Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation
Corresponding Author: Sui-Dong Wang
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 371-380
Abstract
A simple one-pot method was developed to prepare PtNi alloy nanoparticles, which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid. The nanohybrids are targeting stable nanocatalysts for fuel cell applications. The sizes of the supported PtNi nanoparticles are uniform and as small as 1–2 nm. Pt-to-Ni ratio was controllable by simply selecting a PtNi alloy target. The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation. The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst. The electronic structure characterization on the PtNi nanoparticles demonstrates that the electrons are transferred from Ni to Pt, which can suppress the CO poisoning effect.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Dillon, S. Srinivasana, A.S. Aricò, V. Antonucci, International activities in DMFC R&D: status of technologies and potential applications. J. Power Sources 127(1), 112–126 (2004). doi:10.1016/j.jpowsour.2003.09.032
- S.K. Kamarudin, F. Achmad, W.R.W. Daud, Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrog. Energy 34(12), 6902–6916 (2009). doi:10.1016/j.ijhydene.2009.06.013
- J.S. Liang, K.Y. Liu, S.Z. Li, D.Z. Wang, T.Q. Ren, X.Y. Xu, Y. Luo, Novel flow field with superhydrophobic gas channels prepared by one-step solvent-induced crystallization for micro direct methanol fuel cell. Nano-Micro Lett. 7(2), 165–171 (2015). doi:10.1007/s40820-015-0032-x
- G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106(9), 4044–4098 (2006). doi:10.1021/cr068360d
- C.N. Hamelinck, A.P.C. Faaij, Outlook for advanced biofuels. Energy Policy 34(17), 3268–3283 (2006). doi:10.1016/j.enpol.2005.06.012
- E.L. Gyenge, J. Zhang, PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Platin. Met. Rev. 53(4), 219–220 (2009). doi:10.1007/978-1-84800-936-3
- A.B.A.A. Nassr, I. Sinev, M.M. Pohl, W. Grünert, M. Bron, Rapid microwave-assisted polyol reduction for the preparation of highly active PtNi/CNT electrocatalysts for methanol oxidation. ACS Catal. 4(4), 2449–2462 (2014). doi:10.1021/cs401140g
- A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 38(4), 445–457 (1997). doi:10.1016/S0920-5861(97)00054-0
- X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Recent advances in catalysts for direct methanol fuel cells. Energy. Environ. Sci. 4(4), 2736–2753 (2011). doi:10.1039/c1ee01307f
- J. Zhang, H. Liu, Electrocatalysis of Direct Methanol Fuel Cells: from Fundamentals to Applications (Wiley, Weinheim, 2009), pp. 227–255
- S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review. J. Electroanal. Chem. 461, 14–31 (1999). doi:10.1016/S0022-0728(98)00197-1
- J.H. Choi, K.W. Park, I.S. Park, K. Kim, J.S. Lee, Y.E. Sung, A PtAu nanoparticle electrocatalyst for methanol electro-oxidation in direct methanol fuel cells. J. Electrochem. Soc. 153(10), A1812–A1817 (2006). doi:10.1149/1.2224055
- H.X. Zhao, Z. Zheng, J. Li, H.M. Jia, K.W. Wong, Y.D. Zhang, W.M. Lau, Substitute of expensive Pt with improved electrocatalytic performance and higher resistance to CO poisoning for methanol oxidation: the case of synergistic Pt-Co3O4 nanocomposite. Nano-Micro Lett. 5(4), 296–302 (2013). doi:10.1007/BF03353761
- C.X. Xu, J.G. Hou, X.H. Pang, X.J. Li, M.L. Zhu, B.Y. Tang, Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int. J. Hydrog. Energy 37(14), 10489–10498 (2012). doi:10.1016/j.ijhydene.2012.04.041
- K. Wang, H.A. Gasteiger, N.M. Markovic, P.N. Ross, On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. J. Electrochim. Acta 41(16), 2587–2593 (1996). doi:10.1016/0013-4686(96)00079-5
- S. Harish, S. Baranton, C. Coutanceau, J. Joseph, Microwave assisted polyol method for the preparation of Pt/C, Ru/C and PtRu/C nanoparticles and its application in electrooxidation of methanol. J. Power Sources 214, 33–39 (2012). doi:10.1016/j.jpowsour.2012.04.045
- W.J. Kang, R. Li, D.H. Wei, S.L. Xu, S.Y. Wei, H.B. Li, CTAB-reduced synthesis of urchin-like Pt–Cu alloy nanostructures and catalysis study towards the methanol oxidation reaction. RSC Adv. 2015(5), 94210–94215 (2015). doi:10.1039/C5RA20464J
- X.G. Wang, F.C. Zhu, Y.W. He, M. Wang, Z.H. Zhang, Z.Z. Ma, R.X. Li, Highly active carbon supported ternary PdSnPtx (x = 0.1–0.7) catalysts for ethanol electro-oxidation in alkaline and acid media. J. Colloid. Interface Sci. 468, 200–210 (2016). doi:10.1016/j.jcis.2016.01.068
- M. Wang, Y.W. He, R.X. Li, Z.Z. Ma, Z.H. Zhang, X.G. Wang, Electrochemical activated PtAuCu alloy nanoparticle catalysts for formic acid, methanol and ethanol electro-oxidation. Electrochim. Acta 178, 259–269 (2015). doi:10.1016/j.electacta.2015.07.157
- M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60(3), 275–283 (1975). doi:10.1016/S0022-0728(75)80262-2
- H. Igarashi, T. Fujino, Y. Zhu, H. Uchida, M. Watanabe, CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys. Chem. Chem. Phys. 3(3), 306–314 (2001). doi:10.1039/b007768m
- X.W. Zhou, R.H. Zhang, Z.Y. Zhou, S.G. Sun, Preparation of PtNi hollow nanospheres for the electrocatalytic oxidation of methanol. J. Power Sources 196(14), 5844–5848 (2011). doi:10.1016/j.jpowsour.2011.02.088
- F.C. Zhu, G.S. Ma, Z.C. Bai, R.Q. Hang, B. Tang, Z.H. Zhang, X.G. Wang, High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation. J. Power Sources 242(22), 610–620 (2013). doi:10.1016/j.jpowsour.2013.05.145
- F.C. Zhu, M. Wang, Y.W. He, G.S. Ma, Z.H. Zhang, X.G. Wang, A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim. Acta 148(2), 291–301 (2014). doi:10.1016/j.electacta.2014.10.062
- R.P. Xiu, F.F. Zhang, Z.H. Wang, M. Yang, J.F. Xia, R.J. Gui, Electrodeposition of PtNi bimetallic nanoparticles on three-dimensional graphene for highly efficient methanol oxidation. RSC Adv. 5(105), 86578–86583 (2015). doi:10.1039/C5RA13728D
- Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, G. Sun, Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media: experimental and density functional theory studies. J. Phys. Chem. C 114(46), 19714–19722 (2010). doi:10.1021/jp1039755
- A.B.A.A. Nassr, I. Sinev, W. Grünert, M. Bron, PtNi supported on oxygen functionalized carbon nanotubes: in depth structural characterization and activity for methanol electrooxidation. Appl. Catal. B 142–143, 849–860 (2013). doi:10.1016/j.apcatb.2013.06.013
- C.H. Liu, B.H. Mao, J. Gao, S. Zhang, X. Gao, Z. Liu, S.T. Lee, X.H. Sun, S.D. Wang, Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon 50(8), 3008–3014 (2012). doi:10.1016/j.carbon.2012.02.086
- T. Torimoto, K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, Sputter deposition onto ionic liquids: simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 89(24), 243117 (2006). doi:10.1063/1.2404975
- T. Torimoto, T. Tsuda, K. Okazaki, S. Kuwabata, New frontiers in materials science opened by ionic liquids. Adv. Mater. 22(11), 1196–1221 (2010). doi:10.1002/adma.200902184
- C.H. Liu, X.Q. Chen, Y.F. Hu, T.K. Sham, S.D. Wang, One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl. Mater. Interfaces 5(11), 5072–5079 (2013). doi:10.1021/am4008853
- H. Wender, L.F. de Oliveira, P. Migowski, A.F. Feil, E. Lissner, M.H.G. Prechtl, S.R. Teixeira, J. Dupont, Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J. Phys. Chem. C 114(27), 11764–11768 (2010). doi:10.1021/jp102231x
- H. Zhang, H. Cui, Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25(5), 2604–2614 (2009). doi:10.1021/la803347h
- W.J. Hong, H. Bai, Y.X. Xu, Z.Y. Yao, Z.Z. Gu, G.Q. Shi, Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J. Phys. Chem. C 114(4), 1822–1826 (2010). doi:10.1021/jp9101724
- C.H. Liu, J. Liu, Y.Y. Zhou, X.L. Cai, Y. Lu, X. Gao, S.D. Wang, Small and uniform Pd monometallic/bimetallic nanoparticles decorated on multi-walled carbon nanotubes for efficient reduction of 4-nitrophenol. Carbon 94, 295–300 (2015). doi:10.1016/j.carbon.2015.07.003
- C.H. Liu, R.H. Liu, Q.J. Sun, J.B. Chang, X. Gao, Y. Liu, S.T. Lee, Z.H. Kang, S.D. Wang, Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale 7(14), 6356–6362 (2015). doi:10.1039/C4NR06855F
- J.B. Chang, C.H. Liu, J. Liu, Y.Y. Zhou, X. Gao, S.D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
- N.C. Cheng, M.N. Banis, J. Liu, A. Riese, X. Li, R.Y. Li, S.Y. Ye, S. Knights, X.L. Sun, Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 27(2), 277–281 (2015). doi:10.1002/adma.201404314
- N.C. Cheng, M.N. Banis, J. Liu, A. Riese, S.C. Mu, R.Y. Li, T.K. Sham, X.L. Sun, Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts. Energy. Environ. Sci. 8, 1450–1455 (2015). doi:10.1039/C4EE04086D
- L.L. Wang, D.F. Zhang, L. Guo, Phase-segregated Pt–Ni chain-like nanohybrids with high electrocatalytic activity towards methanol oxidation reaction. Nanoscale 6(9), 4635–4641 (2014). doi:10.1039/c4nr00139g
- Y. Shen, K.J. Xiao, J.Y. Xi, X.P. Qiu, Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J. Power Sources 278(278), 235–244 (2015). doi:10.1016/j.jpowsour.2014.12.062
- Y. Shen, Z.H. Zhang, R.R. Long, K.J. Xiao, J.Y. Xi, Synthesis of ultrafine Pt nanoparticles stabilized by pristine graphene nanosheets for electro-oxidation of methanol. ACS Appl. Mater. Interfaces 6(17), 15162–15170 (2014). doi:10.1021/am503309h
- M.G. Manson, Electronic structure of supported small metal clusters. Phys. Rev. B 27(2), 748–762 (1983). doi:10.1103/PhysRevB.27.748
- P. Mani, R. Srivastava, P. Strasser, Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3 M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J. Power Sources 196(2), 666–673 (2011). doi:10.1016/j.jpowsour.2010.07.047
- D.F.V.D. Vliet, C. Wang, D.G. Li, A.P. Paulikas, J. Greeley et al., Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem. Int. Ed. 124(13), 3193–3196 (2012). doi:10.1002/ange.201107668
- R. Mancharan, J.B. Goodenough, Methanol oxidation in acid on ordered NiTi. J. Mater. Chem. 2(8), 875–887 (1992). doi:10.1039/jm9920200875
- S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, M. Delichatsios, S. Ukleja, Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010). doi:10.1021/jp107872z
- A.M. Hofstead-Duffy, D.J. Chen, S.G. Sun, Y.Y.J. Tong, Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: a revisit to the current ratio criterion. J. Mater. Chem. 22(11), 5205–5208 (2012). doi:10.1039/c2jm15426a
- L.X. Ding, A.L. Wang, G.R. Li, Z.Q. Liu, W.X. Zhao, C.Y. Su, Y.X. Tong, Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 134(13), 5730–5733 (2012). doi:10.1021/ja212206m
- B. Habibi, E. Dadashpour, Carbon-ceramic supported bimetallic Pt-Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media. Int. J. Hydrog. Energy 38(13), 5425–5434 (2013). doi:10.1016/j.ijhydene.2012.06.045
References
R. Dillon, S. Srinivasana, A.S. Aricò, V. Antonucci, International activities in DMFC R&D: status of technologies and potential applications. J. Power Sources 127(1), 112–126 (2004). doi:10.1016/j.jpowsour.2003.09.032
S.K. Kamarudin, F. Achmad, W.R.W. Daud, Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrog. Energy 34(12), 6902–6916 (2009). doi:10.1016/j.ijhydene.2009.06.013
J.S. Liang, K.Y. Liu, S.Z. Li, D.Z. Wang, T.Q. Ren, X.Y. Xu, Y. Luo, Novel flow field with superhydrophobic gas channels prepared by one-step solvent-induced crystallization for micro direct methanol fuel cell. Nano-Micro Lett. 7(2), 165–171 (2015). doi:10.1007/s40820-015-0032-x
G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106(9), 4044–4098 (2006). doi:10.1021/cr068360d
C.N. Hamelinck, A.P.C. Faaij, Outlook for advanced biofuels. Energy Policy 34(17), 3268–3283 (2006). doi:10.1016/j.enpol.2005.06.012
E.L. Gyenge, J. Zhang, PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Platin. Met. Rev. 53(4), 219–220 (2009). doi:10.1007/978-1-84800-936-3
A.B.A.A. Nassr, I. Sinev, M.M. Pohl, W. Grünert, M. Bron, Rapid microwave-assisted polyol reduction for the preparation of highly active PtNi/CNT electrocatalysts for methanol oxidation. ACS Catal. 4(4), 2449–2462 (2014). doi:10.1021/cs401140g
A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 38(4), 445–457 (1997). doi:10.1016/S0920-5861(97)00054-0
X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Recent advances in catalysts for direct methanol fuel cells. Energy. Environ. Sci. 4(4), 2736–2753 (2011). doi:10.1039/c1ee01307f
J. Zhang, H. Liu, Electrocatalysis of Direct Methanol Fuel Cells: from Fundamentals to Applications (Wiley, Weinheim, 2009), pp. 227–255
S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review. J. Electroanal. Chem. 461, 14–31 (1999). doi:10.1016/S0022-0728(98)00197-1
J.H. Choi, K.W. Park, I.S. Park, K. Kim, J.S. Lee, Y.E. Sung, A PtAu nanoparticle electrocatalyst for methanol electro-oxidation in direct methanol fuel cells. J. Electrochem. Soc. 153(10), A1812–A1817 (2006). doi:10.1149/1.2224055
H.X. Zhao, Z. Zheng, J. Li, H.M. Jia, K.W. Wong, Y.D. Zhang, W.M. Lau, Substitute of expensive Pt with improved electrocatalytic performance and higher resistance to CO poisoning for methanol oxidation: the case of synergistic Pt-Co3O4 nanocomposite. Nano-Micro Lett. 5(4), 296–302 (2013). doi:10.1007/BF03353761
C.X. Xu, J.G. Hou, X.H. Pang, X.J. Li, M.L. Zhu, B.Y. Tang, Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation. Int. J. Hydrog. Energy 37(14), 10489–10498 (2012). doi:10.1016/j.ijhydene.2012.04.041
K. Wang, H.A. Gasteiger, N.M. Markovic, P.N. Ross, On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. J. Electrochim. Acta 41(16), 2587–2593 (1996). doi:10.1016/0013-4686(96)00079-5
S. Harish, S. Baranton, C. Coutanceau, J. Joseph, Microwave assisted polyol method for the preparation of Pt/C, Ru/C and PtRu/C nanoparticles and its application in electrooxidation of methanol. J. Power Sources 214, 33–39 (2012). doi:10.1016/j.jpowsour.2012.04.045
W.J. Kang, R. Li, D.H. Wei, S.L. Xu, S.Y. Wei, H.B. Li, CTAB-reduced synthesis of urchin-like Pt–Cu alloy nanostructures and catalysis study towards the methanol oxidation reaction. RSC Adv. 2015(5), 94210–94215 (2015). doi:10.1039/C5RA20464J
X.G. Wang, F.C. Zhu, Y.W. He, M. Wang, Z.H. Zhang, Z.Z. Ma, R.X. Li, Highly active carbon supported ternary PdSnPtx (x = 0.1–0.7) catalysts for ethanol electro-oxidation in alkaline and acid media. J. Colloid. Interface Sci. 468, 200–210 (2016). doi:10.1016/j.jcis.2016.01.068
M. Wang, Y.W. He, R.X. Li, Z.Z. Ma, Z.H. Zhang, X.G. Wang, Electrochemical activated PtAuCu alloy nanoparticle catalysts for formic acid, methanol and ethanol electro-oxidation. Electrochim. Acta 178, 259–269 (2015). doi:10.1016/j.electacta.2015.07.157
M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 60(3), 275–283 (1975). doi:10.1016/S0022-0728(75)80262-2
H. Igarashi, T. Fujino, Y. Zhu, H. Uchida, M. Watanabe, CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys. Chem. Chem. Phys. 3(3), 306–314 (2001). doi:10.1039/b007768m
X.W. Zhou, R.H. Zhang, Z.Y. Zhou, S.G. Sun, Preparation of PtNi hollow nanospheres for the electrocatalytic oxidation of methanol. J. Power Sources 196(14), 5844–5848 (2011). doi:10.1016/j.jpowsour.2011.02.088
F.C. Zhu, G.S. Ma, Z.C. Bai, R.Q. Hang, B. Tang, Z.H. Zhang, X.G. Wang, High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation. J. Power Sources 242(22), 610–620 (2013). doi:10.1016/j.jpowsour.2013.05.145
F.C. Zhu, M. Wang, Y.W. He, G.S. Ma, Z.H. Zhang, X.G. Wang, A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim. Acta 148(2), 291–301 (2014). doi:10.1016/j.electacta.2014.10.062
R.P. Xiu, F.F. Zhang, Z.H. Wang, M. Yang, J.F. Xia, R.J. Gui, Electrodeposition of PtNi bimetallic nanoparticles on three-dimensional graphene for highly efficient methanol oxidation. RSC Adv. 5(105), 86578–86583 (2015). doi:10.1039/C5RA13728D
Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, G. Sun, Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media: experimental and density functional theory studies. J. Phys. Chem. C 114(46), 19714–19722 (2010). doi:10.1021/jp1039755
A.B.A.A. Nassr, I. Sinev, W. Grünert, M. Bron, PtNi supported on oxygen functionalized carbon nanotubes: in depth structural characterization and activity for methanol electrooxidation. Appl. Catal. B 142–143, 849–860 (2013). doi:10.1016/j.apcatb.2013.06.013
C.H. Liu, B.H. Mao, J. Gao, S. Zhang, X. Gao, Z. Liu, S.T. Lee, X.H. Sun, S.D. Wang, Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon 50(8), 3008–3014 (2012). doi:10.1016/j.carbon.2012.02.086
T. Torimoto, K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, Sputter deposition onto ionic liquids: simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 89(24), 243117 (2006). doi:10.1063/1.2404975
T. Torimoto, T. Tsuda, K. Okazaki, S. Kuwabata, New frontiers in materials science opened by ionic liquids. Adv. Mater. 22(11), 1196–1221 (2010). doi:10.1002/adma.200902184
C.H. Liu, X.Q. Chen, Y.F. Hu, T.K. Sham, S.D. Wang, One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl. Mater. Interfaces 5(11), 5072–5079 (2013). doi:10.1021/am4008853
H. Wender, L.F. de Oliveira, P. Migowski, A.F. Feil, E. Lissner, M.H.G. Prechtl, S.R. Teixeira, J. Dupont, Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J. Phys. Chem. C 114(27), 11764–11768 (2010). doi:10.1021/jp102231x
H. Zhang, H. Cui, Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25(5), 2604–2614 (2009). doi:10.1021/la803347h
W.J. Hong, H. Bai, Y.X. Xu, Z.Y. Yao, Z.Z. Gu, G.Q. Shi, Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J. Phys. Chem. C 114(4), 1822–1826 (2010). doi:10.1021/jp9101724
C.H. Liu, J. Liu, Y.Y. Zhou, X.L. Cai, Y. Lu, X. Gao, S.D. Wang, Small and uniform Pd monometallic/bimetallic nanoparticles decorated on multi-walled carbon nanotubes for efficient reduction of 4-nitrophenol. Carbon 94, 295–300 (2015). doi:10.1016/j.carbon.2015.07.003
C.H. Liu, R.H. Liu, Q.J. Sun, J.B. Chang, X. Gao, Y. Liu, S.T. Lee, Z.H. Kang, S.D. Wang, Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale 7(14), 6356–6362 (2015). doi:10.1039/C4NR06855F
J.B. Chang, C.H. Liu, J. Liu, Y.Y. Zhou, X. Gao, S.D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
N.C. Cheng, M.N. Banis, J. Liu, A. Riese, X. Li, R.Y. Li, S.Y. Ye, S. Knights, X.L. Sun, Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 27(2), 277–281 (2015). doi:10.1002/adma.201404314
N.C. Cheng, M.N. Banis, J. Liu, A. Riese, S.C. Mu, R.Y. Li, T.K. Sham, X.L. Sun, Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts. Energy. Environ. Sci. 8, 1450–1455 (2015). doi:10.1039/C4EE04086D
L.L. Wang, D.F. Zhang, L. Guo, Phase-segregated Pt–Ni chain-like nanohybrids with high electrocatalytic activity towards methanol oxidation reaction. Nanoscale 6(9), 4635–4641 (2014). doi:10.1039/c4nr00139g
Y. Shen, K.J. Xiao, J.Y. Xi, X.P. Qiu, Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J. Power Sources 278(278), 235–244 (2015). doi:10.1016/j.jpowsour.2014.12.062
Y. Shen, Z.H. Zhang, R.R. Long, K.J. Xiao, J.Y. Xi, Synthesis of ultrafine Pt nanoparticles stabilized by pristine graphene nanosheets for electro-oxidation of methanol. ACS Appl. Mater. Interfaces 6(17), 15162–15170 (2014). doi:10.1021/am503309h
M.G. Manson, Electronic structure of supported small metal clusters. Phys. Rev. B 27(2), 748–762 (1983). doi:10.1103/PhysRevB.27.748
P. Mani, R. Srivastava, P. Strasser, Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3 M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J. Power Sources 196(2), 666–673 (2011). doi:10.1016/j.jpowsour.2010.07.047
D.F.V.D. Vliet, C. Wang, D.G. Li, A.P. Paulikas, J. Greeley et al., Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem. Int. Ed. 124(13), 3193–3196 (2012). doi:10.1002/ange.201107668
R. Mancharan, J.B. Goodenough, Methanol oxidation in acid on ordered NiTi. J. Mater. Chem. 2(8), 875–887 (1992). doi:10.1039/jm9920200875
S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, M. Delichatsios, S. Ukleja, Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010). doi:10.1021/jp107872z
A.M. Hofstead-Duffy, D.J. Chen, S.G. Sun, Y.Y.J. Tong, Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: a revisit to the current ratio criterion. J. Mater. Chem. 22(11), 5205–5208 (2012). doi:10.1039/c2jm15426a
L.X. Ding, A.L. Wang, G.R. Li, Z.Q. Liu, W.X. Zhao, C.Y. Su, Y.X. Tong, Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 134(13), 5730–5733 (2012). doi:10.1021/ja212206m
B. Habibi, E. Dadashpour, Carbon-ceramic supported bimetallic Pt-Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media. Int. J. Hydrog. Energy 38(13), 5425–5434 (2013). doi:10.1016/j.ijhydene.2012.06.045