et al., Suppression of charge carrier recombination in lead-free tin halide perovskite via Lewis base post-treatment. J. Phys. Chem. Lett. 10(17), 5277–5283 (2019). https://doi.org/10.1021/acs.jpclett.9b02024
- T. Wang, Q. Tai, X. Guo, J. Cao, C.-K. Liu et al., Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Lett. 5(6), 1741–1749 (2020). https://doi.org/10.1021/acsenergylett.0c00526
- C. Liu, J. Tu, X. Hu, Z. Huang, X. Meng et al., Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability. Adv. Funct. Mater. 29(18), 1808059 (2019). https://doi.org/10.1002/adfm.201808059
- X. Zhang, C. Hägglund, E.M.J. Johansson, Electro-optics of colloidal quantum dot solids for thin-film solar cells. Adv. Funct. Mater. 26(8), 1253–1260 (2016). https://doi.org/10.1002/adfm.201503338
- J.-H. Lee, J. Kim, G. Kim, D. Shin, S.Y. Jeong et al., Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy Environ. Sci. 11(7), 1742–1751 (2018). https://doi.org/10.1039/C8EE00162F
- X. Zhang, Z.-K. Yuan, S. Chen, Low electron carrier concentration near the p-n junction interface: A fundamental factor limiting short-circuit current of Cu(In, Ga)Se2 solar cells. Sol. RRL 3(6), 1900057 (2019). https://doi.org/10.1002/solr.201900057
- X. Yang, S. Zhang, K. Zhang, J. Liu, C. Qin et al., Coordinated shifts of interfacial energy levels: Insight into electron injection in highly efficient dye-sensitized solar cells. Energy Environ. Sci. 6(12), 3637–3645 (2013). https://doi.org/10.1039/c3ee42110d
- S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6(5), 1443 (2013). https://doi.org/10.1039/c3ee24453a
- M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
- K.P. Marshall, M. Walker, R.I. Walton, R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1, 16178 (2016). https://doi.org/10.1038/nenergy.2016.178
- T. Shi, H.-S. Zhang, W. Meng, Q. Teng, M. Liu et al., Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A 5(29), 15124–15129 (2017). https://doi.org/10.1039/C7TA02662E
- S.J. Lee, S.S. Shin, J. Im, T.K. Ahn, J.H. Noh et al., Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells. ACS Energy Lett. 3(1), 46–53 (2018). https://doi.org/10.1021/acsenergylett.7b00976
- X. Liu, Y. Wang, F. Xie, X. Yang, L. Han, Improving the performance of inverted formamidinium tin iodide perovskite solar cells by reducing the energy-level mismatch. ACS Energy Lett. 3(5), 1116–1121 (2018). https://doi.org/10.1021/acsenergylett.8b00383
- X. Liu, Y. Wang, T. Wu, X. He, X. Meng et al., Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 11(1), 2678 (2020). https://doi.org/10.1038/s41467-020-16561-6
- Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng et al., Dimensional engineering of a graded 3D–2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p-i-n photovoltaics. Adv. Energy Mater. 7(20), 1701038 (2017). https://doi.org/10.1002/aenm.201701038
- K.T. Cho, S. Paek, G. Grancini, C. Roldan-Carmona, P. Gao et al., Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10(2), 621–627 (2017). https://doi.org/10.1039/c6ee03182j
- B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33(41), 2103394 (2021). https://doi.org/10.1002/adma.202103394
- E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang et al., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11(9), 2353–2362 (2018). https://doi.org/10.1039/C8EE00956B
- T. Wu, X. Liu, X. He, Y. Wang, X. Meng et al., Efficient and stable tin-based perovskite solar cells by introducing π-conjugated lewis base. Sci. China Chem. 63(1), 107–115 (2020). https://doi.org/10.1007/s11426-019-9653-8
- T. Wu, D. Cui, X. Liu, X. Luo, H. Su et al., Additive engineering toward high-performance tin perovskite solar cells. Sol. RRL 5(5), 2100034 (2021). https://doi.org/10.1002/solr.202100034
- T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong et al., Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3(29), 14996–15000 (2015). https://doi.org/10.1039/C5TA00190K
- Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
- G. Saianand, P. Sonar, G.J. Wilson, A.-I. Gopalan, V.A.L. Roy et al., Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics. J. Energy Chem. 54, 151–173 (2021). https://doi.org/10.1016/j.jechem.2020.05.050
- T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang et al., Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31(24), 1900605 (2019). https://doi.org/10.1002/adma.201900605
- D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
- T. Wu, X. Li, Y. Qi, Y. Zhang, L. Han, Defect passivation for perovskite solar cells: from molecule design to device performance. Chemsuschem 14(20), 4354–4376 (2021). https://doi.org/10.1002/cssc.202101573
- F. Zhang, J. Song, R. Hu, Y. Xiang, J. He et al., Interfacial passivation of the p-doped hole-transporting layer using general insulating polymers for high-performance inverted perovskite solar cells. Small 14(19), 1704007 (2018). https://doi.org/10.1002/smll.201704007
- P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, S.-H. Wei, Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26(20), 6068–6072 (2014). https://doi.org/10.1021/cm503122j
References
X. Jiang, Z. Zang, Y. Zhou, H. Li, Q. Wei et al., Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology. Acc. Mater. Res. 2(4), 210–219 (2021). https://doi.org/10.1021/accountsmr.0c00111
J. Cao, F. Yan, Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14(3), 1286–1325 (2021). https://doi.org/10.1039/D0EE04007J
F. Gu, Z. Zhao, C. Wang, H. Rao, B. Zhao et al., Lead-free tin-based perovskite solar cells: strategies toward high performance. Sol. RRL 3(9), 1900213 (2019). https://doi.org/10.1002/solr.201900213
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13(1), 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress sn(ii) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
S. Sahare, H.D. Pham, D. Angmo, P. Ghoderao, J. MacLeod et al., Emerging perovskite solar cell technology: Remedial actions for the foremost challenges. Adv. Energy Mater. 11(42), 2101085 (2021). https://doi.org/10.1002/aenm.202101085
X. Jiang, H. Li, Q. Zhou, Q. Wei, M. Wei et al., One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143(29), 10970–10976 (2021). https://doi.org/10.1021/jacs.1c03032
K. Nishimura, M.A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen et al., Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 74, 104858 (2020). https://doi.org/10.1016/j.nanoen.2020.104858
D. Cui, X. Liu, T. Wu, X. Lin, X. Luo et al., Making room for growing oriented FASnI3 with large grains via cold precursor solution. Adv. Funct. Mater. 31(25), 2100931 (2021). https://doi.org/10.1002/adfm.202100931
B.-B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), 2102055 (2021). https://doi.org/10.1002/adma.202102055
T. Wu, D. Cui, X. Liu, X. Meng, Y. Wang et al., Efficient and stable tin perovskite solar cells enabled by graded heterostructure of light-absorbing layer. Sol. RRL 4(9), 2000240 (2020). https://doi.org/10.1002/solr.202000240
Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang et al., Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139(19), 6693–6699 (2017). https://doi.org/10.1021/jacs.7b01815
C. Ran, W. Gao, J. Li, J. Xi, L. Li et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 3(12), 3072–3087 (2019). https://doi.org/10.1016/j.joule.2019.08.023
X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He et al., Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy Environ. Sci. 13(9), 2896–2902 (2020). https://doi.org/10.1039/d0ee01845g
E. Jokar, P.-Y. Cheng, C.-Y. Lin, S. Narra, S. Shahbazi et al., Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition. ACS Energy Lett. 6(2), 485–492 (2021). https://doi.org/10.1021/acsenergylett.0c02305
E. Jokar, C.-H. Chien, C.-M. Tsai, A. Fathi, E.W.-G. Diau, Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31(2), 1804835 (2019). https://doi.org/10.1002/adma.201804835
X. Meng, Y. Wang, J. Lin, X. Liu, X. He et al., Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4(4), 902–912 (2020). https://doi.org/10.1016/j.joule.2020.03.007
W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
X. He, T. Wu, X. Liu, Y. Wang, X. Meng et al., Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. J. Mater. Chem. A 8(5), 2760–2768 (2020). https://doi.org/10.1039/C9TA13159K
Q. Tai, X. Guo, G. Tang, P. You, T.-W. Ng et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58(3), 806–810 (2019). https://doi.org/10.1002/anie.201811539
X. Meng, T. Wu, X. Liu, X. He, T. Noda et al., Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. J. Phys. Chem. Lett. 11(8), 2965–2971 (2020). https://doi.org/10.1021/acs.jpclett.0c00923
E.W.-G. Diau, E. Jokar, M. Rameez, Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Lett. 4(8), 1930–1937 (2019). https://doi.org/10.1021/acsenergylett.9b01179
S. Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake et al., Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8(4), 1702019 (2018). https://doi.org/10.1002/aenm.201702019
K. Chen, P. Wu, W. Yang, R. Su, D. Luo et al., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411–418 (2018). https://doi.org/10.1016/j.nanoen.2018.05.006
B. Li, H. Di, B. Chang, R. Yin, L. Fu et al., Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells. Adv. Funct. Mater. 31(11), 2007447 (2021). https://doi.org/10.1002/adfm.202007447
T. Wu, X. Liu, X. Luo, X. Lin, D. Cui et al., Lead-free tin perovskite solar cells. Joule 5(4), 863–886 (2021). https://doi.org/10.1016/j.joule.2021.03.001
M. Chen, Q. Dong, F.T. Eickemeyer, Y. Liu, Z. Dai et al., High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation. ACS Energy Lett. 5(7), 2223–2230 (2020). https://doi.org/10.1021/acsenergylett.0c00888
T. Ye, X. Wang, K. Wang, S. Ma, D. Yang et al., Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%. ACS Energy Lett. 6(4), 1480–1489 (2021). https://doi.org/10.1021/acsenergylett.1c00342
X. Liu, T. Wu, C. Zhang, Y. Zhang, H. Segawa et al., Interface energy-level management toward efficient tin perovskite solar cells with hole-transport-layer-free structure. Adv. Funct. Mater. 31(50), 2106560 (2021). https://doi.org/10.1002/adfm.202106560
M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura et al., Suppression of charge carrier recombination in lead-free tin halide perovskite via Lewis base post-treatment. J. Phys. Chem. Lett. 10(17), 5277–5283 (2019). https://doi.org/10.1021/acs.jpclett.9b02024
T. Wang, Q. Tai, X. Guo, J. Cao, C.-K. Liu et al., Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Lett. 5(6), 1741–1749 (2020). https://doi.org/10.1021/acsenergylett.0c00526
C. Liu, J. Tu, X. Hu, Z. Huang, X. Meng et al., Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability. Adv. Funct. Mater. 29(18), 1808059 (2019). https://doi.org/10.1002/adfm.201808059
X. Zhang, C. Hägglund, E.M.J. Johansson, Electro-optics of colloidal quantum dot solids for thin-film solar cells. Adv. Funct. Mater. 26(8), 1253–1260 (2016). https://doi.org/10.1002/adfm.201503338
J.-H. Lee, J. Kim, G. Kim, D. Shin, S.Y. Jeong et al., Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells. Energy Environ. Sci. 11(7), 1742–1751 (2018). https://doi.org/10.1039/C8EE00162F
X. Zhang, Z.-K. Yuan, S. Chen, Low electron carrier concentration near the p-n junction interface: A fundamental factor limiting short-circuit current of Cu(In, Ga)Se2 solar cells. Sol. RRL 3(6), 1900057 (2019). https://doi.org/10.1002/solr.201900057
X. Yang, S. Zhang, K. Zhang, J. Liu, C. Qin et al., Coordinated shifts of interfacial energy levels: Insight into electron injection in highly efficient dye-sensitized solar cells. Energy Environ. Sci. 6(12), 3637–3645 (2013). https://doi.org/10.1039/c3ee42110d
S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6(5), 1443 (2013). https://doi.org/10.1039/c3ee24453a
M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
K.P. Marshall, M. Walker, R.I. Walton, R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1, 16178 (2016). https://doi.org/10.1038/nenergy.2016.178
T. Shi, H.-S. Zhang, W. Meng, Q. Teng, M. Liu et al., Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A 5(29), 15124–15129 (2017). https://doi.org/10.1039/C7TA02662E
S.J. Lee, S.S. Shin, J. Im, T.K. Ahn, J.H. Noh et al., Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells. ACS Energy Lett. 3(1), 46–53 (2018). https://doi.org/10.1021/acsenergylett.7b00976
X. Liu, Y. Wang, F. Xie, X. Yang, L. Han, Improving the performance of inverted formamidinium tin iodide perovskite solar cells by reducing the energy-level mismatch. ACS Energy Lett. 3(5), 1116–1121 (2018). https://doi.org/10.1021/acsenergylett.8b00383
X. Liu, Y. Wang, T. Wu, X. He, X. Meng et al., Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 11(1), 2678 (2020). https://doi.org/10.1038/s41467-020-16561-6
Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng et al., Dimensional engineering of a graded 3D–2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p-i-n photovoltaics. Adv. Energy Mater. 7(20), 1701038 (2017). https://doi.org/10.1002/aenm.201701038
K.T. Cho, S. Paek, G. Grancini, C. Roldan-Carmona, P. Gao et al., Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10(2), 621–627 (2017). https://doi.org/10.1039/c6ee03182j
B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33(41), 2103394 (2021). https://doi.org/10.1002/adma.202103394
E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang et al., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11(9), 2353–2362 (2018). https://doi.org/10.1039/C8EE00956B
T. Wu, X. Liu, X. He, Y. Wang, X. Meng et al., Efficient and stable tin-based perovskite solar cells by introducing π-conjugated lewis base. Sci. China Chem. 63(1), 107–115 (2020). https://doi.org/10.1007/s11426-019-9653-8
T. Wu, D. Cui, X. Liu, X. Luo, H. Su et al., Additive engineering toward high-performance tin perovskite solar cells. Sol. RRL 5(5), 2100034 (2021). https://doi.org/10.1002/solr.202100034
T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong et al., Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3(29), 14996–15000 (2015). https://doi.org/10.1039/C5TA00190K
Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
G. Saianand, P. Sonar, G.J. Wilson, A.-I. Gopalan, V.A.L. Roy et al., Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics. J. Energy Chem. 54, 151–173 (2021). https://doi.org/10.1016/j.jechem.2020.05.050
T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang et al., Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31(24), 1900605 (2019). https://doi.org/10.1002/adma.201900605
D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142 (2016). https://doi.org/10.1038/nenergy.2016.142
T. Wu, X. Li, Y. Qi, Y. Zhang, L. Han, Defect passivation for perovskite solar cells: from molecule design to device performance. Chemsuschem 14(20), 4354–4376 (2021). https://doi.org/10.1002/cssc.202101573
F. Zhang, J. Song, R. Hu, Y. Xiang, J. He et al., Interfacial passivation of the p-doped hole-transporting layer using general insulating polymers for high-performance inverted perovskite solar cells. Small 14(19), 1704007 (2018). https://doi.org/10.1002/smll.201704007
P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, S.-H. Wei, Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26(20), 6068–6072 (2014). https://doi.org/10.1021/cm503122j