Synergistic Effects in CNTs-PdAu/Pt Trimetallic Nanoparticles with High Electrocatalytic Activity and Stability
Corresponding Author: Sui-Dong Wang
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 48
Abstract
We present a straightforward physical approach for synthesizing multiwalled carbon nanotubes (CNTs)-PdAu/Pt trimetallic nanoparticles (NPs), which allows predesign and control of the metal compositional ratio by simply adjusting the sputtering targets and conditions. The small-sized CNTs-PdAu/Pt NPs (~3 nm, Pd/Au/Pt ratio of 3:1:2) act as nanocatalysts for the methanol oxidation reaction (MOR), showing excellent performance with electrocatalytic peak current of 4.4 A mg −1Pt and high stability over 7000 s. The electrocatalytic activity and stability of the PdAu/Pt trimetallic NPs are much superior to those of the corresponding Pd/Pt and Au/Pt bimetallic NPs, as well as a commercial Pt/C catalyst. Systematic investigation of the microscopic, crystalline, and electronic structure of the PdAu/Pt NPs reveals alloying and charge redistribution in the PdAu/Pt NPs, which are responsible for the promotion of the electrocatalytic performance.
Highlights:
1 CNTs-PdAu/Pt trimetallic nanoparticles (NPs, ~3 nm) were synthesized using a straightforward physical approach of RTILs-assisted sputtering deposition.
2 As a high-performance nanocatalyst for the methanol oxidation reaction (MOR), CNTs-PdAu/Pt NPs show an electrocatalytic peak current of up to 4.4 A mg −1Pt and high stability over 7000 s, which is much superior to those of Pt-based bimetallic NPs and a commercial Pt/C catalyst. The optimal atomic ratio of Pd/Au/Pt, which has the best catalytic performance, was found to be 3:1:2.
3 Synergistic effects arose from charge redistribution among Pd, Au, and Pt in CNTs-PdAu/Pt NPs may be responsible for the promotion of the electrocatalytic activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–800 (2016). doi:10.1126/science.aaf5251
- Y. Zhang, X. Cui, F. Shi, Y. Deng, Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 112(4), 2467–2505 (2011). doi:10.1021/cr200260m
- N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). doi:10.1038/ncomms13638
- L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, Z. Tang, Core–shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. 52(13), 3741–3745 (2013). doi:10.1002/anie.201209903
- T. Zheng, S. Bott, Q. Huo, Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl. Mater. Interfaces 8(33), 21585–21594 (2016). doi:10.1021/acsami.6b06903
- R.R. Arvizo, S. Bhattacharyya, R.A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev. 41(7), 2943–2970 (2012). doi:10.1039/c2cs15355f
- F. Wang, Y.-C. Wang, S. Dou, M.-H. Xiong, T.-M. Sun, J. Wang, Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5), 3679–3692 (2011). doi:10.1021/nn200007z
- Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang, Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7(2), 797–803 (2014). doi:10.1039/C3EE42620C
- T. Li, H.-J. You, M.-W. Xu, X.-P. Song, J.-X. Fang, Electrocatalytic properties of hollow coral-like platinum mesocrystals. ACS Appl. Mater. Interfaces 4(12), 6942–6948 (2012). doi:10.1021/am302103e
- B. Wu, D. Hu, Y. Kuang, B. Liu, X. Zhang, J. Chen, Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew. Chem. Int. Ed. 48(26), 4751–4754 (2009). doi:10.1002/anie.200900899
- N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, Y.S. Yoon, Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt–Ru? Chem. Rev. 114(24), 12397–12429 (2014). doi:10.1021/cr400389f
- H.-J. You, J.-X. Fang, Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: a new story beyond the LaMer curve. Nano Today 11(2), 145–167 (2016). doi:10.1016/j.nantod.2016.04.003
- F. Gao, D.W. Goodman, Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 41(24), 8009–8020 (2012). doi:10.1039/c2cs35160a
- J.-B. Chang, C.-H. Liu, J. Liu, Y.-Y. Zhou, X. Gao, S.-D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
- J. Luo, P.N. Njoki, Y. Lin, D. Mott, L. Wang, C.-J. Zhong, Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 22(6), 2892–2898 (2006). doi:10.1021/la0529557
- H. Zhang, N. Toshima, Synthesis of Au/Pt bimetallic nanoparticles with a Pt-rich shell and their high catalytic activities for aerobic glucose oxidation. J. Colloid Interface Sci. 394, 166–176 (2013). doi:10.1016/j.jcis.2012.11.059
- H.-J. You, F.-L. Zhang, Z. Liu, J.-X. Fang, Free-standing Pt–Au hollow nanourchins with enhanced activity and stability for catalytic methanol oxidation. ACS Catal. 4(9), 2829–2835 (2014). doi:10.1021/cs500390s
- H. Zhang, M. Jin, Y. Xia, Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41(24), 8035–8049 (2012). doi:10.1039/c2cs35173k
- H.-J. You, W.-J. Wang, S.-C. Yang, A universal rule for organic ligand exchange. ACS Appl. Mater. Interfaces 6(21), 19035–19040 (2014). doi:10.1021/am504918z
- L. Wang, Y. Nemoto, Y. Yamauchi, Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 133(25), 9674–9677 (2011). doi:10.1021/ja202655j
- K. Sasaki, H. Naohara, Y. Choi, Y. Cai, W.-F. Chen, P. Liu, R.R. Adzic, Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012). doi:10.1038/ncomms2124
- S.W. Kang, Y.W. Lee, Y. Park, B.-S. Choi, J.W. Hong, K.-H. Park, S.W. Han, One-pot synthesis of trimetallic Au@PdPt core–shell nanoparticles with high catalytic performance. ACS Nano 7(9), 7945–7955 (2013). doi:10.1021/nn403027j
- L. Zhang, R. Iyyamperumal, D.F. Yancey, R.M. Crooks, G. Henkelman, Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 7(10), 9168–9172 (2013). doi:10.1021/nn403788a
- H.-J. Zhang, Y.-N. Cao, L.-L. Lu, Z. Cheng, S.-W. Zhang, Trimetallic Au/Pt/Rh nanoparticles as highly active catalysts for aerobic glucose oxidation. Metall. Mater. Trans. B 46(1), 523–530 (2015). doi:10.1007/s11663-014-0219-425
- H.-J. Zhang, L.-L. Lu, Y.-N. Cao, S. Du, Z. Cheng, S.-W. Zhang, Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4. Mater. Res. Bull. 49, 393–398 (2014). doi:10.1016/j.materresbull.2013.09.025
- H. Wender, L.F. de Oliveira, P. Migowski, A.F. Feil, E. Lissner, M.H. Prechtl, S.R. Teixeira, J. Dupont, Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J. Phys. Chem. C 114(27), 11764–11768 (2010). doi:10.1021/jp102231x
- C.-H. Liu, B.-H. Mao, J. Gao, S. Zhang, X. Gao, Z. Liu, S.-T. Lee, X.-H. Sun, S.-D. Wang, Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon 50(8), 3008–3014 (2012). doi:10.1016/j.carbon.2012.02.086
- C.-H. Liu, R.-H. Liu, Q.-J. Sun, J.-B. Chang, X. Gao, Y. Liu, S.-T. Lee, Z.-H. Kang, S.-D. Wang, Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale 7(14), 6356–6362 (2015). doi:10.1039/C4NR06855F
- Y.-Y. Zhou, C.-H. Liu, J. Liu, X.-L. Cai, Y. Lu, H. Zhang, X.-H. Sun, S.-D. Wang, Self-decoration of PtNi alloy nanoparticles on multiwalled carbon nanotubes for highly efficient methanol electro-oxidation. Nano-Micro Lett. 8(4), 371–380 (2016). doi:10.1007/s40820-016-0096-2
- K. Yoshii, T. Tsuda, T. Arimura, A. Imanishi, T. Torimoto, S. Kuwabata, Platinum nanoparticle immobilization onto carbon nanotubes using Pt-sputtered room-temperature ionic liquid. RSC Adv. 2(22), 8262–8264 (2012). doi:10.1039/c2ra21243a
- Y. Zhao, L. Fan, H. Zhong, Y. Li, S. Yang, Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Adv. Funct. Mater. 17(9), 1537–1541 (2007). doi:10.1002/adfm.200600416
- Y. Shen, K. Xiao, J. Xi, X. Qiu, Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J. Power Sources 278, 235–244 (2015). doi:10.1016/j.jpowsour.2014.12.062
- L. Wang, Y. Yamauchi, Autoprogrammed synthesis of triple-layered Au@ Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 132(39), 13636–13638 (2010). doi:10.1021/ja105640p
- L. Wang, Y. Yamauchi, Strategic synthesis of trimetallic Au@ Pd@ Pt core–shell nanoparticles from poly (vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem. Mater. 23(9), 2457–2465 (2011). doi:10.1021/cm200382s
- S. Dutta, C. Ray, A.K. Sasmal, Y. Negishi, T. Pal, Fabrication of dog-bone shaped Au NR core–Pt/Pd shell trimetallic nanoparticle-decorated reduced graphene oxide nanosheets for excellent electrocatalysis. J. Mater. Chem. A 4(10), 3765–3776 (2016). doi:10.1039/C6TA00379F
- K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, T. Torimoto, Single-step synthesis of gold–silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chem. Commun. 6, 691–693 (2008). doi:10.1039/B714761A
- C.-H. Liu, X.-Q. Chen, Y.-F. Hu, T.-K. Sham, Q.-J. Sun, J.-B. Chang, X. Gao, X.-H. Sun, S.-D. Wang, One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl. Mater. Interfaces 5(11), 5072–5079 (2013). doi:10.1021/am4008853
- X. Li, X. Hong, PdPt@Au core@shell nanoparticles: alloyed-core manipulation of CO electrocatalytic oxidation properties. Catal. Commun. 83, 70–73 (2016). doi:10.1016/j.catcom.2016.05.012
- H. Tada, F. Suzuki, S. Ito, T. Akita, K. Tanaka, T. Kawahara, H. Kobayashi, Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organosulfur compound. J. Phys. Chem. B 106(34), 8714–8720 (2002). doi:10.1021/jp0202690
- E. Bus, J.A. van Bokhoven, Electronic, geometric structures of supported platinum, gold, and platinum-gold catalysts. J. Phys. Chem. C 111(27), 9761–9768 (2007). doi:10.1021/jp067414k
- X. Teng, M. Feygenson, Q. Wang, J. He, W. Du, A.I. Frenkel, W. Han, M. Aronson, Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett. 9(9), 3177–3184 (2009). doi:10.1021/nl9013716
- P. Zhang, T. Sham, X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys. Rev. Lett. 90(24), 245502 (2003). doi:10.1103/PhysRevLett.90.245502
- J.-J. Lv, J.-N. Zheng, Y.-Y. Wang, A.-J. Wang, L.-L. Chen, J.-J. Feng, A simple one-pot strategy to platinum–palladium@palladium core–shell nanostructures with high electrocatalytic activity. J. Power Sources 265, 231–238 (2014). doi:10.1016/j.jpowsour.2014.04.108
- H.-J. Zhang, L.-L. Lu, K. Kawashima, M. Okumura, M. Haruta, N. Toshima, Synthesis and catalytic activity of crown jewel-structured (IrPd)/Au trimetallic nanoclusters. Adv. Mater. 27(8), 1383–1388 (2015). doi:10.1002/adma.201404870
- Y. Xia, H.B. Wu, N. Li, Y. Yan, X.W. Lou, X. Wang, One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 54(12), 3797–3801 (2015). doi:10.1002/ange.201411544
References
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen et al., Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352(6287), 797–800 (2016). doi:10.1126/science.aaf5251
Y. Zhang, X. Cui, F. Shi, Y. Deng, Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 112(4), 2467–2505 (2011). doi:10.1021/cr200260m
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). doi:10.1038/ncomms13638
L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, Z. Tang, Core–shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. 52(13), 3741–3745 (2013). doi:10.1002/anie.201209903
T. Zheng, S. Bott, Q. Huo, Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl. Mater. Interfaces 8(33), 21585–21594 (2016). doi:10.1021/acsami.6b06903
R.R. Arvizo, S. Bhattacharyya, R.A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev. 41(7), 2943–2970 (2012). doi:10.1039/c2cs15355f
F. Wang, Y.-C. Wang, S. Dou, M.-H. Xiong, T.-M. Sun, J. Wang, Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5), 3679–3692 (2011). doi:10.1021/nn200007z
Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang, Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7(2), 797–803 (2014). doi:10.1039/C3EE42620C
T. Li, H.-J. You, M.-W. Xu, X.-P. Song, J.-X. Fang, Electrocatalytic properties of hollow coral-like platinum mesocrystals. ACS Appl. Mater. Interfaces 4(12), 6942–6948 (2012). doi:10.1021/am302103e
B. Wu, D. Hu, Y. Kuang, B. Liu, X. Zhang, J. Chen, Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew. Chem. Int. Ed. 48(26), 4751–4754 (2009). doi:10.1002/anie.200900899
N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, Y.S. Yoon, Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt–Ru? Chem. Rev. 114(24), 12397–12429 (2014). doi:10.1021/cr400389f
H.-J. You, J.-X. Fang, Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: a new story beyond the LaMer curve. Nano Today 11(2), 145–167 (2016). doi:10.1016/j.nantod.2016.04.003
F. Gao, D.W. Goodman, Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 41(24), 8009–8020 (2012). doi:10.1039/c2cs35160a
J.-B. Chang, C.-H. Liu, J. Liu, Y.-Y. Zhou, X. Gao, S.-D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
J. Luo, P.N. Njoki, Y. Lin, D. Mott, L. Wang, C.-J. Zhong, Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 22(6), 2892–2898 (2006). doi:10.1021/la0529557
H. Zhang, N. Toshima, Synthesis of Au/Pt bimetallic nanoparticles with a Pt-rich shell and their high catalytic activities for aerobic glucose oxidation. J. Colloid Interface Sci. 394, 166–176 (2013). doi:10.1016/j.jcis.2012.11.059
H.-J. You, F.-L. Zhang, Z. Liu, J.-X. Fang, Free-standing Pt–Au hollow nanourchins with enhanced activity and stability for catalytic methanol oxidation. ACS Catal. 4(9), 2829–2835 (2014). doi:10.1021/cs500390s
H. Zhang, M. Jin, Y. Xia, Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41(24), 8035–8049 (2012). doi:10.1039/c2cs35173k
H.-J. You, W.-J. Wang, S.-C. Yang, A universal rule for organic ligand exchange. ACS Appl. Mater. Interfaces 6(21), 19035–19040 (2014). doi:10.1021/am504918z
L. Wang, Y. Nemoto, Y. Yamauchi, Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 133(25), 9674–9677 (2011). doi:10.1021/ja202655j
K. Sasaki, H. Naohara, Y. Choi, Y. Cai, W.-F. Chen, P. Liu, R.R. Adzic, Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012). doi:10.1038/ncomms2124
S.W. Kang, Y.W. Lee, Y. Park, B.-S. Choi, J.W. Hong, K.-H. Park, S.W. Han, One-pot synthesis of trimetallic Au@PdPt core–shell nanoparticles with high catalytic performance. ACS Nano 7(9), 7945–7955 (2013). doi:10.1021/nn403027j
L. Zhang, R. Iyyamperumal, D.F. Yancey, R.M. Crooks, G. Henkelman, Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 7(10), 9168–9172 (2013). doi:10.1021/nn403788a
H.-J. Zhang, Y.-N. Cao, L.-L. Lu, Z. Cheng, S.-W. Zhang, Trimetallic Au/Pt/Rh nanoparticles as highly active catalysts for aerobic glucose oxidation. Metall. Mater. Trans. B 46(1), 523–530 (2015). doi:10.1007/s11663-014-0219-425
H.-J. Zhang, L.-L. Lu, Y.-N. Cao, S. Du, Z. Cheng, S.-W. Zhang, Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4. Mater. Res. Bull. 49, 393–398 (2014). doi:10.1016/j.materresbull.2013.09.025
H. Wender, L.F. de Oliveira, P. Migowski, A.F. Feil, E. Lissner, M.H. Prechtl, S.R. Teixeira, J. Dupont, Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J. Phys. Chem. C 114(27), 11764–11768 (2010). doi:10.1021/jp102231x
C.-H. Liu, B.-H. Mao, J. Gao, S. Zhang, X. Gao, Z. Liu, S.-T. Lee, X.-H. Sun, S.-D. Wang, Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon 50(8), 3008–3014 (2012). doi:10.1016/j.carbon.2012.02.086
C.-H. Liu, R.-H. Liu, Q.-J. Sun, J.-B. Chang, X. Gao, Y. Liu, S.-T. Lee, Z.-H. Kang, S.-D. Wang, Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale 7(14), 6356–6362 (2015). doi:10.1039/C4NR06855F
Y.-Y. Zhou, C.-H. Liu, J. Liu, X.-L. Cai, Y. Lu, H. Zhang, X.-H. Sun, S.-D. Wang, Self-decoration of PtNi alloy nanoparticles on multiwalled carbon nanotubes for highly efficient methanol electro-oxidation. Nano-Micro Lett. 8(4), 371–380 (2016). doi:10.1007/s40820-016-0096-2
K. Yoshii, T. Tsuda, T. Arimura, A. Imanishi, T. Torimoto, S. Kuwabata, Platinum nanoparticle immobilization onto carbon nanotubes using Pt-sputtered room-temperature ionic liquid. RSC Adv. 2(22), 8262–8264 (2012). doi:10.1039/c2ra21243a
Y. Zhao, L. Fan, H. Zhong, Y. Li, S. Yang, Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes: electrodeposition and enhanced electrocatalytic activity for methanol oxidation. Adv. Funct. Mater. 17(9), 1537–1541 (2007). doi:10.1002/adfm.200600416
Y. Shen, K. Xiao, J. Xi, X. Qiu, Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J. Power Sources 278, 235–244 (2015). doi:10.1016/j.jpowsour.2014.12.062
L. Wang, Y. Yamauchi, Autoprogrammed synthesis of triple-layered Au@ Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 132(39), 13636–13638 (2010). doi:10.1021/ja105640p
L. Wang, Y. Yamauchi, Strategic synthesis of trimetallic Au@ Pd@ Pt core–shell nanoparticles from poly (vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem. Mater. 23(9), 2457–2465 (2011). doi:10.1021/cm200382s
S. Dutta, C. Ray, A.K. Sasmal, Y. Negishi, T. Pal, Fabrication of dog-bone shaped Au NR core–Pt/Pd shell trimetallic nanoparticle-decorated reduced graphene oxide nanosheets for excellent electrocatalysis. J. Mater. Chem. A 4(10), 3765–3776 (2016). doi:10.1039/C6TA00379F
K. Okazaki, T. Kiyama, K. Hirahara, N. Tanaka, S. Kuwabata, T. Torimoto, Single-step synthesis of gold–silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chem. Commun. 6, 691–693 (2008). doi:10.1039/B714761A
C.-H. Liu, X.-Q. Chen, Y.-F. Hu, T.-K. Sham, Q.-J. Sun, J.-B. Chang, X. Gao, X.-H. Sun, S.-D. Wang, One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl. Mater. Interfaces 5(11), 5072–5079 (2013). doi:10.1021/am4008853
X. Li, X. Hong, PdPt@Au core@shell nanoparticles: alloyed-core manipulation of CO electrocatalytic oxidation properties. Catal. Commun. 83, 70–73 (2016). doi:10.1016/j.catcom.2016.05.012
H. Tada, F. Suzuki, S. Ito, T. Akita, K. Tanaka, T. Kawahara, H. Kobayashi, Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organosulfur compound. J. Phys. Chem. B 106(34), 8714–8720 (2002). doi:10.1021/jp0202690
E. Bus, J.A. van Bokhoven, Electronic, geometric structures of supported platinum, gold, and platinum-gold catalysts. J. Phys. Chem. C 111(27), 9761–9768 (2007). doi:10.1021/jp067414k
X. Teng, M. Feygenson, Q. Wang, J. He, W. Du, A.I. Frenkel, W. Han, M. Aronson, Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett. 9(9), 3177–3184 (2009). doi:10.1021/nl9013716
P. Zhang, T. Sham, X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys. Rev. Lett. 90(24), 245502 (2003). doi:10.1103/PhysRevLett.90.245502
J.-J. Lv, J.-N. Zheng, Y.-Y. Wang, A.-J. Wang, L.-L. Chen, J.-J. Feng, A simple one-pot strategy to platinum–palladium@palladium core–shell nanostructures with high electrocatalytic activity. J. Power Sources 265, 231–238 (2014). doi:10.1016/j.jpowsour.2014.04.108
H.-J. Zhang, L.-L. Lu, K. Kawashima, M. Okumura, M. Haruta, N. Toshima, Synthesis and catalytic activity of crown jewel-structured (IrPd)/Au trimetallic nanoclusters. Adv. Mater. 27(8), 1383–1388 (2015). doi:10.1002/adma.201404870
Y. Xia, H.B. Wu, N. Li, Y. Yan, X.W. Lou, X. Wang, One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 54(12), 3797–3801 (2015). doi:10.1002/ange.201411544