Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules
Corresponding Author: Yabing Qi
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 155
Abstract
Tin dioxide (SnO2) has been demonstrated as one of the promising electron transport layers for high-efficiency perovskite solar cells (PSCs). However, scalable fabrication of SnO2 films with uniform coverage, desirable thickness and a low defect density in perovskite solar modules (PSMs) is still challenging. Here, we report preparation of high-quality large-area SnO2 films by chemical bath deposition (CBD) with the addition of KMnO4. The strong oxidizing nature of KMnO4 promotes the conversion from Sn(II) to Sn(VI), leading to reduced trap defects and a higher carrier mobility of SnO2. In addition, K ions diffuse into the perovskite film resulting in larger grain sizes, passivated grain boundaries, and reduced hysteresis of PSCs. Furthermore, Mn ion doping improves both the crystallinity and the phase stability of the perovskite film. Such a multifunctional interface engineering strategy enabled us to achieve a power conversion efficiency (PCE) of 21.70% with less hysteresis for lab-scale PSCs. Using this method, we also fabricated 5 × 5 and 10 × 10 cm2 PSMs, which showed PCEs of 15.62% and 11.80% (active area PCEs are 17.26% and 13.72%), respectively. For the encapsulated 5 × 5 cm2 PSM, we obtained a T80 operation lifetime (the lifespan during which the solar module PCE drops to 80% of its initial value) exceeding 1000 h in ambient condition.
Highlights:
1 High-quality large-area SnO2 films are fabricated by chemical bath deposition with the addition of KMnO4.
2 The presence of K and Mn ions can improve both the crystallinity and the phase stability of perovskites and reduce hysteresis of devices simultaneously.
3 Perovskite solar modules (22.4 and 91.8 cm2) are demonstrated with active area efficiencies of 17.26% and 13.72%, respectively, and the 22.4 cm2 perovskite solar module exhibits a T80 operation lifetime exceeding 1000 h in ambient condition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361(6408), 6408 (2018). https://doi.org/10.1126/science.aat8235
- F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12(2), 518–549 (2019). https://doi.org/10.1039/C8EE03025A
- M. Wang, W. Wang, B. Ma, W. Shen, L. Liu et al., Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13(1), 62 (2021). https://doi.org/10.1007/s40820-020-00578-z
- G. Tong, L.K. Ono, Y.B. Qi, Recent progress of all-bromide inorganic perovskite solar cells. Energy Technol. 8(4), 1900961 (2019). https://doi.org/10.1002/ente.201900961
- G. Tong, H. Li, D. Li, Z. Zhu, E. Xu et al., Dual-phase CsPbBr3-CsPb2Br5 perovskite thin films via vapour deposition for high-performance rigid and flexible photodetectors. Small 14(7), 1702523–1702530 (2018). https://doi.org/10.1002/smll.201702523
- G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu et al., Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy 65, 104015 (2019). https://doi.org/10.1016/j.nanoen.2019.104015
- W. Liu, N. Liu, S. Ji, H. Hua, Y. Ma et al., Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 12(1), 119 (2020). https://doi.org/10.1007/s40820-020-00457-7
- Best research-cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research- cell-efficiencies.20201228.pdf. (accessed by January 2021).
- J. Werner, C.C. Boyd, T. Moot, E.J. Wolf, R.M. France et al., Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ. Sci. 13(10), 3393–3403 (2020). https://doi.org/10.1039/D0EE01923B
- G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of a-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417
- N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee et al., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3(8), 682–689 (2018). https://doi.org/10.1038/s41560-018-0200-6
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
- E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
- Z. Yang, W. Zhang, S. Wu, H. Zhu, Z. Liu et al., Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci. Adv. 7(18), eabg3749 (2021). https://doi.org/10.1126/sciadv.abg3749
- L. Lin, T.W. Jones, T.C.J. Yang, N.W. Duffy, J. Li et al., Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 31(5), 2008300 (2021). https://doi.org/10.1002/adfm.202008300
- L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang et al., Review on the application of SnO2 in perovskite solar cells. Adv. Funct. Mater. 28(35), 1802757 (2018). https://doi.org/10.1002/adfm.201802757
- Q. Jiang, X. Zhang, J. You, SnO2: A wonderful electron transport layer for perovskite solar cells. Small 14(31), 1801154 (2018). https://doi.org/10.1002/smll.201801154
- Z. Li, Y. Gao, Z. Zhang, Q. Xiong, L. Deng et al., cPCN-Regulated SnO2 composites enables perovskite solar cell with efficiency beyond 23%. Nano-Micro Lett. 13(1), 101 (2021). https://doi.org/10.1007/s40820-021-00636-0
- L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12(1), 44 (2020). https://doi.org/10.1007/s40820-020-0379-5
- Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
- G. Tong, D.-Y. Son, L.K. Ono, H.-B. Kang, S. He et al., Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000 h. Nano Energy 87, 106152 (2021). https://doi.org/10.1016/j.nanoen.2021.106152
- E.H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui et al., Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9(10), 3128–3134 (2016). https://doi.org/10.1039/C6EE02390H
- T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang et al., A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10(12), 2509–2515 (2017). https://doi.org/10.1039/C7EE02634J
- L. Qiu, Z. Liu, L.K. Ono, Y. Jiang, D.Y. Son et al., Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv. Funct. Mater. 29(47), 1806779 (2018). https://doi.org/10.1002/adfm.201806779
- J.P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015). https://doi.org/10.1039/C5EE02608C
- Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5(9), 657–665 (2020). https://doi.org/10.1038/s41560-020-0657-y
- R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
- C. Altinkaya, E. Aydin, E. Ugur, F.H. Isikgor, A.S. Subbiah et al., Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv. Mater. 33, 2005504 (2021). https://doi.org/10.1002/adma.202005504
- M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 57). Prog. Photovolt. 29(1), 3–15 (2020). https://doi.org/10.1002/pip.3371
- N.-G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020). https://doi.org/10.1038/s41578-019-0176-2
- C. Wu, K. Wang, J. Li, Z. Liang, J. Li et al., Volatile solution: The way toward scalable fabrication of perovskite solar cells? Matter 4(3), 775–793 (2021). https://doi.org/10.1016/j.matt.2020.12.025
- Y. Hu, Y. Chu, Q. Wang, Z. Zhang, Y. Ming et al., Standardizing perovskite solar modules beyond cells. Joule 3(9), 2076–2085 (2019). https://doi.org/10.1016/j.joule.2019.08.015
- T. Bu, J. Li, F. Zheng, W. Chen, X. Wen et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9(1), 4609 (2018). https://doi.org/10.1038/s41467-018-07099-9
- Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry et al., Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3(4), 18017 (2018). https://doi.org/10.1038/natrevmats.2018.17
- L. Qiu, S. He, L.K. Ono, S. Liu, Y.B. Qi, Scalable fabrication of metal halide perovskite solar cells and modules. ACS Energy Lett. 4(9), 2147–2167 (2019). https://doi.org/10.1021/acsenergylett.9b01396
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- Z. Liu, K. Deng, J. Hu, L. Li, Coagulated SnO2 colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability. Angew. Chem. Int. Ed. 58(33), 11497–11504 (2019). https://doi.org/10.1002/ange.201904945
- Z. Li, L. Wang, R. Liu, Y. Fan, H. Meng et al., Spontaneous interface ion exchange: Passivating surface defects of perovskite solar cells with enhanced photovoltage. Adv. Energy Mater. 9(38), 1902142 (2019). https://doi.org/10.1002/aenm.201902142
- D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9(1), 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
- K. Deng, Q. Chen, L. Li, Modification engineering in SnO2 electron transport layer toward perovskite solar cells: Efficiency and stability. Adv. Funct. Mater. 30(46), 2004209 (2020). https://doi.org/10.1002/adfm.202004209
- E.H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale et al., Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020). https://doi.org/10.1021/acsenergylett.0c01566
- P. Zhu, S. Gu, X. Luo, Y. Gao, S. Li et al., Simultaneous contact and grain—boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv. Energy Mater. 10(3), 1903083 (2019). https://doi.org/10.1002/aenm.201903083
- S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), 2003990 (2020). https://doi.org/10.1002/adma.202003990
- G. Tong, D.-Y. Son, L.K. Ono, Y. Liu, Y. Hu et al., Scalable fabrication of > 90 cm2 perovskite solar modules with > 1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater. 11(10), 2003712 (2021). https://doi.org/10.1002/aenm.202003712
- Y. Chen, P. Lisbona, V. Perez, X. Guo, Performance of MnCl2 doped magnetic iron-carbon sorbent on mercury removal from flue gas: The effect of O2 and SO2. Fuel 285(1), 119064 (2021). https://doi.org/10.1016/j.fuel.2020.119064
- X. Ren, Y. Liu, D.G. Lee, W.B. Kim, G.S. Han et al., Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells. InfoMat 2(2), 401–408 (2020). https://doi.org/10.1002/inf2.12059
- F. Ali, N.D. Pham, H.J. Bradford, N. Khoshsirat, K. Ostrikov et al., Tuning the amount of oxygen vacancies in sputter-deposited SnOx films for enhancing the performance of perovskite solar cells. Chemsuschem 11(18), 3096–3103 (2018). https://doi.org/10.1002/cssc.201801541
- C. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7(36), 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A
- J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng et al., Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 8(20), 1800504 (2018). https://doi.org/10.1002/aenm.201800504
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
- Z. Tang, T. Bessho, F. Awai, T. Kinoshita, M.M. Maitani et al., Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci. Rep. 7, 12183 (2017). https://doi.org/10.1038/s41598-017-12436-x
- D.Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin, Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140(4), 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
- S. Zou, Y. Liu, J. Li, C. Liu, R. Feng et al., Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139(33), 11443–11450 (2017). https://doi.org/10.1021/jacs.7b04000
- G. Tong, M. Jiang, D.Y. Son, L.K. Ono, Y.B. Qi, 2D derivative phase induced growth of 3D all inorganic perovskite micro-nanowire array based photodetectors. Adv. Funct. Mater. 30(34), 2002526 (2020). https://doi.org/10.1002/adfm.202002526
- X. Wang, L. Wang, T. Shan, S. Leng, H. Zhong et al., Low-temperature aging provides 22% efficient bromine-free and passivation layer-free planar perovskite solar cells. Nano-Micro Lett. 12(1), 84 (2020). https://doi.org/10.1007/s40820-020-00418-0
- K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress, Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3(1), 61–67 (2018). https://doi.org/10.1038/s41560-017-0060-5
- D.H. Kang, N.G. Park, On the current-voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31(34), 1805214 (2019). https://doi.org/10.1002/adma.201805214
- C. Li, A. Guerrero, Y. Zhong, A. Graser, C.A.M. Luna et al., Real-time observation of iodide ion migration in methylammonium lead halide perovskites. Small 13(42), 1701711 (2017). https://doi.org/10.1002/smll.201701711
- S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6(19), 3808–3814 (2015). https://doi.org/10.1021/acs.jpclett.5b01645
- N.D. Pham, V.T. Tiong, D. Yao, W. Martens, A. Guerrero et al., Guanidinium thiocyanate selective ostwald ripening induced large grain for high performance perovskite solar cells. Nano Energy 41, 476–487 (2017). https://doi.org/10.1016/j.nanoen.2017.10.006
- H.S. Kim, I.H. Jang, N. Ahn, M. Choi, A. Guerrero et al., Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 6(22), 4633–4639 (2015). https://doi.org/10.1021/acs.jpclett.5b02273
- L.K. Ono, Y.B. Qi, S. Liu, Progress toward stable lead halide perovskite solar cells. Joule 2(10), 1961–1990 (2018). https://doi.org/10.1016/j.joule.2018.07.007
- K. Domanski, B. Roose, T. Matsui, M. Saliba, S.-H. Turren-Cruz et al., Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10(2), 604–613 (2018). https://doi.org/10.1039/C6EE03352K
- D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016). https://doi.org/10.1016/j.solmat.2015.12.025
- Z. Li, M. Yang, J.-S. Park, S. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
References
Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361(6408), 6408 (2018). https://doi.org/10.1126/science.aat8235
F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 12(2), 518–549 (2019). https://doi.org/10.1039/C8EE03025A
M. Wang, W. Wang, B. Ma, W. Shen, L. Liu et al., Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13(1), 62 (2021). https://doi.org/10.1007/s40820-020-00578-z
G. Tong, L.K. Ono, Y.B. Qi, Recent progress of all-bromide inorganic perovskite solar cells. Energy Technol. 8(4), 1900961 (2019). https://doi.org/10.1002/ente.201900961
G. Tong, H. Li, D. Li, Z. Zhu, E. Xu et al., Dual-phase CsPbBr3-CsPb2Br5 perovskite thin films via vapour deposition for high-performance rigid and flexible photodetectors. Small 14(7), 1702523–1702530 (2018). https://doi.org/10.1002/smll.201702523
G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu et al., Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy 65, 104015 (2019). https://doi.org/10.1016/j.nanoen.2019.104015
W. Liu, N. Liu, S. Ji, H. Hua, Y. Ma et al., Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 12(1), 119 (2020). https://doi.org/10.1007/s40820-020-00457-7
Best research-cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research- cell-efficiencies.20201228.pdf. (accessed by January 2021).
J. Werner, C.C. Boyd, T. Moot, E.J. Wolf, R.M. France et al., Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ. Sci. 13(10), 3393–3403 (2020). https://doi.org/10.1039/D0EE01923B
G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of a-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417
N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee et al., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3(8), 682–689 (2018). https://doi.org/10.1038/s41560-018-0200-6
Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3
Z. Yang, W. Zhang, S. Wu, H. Zhu, Z. Liu et al., Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci. Adv. 7(18), eabg3749 (2021). https://doi.org/10.1126/sciadv.abg3749
L. Lin, T.W. Jones, T.C.J. Yang, N.W. Duffy, J. Li et al., Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 31(5), 2008300 (2021). https://doi.org/10.1002/adfm.202008300
L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang et al., Review on the application of SnO2 in perovskite solar cells. Adv. Funct. Mater. 28(35), 1802757 (2018). https://doi.org/10.1002/adfm.201802757
Q. Jiang, X. Zhang, J. You, SnO2: A wonderful electron transport layer for perovskite solar cells. Small 14(31), 1801154 (2018). https://doi.org/10.1002/smll.201801154
Z. Li, Y. Gao, Z. Zhang, Q. Xiong, L. Deng et al., cPCN-Regulated SnO2 composites enables perovskite solar cell with efficiency beyond 23%. Nano-Micro Lett. 13(1), 101 (2021). https://doi.org/10.1007/s40820-021-00636-0
L. Huang, X. Zhou, R. Xue, P. Xu, S. Wang et al., Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12(1), 44 (2020). https://doi.org/10.1007/s40820-020-0379-5
Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
G. Tong, D.-Y. Son, L.K. Ono, H.-B. Kang, S. He et al., Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000 h. Nano Energy 87, 106152 (2021). https://doi.org/10.1016/j.nanoen.2021.106152
E.H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui et al., Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9(10), 3128–3134 (2016). https://doi.org/10.1039/C6EE02390H
T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang et al., A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10(12), 2509–2515 (2017). https://doi.org/10.1039/C7EE02634J
L. Qiu, Z. Liu, L.K. Ono, Y. Jiang, D.Y. Son et al., Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv. Funct. Mater. 29(47), 1806779 (2018). https://doi.org/10.1002/adfm.201806779
J.P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner et al., Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015). https://doi.org/10.1039/C5EE02608C
Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen et al., Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5(9), 657–665 (2020). https://doi.org/10.1038/s41560-020-0657-y
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
C. Altinkaya, E. Aydin, E. Ugur, F.H. Isikgor, A.S. Subbiah et al., Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Adv. Mater. 33, 2005504 (2021). https://doi.org/10.1002/adma.202005504
M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 57). Prog. Photovolt. 29(1), 3–15 (2020). https://doi.org/10.1002/pip.3371
N.-G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020). https://doi.org/10.1038/s41578-019-0176-2
C. Wu, K. Wang, J. Li, Z. Liang, J. Li et al., Volatile solution: The way toward scalable fabrication of perovskite solar cells? Matter 4(3), 775–793 (2021). https://doi.org/10.1016/j.matt.2020.12.025
Y. Hu, Y. Chu, Q. Wang, Z. Zhang, Y. Ming et al., Standardizing perovskite solar modules beyond cells. Joule 3(9), 2076–2085 (2019). https://doi.org/10.1016/j.joule.2019.08.015
T. Bu, J. Li, F. Zheng, W. Chen, X. Wen et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9(1), 4609 (2018). https://doi.org/10.1038/s41467-018-07099-9
Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry et al., Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3(4), 18017 (2018). https://doi.org/10.1038/natrevmats.2018.17
L. Qiu, S. He, L.K. Ono, S. Liu, Y.B. Qi, Scalable fabrication of metal halide perovskite solar cells and modules. ACS Energy Lett. 4(9), 2147–2167 (2019). https://doi.org/10.1021/acsenergylett.9b01396
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
Z. Liu, K. Deng, J. Hu, L. Li, Coagulated SnO2 colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability. Angew. Chem. Int. Ed. 58(33), 11497–11504 (2019). https://doi.org/10.1002/ange.201904945
Z. Li, L. Wang, R. Liu, Y. Fan, H. Meng et al., Spontaneous interface ion exchange: Passivating surface defects of perovskite solar cells with enhanced photovoltage. Adv. Energy Mater. 9(38), 1902142 (2019). https://doi.org/10.1002/aenm.201902142
D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9(1), 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
K. Deng, Q. Chen, L. Li, Modification engineering in SnO2 electron transport layer toward perovskite solar cells: Efficiency and stability. Adv. Funct. Mater. 30(46), 2004209 (2020). https://doi.org/10.1002/adfm.202004209
E.H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale et al., Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020). https://doi.org/10.1021/acsenergylett.0c01566
P. Zhu, S. Gu, X. Luo, Y. Gao, S. Li et al., Simultaneous contact and grain—boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv. Energy Mater. 10(3), 1903083 (2019). https://doi.org/10.1002/aenm.201903083
S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), 2003990 (2020). https://doi.org/10.1002/adma.202003990
G. Tong, D.-Y. Son, L.K. Ono, Y. Liu, Y. Hu et al., Scalable fabrication of > 90 cm2 perovskite solar modules with > 1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater. 11(10), 2003712 (2021). https://doi.org/10.1002/aenm.202003712
Y. Chen, P. Lisbona, V. Perez, X. Guo, Performance of MnCl2 doped magnetic iron-carbon sorbent on mercury removal from flue gas: The effect of O2 and SO2. Fuel 285(1), 119064 (2021). https://doi.org/10.1016/j.fuel.2020.119064
X. Ren, Y. Liu, D.G. Lee, W.B. Kim, G.S. Han et al., Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells. InfoMat 2(2), 401–408 (2020). https://doi.org/10.1002/inf2.12059
F. Ali, N.D. Pham, H.J. Bradford, N. Khoshsirat, K. Ostrikov et al., Tuning the amount of oxygen vacancies in sputter-deposited SnOx films for enhancing the performance of perovskite solar cells. Chemsuschem 11(18), 3096–3103 (2018). https://doi.org/10.1002/cssc.201801541
C. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7(36), 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A
J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng et al., Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 8(20), 1800504 (2018). https://doi.org/10.1002/aenm.201800504
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
Z. Tang, T. Bessho, F. Awai, T. Kinoshita, M.M. Maitani et al., Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci. Rep. 7, 12183 (2017). https://doi.org/10.1038/s41598-017-12436-x
D.Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin, Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140(4), 1358–1364 (2018). https://doi.org/10.1021/jacs.7b10430
S. Zou, Y. Liu, J. Li, C. Liu, R. Feng et al., Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139(33), 11443–11450 (2017). https://doi.org/10.1021/jacs.7b04000
G. Tong, M. Jiang, D.Y. Son, L.K. Ono, Y.B. Qi, 2D derivative phase induced growth of 3D all inorganic perovskite micro-nanowire array based photodetectors. Adv. Funct. Mater. 30(34), 2002526 (2020). https://doi.org/10.1002/adfm.202002526
X. Wang, L. Wang, T. Shan, S. Leng, H. Zhong et al., Low-temperature aging provides 22% efficient bromine-free and passivation layer-free planar perovskite solar cells. Nano-Micro Lett. 12(1), 84 (2020). https://doi.org/10.1007/s40820-020-00418-0
K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress, Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3(1), 61–67 (2018). https://doi.org/10.1038/s41560-017-0060-5
D.H. Kang, N.G. Park, On the current-voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31(34), 1805214 (2019). https://doi.org/10.1002/adma.201805214
C. Li, A. Guerrero, Y. Zhong, A. Graser, C.A.M. Luna et al., Real-time observation of iodide ion migration in methylammonium lead halide perovskites. Small 13(42), 1701711 (2017). https://doi.org/10.1002/smll.201701711
S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6(19), 3808–3814 (2015). https://doi.org/10.1021/acs.jpclett.5b01645
N.D. Pham, V.T. Tiong, D. Yao, W. Martens, A. Guerrero et al., Guanidinium thiocyanate selective ostwald ripening induced large grain for high performance perovskite solar cells. Nano Energy 41, 476–487 (2017). https://doi.org/10.1016/j.nanoen.2017.10.006
H.S. Kim, I.H. Jang, N. Ahn, M. Choi, A. Guerrero et al., Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 6(22), 4633–4639 (2015). https://doi.org/10.1021/acs.jpclett.5b02273
L.K. Ono, Y.B. Qi, S. Liu, Progress toward stable lead halide perovskite solar cells. Joule 2(10), 1961–1990 (2018). https://doi.org/10.1016/j.joule.2018.07.007
K. Domanski, B. Roose, T. Matsui, M. Saliba, S.-H. Turren-Cruz et al., Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10(2), 604–613 (2018). https://doi.org/10.1039/C6EE03352K
D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016). https://doi.org/10.1016/j.solmat.2015.12.025
Z. Li, M. Yang, J.-S. Park, S. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284 (2016). https://doi.org/10.1021/acs.chemmater.5b04107