Green-chemistry Compatible Approach to TiO2-supported PdAu Bimetallic Nanoparticles for Solvent-free 1-Phenylethanol Oxidation under Mild Conditions
Corresponding Author: Sui-Dong Wang
Nano-Micro Letters,
Vol. 7 No. 3 (2015), Article Number: 307-315
Abstract
TiO2-supported PdAu bimetallic nanoparticles (NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and free of additives and byproducts. Pd/Au atomic ratio can be tuned by controlling the sputtering conditions simply. High catalytic activity was found in PdAu–NPs–TiO2 hybrids for solvent-free selective oxidation of 1-phenylethanol using O2 as the oxidant at the low temperature of 50 °C and low pressure of 1 atm. It was found that Pd/Au ratio strongly affected the catalytical activity, and the highest conversion of about 35 % and turnover frequency of about 421 h−1 were achieved at 1:1 of Pd/Au atomic ratio. The synergistic effect in PdAu NPs was also discussed based on the comprehensive characterization results. The present approach may offer an alternative platform for future development of green-chemistry compatible bimetallic nanocatalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Abad, C. Almela, A. Corma, H. García, Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron 62(28), 6666–6672 (2006). doi:10.1016/j.tet.2006.01.118
- K. Zaw, M. Lautens, P.M. Henry, Novel parallel path mechanism for the oxidation of allyl alcohol by aqueous palladium (ii) chloride. Organometallics 2(1), 197–199 (1983). doi:10.1021/om00073a051
- D.G. Lee, U.A. Spitzer, Aqueous dichromate oxidation of primary alcohols. J. Org. Chem. 35(10), 3589–3590 (1970). doi:10.1021/jo00835a101
- P.V. Prabhakaran, S. Venkatachalam, K.N. Ninan, Permanganate ion supported over crosslinked polyvinylamine as an oxidising agent for alcohols. Eur. Poly. J. 35(9), 1743–1746 (1999). doi:10.1016/s0014-3057(98)00246-8
- J. Muzart, Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron 59(31), 5789–5816 (2003). doi:10.1016/s0040-4020(03)00866-4
- I. Prati, M. Rossi, Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal. 176(2), 552–560 (1998). doi:10.1006/jcat.1998.2078
- D. Enache, D. Knight, G. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal. Lett. 103(1–2), 43–52 (2005). doi:10.1007/s10562-005-6501-y
- H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. JACS 127(26), 9374–9375 (2005). doi:10.1021/ja052161e
- A. Abad, C. Almela, A. Corma, H. Garcia, Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. Chem. Commun. 30, 3178–3180 (2006). doi:10.1039/b606257a
- H. Tsunoyama, T. Tsukuda, H. Sakurai, Synthetic application of pvp-stabilized au nanocluster catalyst to aerobic oxidation of alcohols in aqueous solution under ambient conditions. Chem. Lett. 36(2), 212–213 (2007). doi:10.1246/cl.2007.212
- H. Li, B. Guan, W. Wang, D. Xing, Z. Fang, X. Wan, L. Yang, Z. Shi, Aerobic oxidation of alcohol in aqueous solution catalyzed by gold. Tetrahedron 63(35), 8430–8434 (2007). doi:10.1016/j.tet.2007.05.117
- J. Hu, L. Chen, K. Zhu, A. Suchopar, R. Richards, Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica. Catal. Today 122(3–4), 277–283 (2007). doi:10.1016/j.cattod.2007.01.012
- H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, Effect of electronic structures of Au clusters stabilized by poly(n-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. JACS 131(20), 7086–7093 (2009). doi:10.1021/ja810045y
- O. Casanova, S. Iborra, A. Corma, Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J. Catal. 265(1), 109–116 (2009). doi:10.1016/j.jcat.2009.04.019
- H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, Metal–organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols. J. Phys. Chem. C 114(31), 13362–13369 (2010). doi:10.1021/jp105666f
- M. Mifsud, K.V. Parkhomenko, I.W.C.E. Arends, R.A. Sheldon, Pd nanoparticles as catalysts for green, sustainable oxidation of functionalized alcohols in aqueous media. Tetrahedron 66(5), 1040–1044 (2010). doi:10.1016/j.tet.2009.11.007
- Z. Ma, H. Yang, Y. Qin, Y. Hao, G. Li, Palladium nanoparticles confined in the nanocages of sba-16: enhanced recyclability for the aerobic oxidation of alcohols in water. J. Mol. Catal. A: Chem. 331(1–2), 78–85 (2010)
- D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311(5759), 362–365 (2006). doi:10.1126/science.1120560
- N. Dimitratos, J. Lopez-sanchez, D. Lennon, F. Porta, L. Prati, A. Villa, Effect of particle size on monometallic and bimetallic (Au, Pd)/c on the liquid phase oxidation of glycerol. Catal. Lett. 108(3–4), 147–153 (2006). doi:10.1007/s10562-006-0036-8
- W. Hou, N.A. Dehm, R.W.J. Scott, Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. J. Catal. 253(1), 22–27 (2008). doi:10.1016/j.jcat.2007.10.025
- A. Villa, N. Janjic, P. Spontoni, D. Wang, D.S. Su, L. Prati, Au–Pd/AC as catalysts for alcohol oxidation: effect of reaction parameters on catalytic activity and selectivity. Appl. Catal. A: Gen. 364(1–2), 221–228 (2009). doi:10.1016/j.apcata.2009.05.059
- S. Marx, A. Baiker, Beneficial interaction of gold and palladium in bimetallic catalysts for the selective oxidation of benzyl alcohol. J. Phys. Chem. C 113(15), 6191–6201 (2009). doi:10.1021/jp808362m
- A.J. Frank, J. Rawski, K.E. Maly, V. Kitaev, Environmentally benign aqueous oxidative catalysis using AuPd/TiO2 colloidal nanoparticle system stabilized in absence of organic ligands. Green Chem. 12(9), 1615–1622 (2010). doi:10.1039/c0gc00084a
- Y. Chen, H. Lim, Q. Tang, Y. Gao, T. Sun, Q. Yan, Y. Yang, Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au–Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Appl. Catal. A: Gen. 380(1–2), 55–65 (2010). doi:10.1016/j.apcata.2010.03.026
- J. Gong, C.B. Mullins, Surface science investigations of oxidative chemistry on gold. Acc. Chem. Res. 42(8), 1063–1073 (2009). doi:10.1021/ar8002706
- W. Jian, L. Xuxing, Z. Qiannan, Z. Junwei, S. Qishun, Z. Li, N. Weihai, Angle-resolved plasmonic properties of single gold nanorod dimers. Nano-Micro Lett. 6(4), 372–380 (2014). doi:10.1007/s40820-014-0011-7
- L. Robert, H. Anming, P. John, Y.N. Zhou, Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett. 5(3), 202–212 (2013). doi:10.5101/nml.v5i3.p202-212
- W. Fagen, X. Yan, Z. Kunfeng, H. Dannong, Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature. Nano-Micro Lett. 6(3), 233–241 (2014). doi:10.5101/nml140025a
- J.J. Pietron, R.M. Stroud, D.R. Rolison, Using three dimensions in catalytic mesoporous nanoarchitectures. Nano Lett. 2(5), 545–549 (2002). doi:10.1021/nl025536s
- G.A. Somorjai, J.Y. Park, Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. 47(48), 9212–9228 (2008). doi:10.1002/anie.200803181
- C.H. Liu, B.H. Mao, J. Gao, S. Zhang, X. Gao, Z. Liu, S.T. Lee, X.H. Sun, S.D. Wang, Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon 50(8), 3008–3014 (2012). doi:10.1016/j.carbon.2012.02.086
- C.H. Liu, X.Q. Chen, Y.F. Hu, T.K. Sham, Q.J. Sun, J.B. Chang, X. Gao, X.H. Sun, S.D. Wang, One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl. Mater. Interface 5(11), 5072–5079 (2013). doi:10.1021/am4008853
- J. Xu, T. White, P. Li, C. He, J. Yu, W. Yuan, Y.-F. Han, Biphasic Pd–Au alloy catalyst for low-temperature co oxidation. JACS 132(30), 10398–10406 (2010). doi:10.1021/ja102617r
- J.K. Edwards, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au–Pd catalysts. Faraday Discuss. 138, 225–239 (2008). doi:10.1039/b705915a
- Y. Mizukoshi, K. Sato, T.J. Konno, N. Masahashi, Dependence of photocatalytic activities upon the structures of Au/Pd bimetallic nanoparticles immobilized on TiO2 surface. Appl. Catal. B: Environ. 94(3–4), 248–253 (2010). doi:10.1016/j.apcatb.2009.11.015
- Q. Wang, X. Cui, W. Guan, X. Zhang, C. Liu, T. Xue, H. Wang, W. Zheng, A nanoflower shaped gold-palladium alloy on graphene oxide nanosheets with exceptional activity for electrochemical oxidation of ethanol. Microchim. Acta 181(3–4), 373–380 (2014). doi:10.1007/s00604-013-1119-z
- T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti, N. Dimitratos, J.A. Lopez-sanchez, M. Sankar, Q. He, C.J. Kiely, G.J. Hutchings, F. Cavani, Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chem. 13(8), 2091–2099 (2011). doi:10.1039/c1gc15355b
- C.-H. Cui, J.-W. Yu, H.-H. Li, M.-R. Gao, H.-W. Liang, S.-H. Yu, Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd–Au bimetallic nanoparticle tubes. ACS Nano 5(5), 4211–4218 (2011). doi:10.1021/nn2010602
- J. Fang, S.W. Cao, Z. Wang, M.M. Shahjamali, S.C.J. Loo, J. Barber, C. Xue, Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int. J. Hydrog. Energy 37(23), 17853–17861 (2012). doi:10.1016/j.ijhydene.2012.09.023
- M.C. Long, J.J. Jiang, Y. Li, R.Q. Cao, L.Y. Zhang, W.M. Cai, Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of au modified BiVO4. Nano-Micro Lett. 3(3), 171–177 (2011). doi:10.1007/BF03353669
- M.V. Dozzi, A. Saccomanni, M. Altomare, E. Selli, Photocatalytic activity of NH4F-doped TiO2 modified by noble metal nanoparticle deposition. Photochem. Photobiol. Sci. 12(4), 595–601 (2013). doi:10.1039/c2pp25175b
- C. Han, X. Yang, G. Gao, J. Wang, H. Lu, J. Liu, M. Tong, X. Liang, Selective oxidation of methanol to methyl formate on catalysts of Au-Ag alloy nanoparticles supported on titania under UV irradiation. Green Chem. 16(7), 3603–3615 (2014). doi:10.1039/c4gc00367e
- Y. Wang, J.-M. Zheng, K. Fan, W.-L. Dai, One-pot solvent-free synthesis of sodium benzoate from the oxidation of benzyl alcohol over novel efficient AuAg/TiO2 catalysts. Green Chem. 13(7), 1644–1647 (2011). doi:10.1039/c1gc15311k
- A.M. Venezia, V. La parola, G. Deganello, B. Pawelec, J.L.G. Fierro, Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds. J. Catal. 215(2), 317–325 (2003). doi:10.1016/s0021-9517(03)00005-8
- P.A.P. Nascente, S.G.C. Decastro, R. Landers, G.G. Kleiman, X-ray photoemission and auger energy shifts in some gold-palladium alloys. Phys. Rev. B 43(6), 4659–4666 (1991). doi:10.1103/physrevb.43.4659
- T. Balcha, J.R. Strobl, C. Fowler, P. Dash, R.W.J. Scott, Selective aerobic oxidation of crotyl alcohol using aupd core-shell nanoparticles. ACS Catal. 1(5), 425–436 (2011). doi:10.1021/cs200040a
- A. Cybula, J.B. Priebe, M.-M. Pohl, J.W. Sobczak, M. Schneider, A. Zielińska-Jurek, A. Brückner, A. Zaleska, The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2. Appl. Catal. B: Environ. 152–153, 202–211 (2014). doi:10.1016/j.apcatb.2014.01.042
- M.-I. Wu, D.-H. Chen, T.-C. Huang, Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17(13), 3877–3883 (2001). doi:10.1021/la010060y
- C.H. Cui, H.H. Li, S.H. Yu, A general approach to electrochemical deposition of high quality free-standing noble metal (Pd, Pt, Au, Ag) sub-micron tubes composed of nanoparticles in polar aprotic solvent. Chem. Commun. 46(6), 940–942 (2010). doi:10.1039/b920705h
- S. Zhang, Y. Shao, G. Yin, Y. Lin, Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew. Chem. Int. Ed. 49(12), 2211–2214 (2010). doi:10.1002/anie.200906987
- V. Ponec, Alloy catalysts: the concepts. Appl. Catal. A: Gen. 222(1–2), 31–45 (2001). doi:10.1016/s0926-860x(01)00828-6
- P. Liu, J.K. Norskov, Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 3(17), 3814–3818 (2001). doi:10.1039/b103525h
References
A. Abad, C. Almela, A. Corma, H. García, Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron 62(28), 6666–6672 (2006). doi:10.1016/j.tet.2006.01.118
K. Zaw, M. Lautens, P.M. Henry, Novel parallel path mechanism for the oxidation of allyl alcohol by aqueous palladium (ii) chloride. Organometallics 2(1), 197–199 (1983). doi:10.1021/om00073a051
D.G. Lee, U.A. Spitzer, Aqueous dichromate oxidation of primary alcohols. J. Org. Chem. 35(10), 3589–3590 (1970). doi:10.1021/jo00835a101
P.V. Prabhakaran, S. Venkatachalam, K.N. Ninan, Permanganate ion supported over crosslinked polyvinylamine as an oxidising agent for alcohols. Eur. Poly. J. 35(9), 1743–1746 (1999). doi:10.1016/s0014-3057(98)00246-8
J. Muzart, Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron 59(31), 5789–5816 (2003). doi:10.1016/s0040-4020(03)00866-4
I. Prati, M. Rossi, Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal. 176(2), 552–560 (1998). doi:10.1006/jcat.1998.2078
D. Enache, D. Knight, G. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal. Lett. 103(1–2), 43–52 (2005). doi:10.1007/s10562-005-6501-y
H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. JACS 127(26), 9374–9375 (2005). doi:10.1021/ja052161e
A. Abad, C. Almela, A. Corma, H. Garcia, Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. Chem. Commun. 30, 3178–3180 (2006). doi:10.1039/b606257a
H. Tsunoyama, T. Tsukuda, H. Sakurai, Synthetic application of pvp-stabilized au nanocluster catalyst to aerobic oxidation of alcohols in aqueous solution under ambient conditions. Chem. Lett. 36(2), 212–213 (2007). doi:10.1246/cl.2007.212
H. Li, B. Guan, W. Wang, D. Xing, Z. Fang, X. Wan, L. Yang, Z. Shi, Aerobic oxidation of alcohol in aqueous solution catalyzed by gold. Tetrahedron 63(35), 8430–8434 (2007). doi:10.1016/j.tet.2007.05.117
J. Hu, L. Chen, K. Zhu, A. Suchopar, R. Richards, Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica. Catal. Today 122(3–4), 277–283 (2007). doi:10.1016/j.cattod.2007.01.012
H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, Effect of electronic structures of Au clusters stabilized by poly(n-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. JACS 131(20), 7086–7093 (2009). doi:10.1021/ja810045y
O. Casanova, S. Iborra, A. Corma, Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J. Catal. 265(1), 109–116 (2009). doi:10.1016/j.jcat.2009.04.019
H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, Metal–organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols. J. Phys. Chem. C 114(31), 13362–13369 (2010). doi:10.1021/jp105666f
M. Mifsud, K.V. Parkhomenko, I.W.C.E. Arends, R.A. Sheldon, Pd nanoparticles as catalysts for green, sustainable oxidation of functionalized alcohols in aqueous media. Tetrahedron 66(5), 1040–1044 (2010). doi:10.1016/j.tet.2009.11.007
Z. Ma, H. Yang, Y. Qin, Y. Hao, G. Li, Palladium nanoparticles confined in the nanocages of sba-16: enhanced recyclability for the aerobic oxidation of alcohols in water. J. Mol. Catal. A: Chem. 331(1–2), 78–85 (2010)
D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311(5759), 362–365 (2006). doi:10.1126/science.1120560
N. Dimitratos, J. Lopez-sanchez, D. Lennon, F. Porta, L. Prati, A. Villa, Effect of particle size on monometallic and bimetallic (Au, Pd)/c on the liquid phase oxidation of glycerol. Catal. Lett. 108(3–4), 147–153 (2006). doi:10.1007/s10562-006-0036-8
W. Hou, N.A. Dehm, R.W.J. Scott, Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. J. Catal. 253(1), 22–27 (2008). doi:10.1016/j.jcat.2007.10.025
A. Villa, N. Janjic, P. Spontoni, D. Wang, D.S. Su, L. Prati, Au–Pd/AC as catalysts for alcohol oxidation: effect of reaction parameters on catalytic activity and selectivity. Appl. Catal. A: Gen. 364(1–2), 221–228 (2009). doi:10.1016/j.apcata.2009.05.059
S. Marx, A. Baiker, Beneficial interaction of gold and palladium in bimetallic catalysts for the selective oxidation of benzyl alcohol. J. Phys. Chem. C 113(15), 6191–6201 (2009). doi:10.1021/jp808362m
A.J. Frank, J. Rawski, K.E. Maly, V. Kitaev, Environmentally benign aqueous oxidative catalysis using AuPd/TiO2 colloidal nanoparticle system stabilized in absence of organic ligands. Green Chem. 12(9), 1615–1622 (2010). doi:10.1039/c0gc00084a
Y. Chen, H. Lim, Q. Tang, Y. Gao, T. Sun, Q. Yan, Y. Yang, Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au–Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Appl. Catal. A: Gen. 380(1–2), 55–65 (2010). doi:10.1016/j.apcata.2010.03.026
J. Gong, C.B. Mullins, Surface science investigations of oxidative chemistry on gold. Acc. Chem. Res. 42(8), 1063–1073 (2009). doi:10.1021/ar8002706
W. Jian, L. Xuxing, Z. Qiannan, Z. Junwei, S. Qishun, Z. Li, N. Weihai, Angle-resolved plasmonic properties of single gold nanorod dimers. Nano-Micro Lett. 6(4), 372–380 (2014). doi:10.1007/s40820-014-0011-7
L. Robert, H. Anming, P. John, Y.N. Zhou, Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett. 5(3), 202–212 (2013). doi:10.5101/nml.v5i3.p202-212
W. Fagen, X. Yan, Z. Kunfeng, H. Dannong, Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature. Nano-Micro Lett. 6(3), 233–241 (2014). doi:10.5101/nml140025a
J.J. Pietron, R.M. Stroud, D.R. Rolison, Using three dimensions in catalytic mesoporous nanoarchitectures. Nano Lett. 2(5), 545–549 (2002). doi:10.1021/nl025536s
G.A. Somorjai, J.Y. Park, Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. 47(48), 9212–9228 (2008). doi:10.1002/anie.200803181
C.H. Liu, B.H. Mao, J. Gao, S. Zhang, X. Gao, Z. Liu, S.T. Lee, X.H. Sun, S.D. Wang, Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon 50(8), 3008–3014 (2012). doi:10.1016/j.carbon.2012.02.086
C.H. Liu, X.Q. Chen, Y.F. Hu, T.K. Sham, Q.J. Sun, J.B. Chang, X. Gao, X.H. Sun, S.D. Wang, One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl. Mater. Interface 5(11), 5072–5079 (2013). doi:10.1021/am4008853
J. Xu, T. White, P. Li, C. He, J. Yu, W. Yuan, Y.-F. Han, Biphasic Pd–Au alloy catalyst for low-temperature co oxidation. JACS 132(30), 10398–10406 (2010). doi:10.1021/ja102617r
J.K. Edwards, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au–Pd catalysts. Faraday Discuss. 138, 225–239 (2008). doi:10.1039/b705915a
Y. Mizukoshi, K. Sato, T.J. Konno, N. Masahashi, Dependence of photocatalytic activities upon the structures of Au/Pd bimetallic nanoparticles immobilized on TiO2 surface. Appl. Catal. B: Environ. 94(3–4), 248–253 (2010). doi:10.1016/j.apcatb.2009.11.015
Q. Wang, X. Cui, W. Guan, X. Zhang, C. Liu, T. Xue, H. Wang, W. Zheng, A nanoflower shaped gold-palladium alloy on graphene oxide nanosheets with exceptional activity for electrochemical oxidation of ethanol. Microchim. Acta 181(3–4), 373–380 (2014). doi:10.1007/s00604-013-1119-z
T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti, N. Dimitratos, J.A. Lopez-sanchez, M. Sankar, Q. He, C.J. Kiely, G.J. Hutchings, F. Cavani, Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chem. 13(8), 2091–2099 (2011). doi:10.1039/c1gc15355b
C.-H. Cui, J.-W. Yu, H.-H. Li, M.-R. Gao, H.-W. Liang, S.-H. Yu, Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd–Au bimetallic nanoparticle tubes. ACS Nano 5(5), 4211–4218 (2011). doi:10.1021/nn2010602
J. Fang, S.W. Cao, Z. Wang, M.M. Shahjamali, S.C.J. Loo, J. Barber, C. Xue, Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int. J. Hydrog. Energy 37(23), 17853–17861 (2012). doi:10.1016/j.ijhydene.2012.09.023
M.C. Long, J.J. Jiang, Y. Li, R.Q. Cao, L.Y. Zhang, W.M. Cai, Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of au modified BiVO4. Nano-Micro Lett. 3(3), 171–177 (2011). doi:10.1007/BF03353669
M.V. Dozzi, A. Saccomanni, M. Altomare, E. Selli, Photocatalytic activity of NH4F-doped TiO2 modified by noble metal nanoparticle deposition. Photochem. Photobiol. Sci. 12(4), 595–601 (2013). doi:10.1039/c2pp25175b
C. Han, X. Yang, G. Gao, J. Wang, H. Lu, J. Liu, M. Tong, X. Liang, Selective oxidation of methanol to methyl formate on catalysts of Au-Ag alloy nanoparticles supported on titania under UV irradiation. Green Chem. 16(7), 3603–3615 (2014). doi:10.1039/c4gc00367e
Y. Wang, J.-M. Zheng, K. Fan, W.-L. Dai, One-pot solvent-free synthesis of sodium benzoate from the oxidation of benzyl alcohol over novel efficient AuAg/TiO2 catalysts. Green Chem. 13(7), 1644–1647 (2011). doi:10.1039/c1gc15311k
A.M. Venezia, V. La parola, G. Deganello, B. Pawelec, J.L.G. Fierro, Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds. J. Catal. 215(2), 317–325 (2003). doi:10.1016/s0021-9517(03)00005-8
P.A.P. Nascente, S.G.C. Decastro, R. Landers, G.G. Kleiman, X-ray photoemission and auger energy shifts in some gold-palladium alloys. Phys. Rev. B 43(6), 4659–4666 (1991). doi:10.1103/physrevb.43.4659
T. Balcha, J.R. Strobl, C. Fowler, P. Dash, R.W.J. Scott, Selective aerobic oxidation of crotyl alcohol using aupd core-shell nanoparticles. ACS Catal. 1(5), 425–436 (2011). doi:10.1021/cs200040a
A. Cybula, J.B. Priebe, M.-M. Pohl, J.W. Sobczak, M. Schneider, A. Zielińska-Jurek, A. Brückner, A. Zaleska, The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2. Appl. Catal. B: Environ. 152–153, 202–211 (2014). doi:10.1016/j.apcatb.2014.01.042
M.-I. Wu, D.-H. Chen, T.-C. Huang, Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17(13), 3877–3883 (2001). doi:10.1021/la010060y
C.H. Cui, H.H. Li, S.H. Yu, A general approach to electrochemical deposition of high quality free-standing noble metal (Pd, Pt, Au, Ag) sub-micron tubes composed of nanoparticles in polar aprotic solvent. Chem. Commun. 46(6), 940–942 (2010). doi:10.1039/b920705h
S. Zhang, Y. Shao, G. Yin, Y. Lin, Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew. Chem. Int. Ed. 49(12), 2211–2214 (2010). doi:10.1002/anie.200906987
V. Ponec, Alloy catalysts: the concepts. Appl. Catal. A: Gen. 222(1–2), 31–45 (2001). doi:10.1016/s0926-860x(01)00828-6
P. Liu, J.K. Norskov, Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 3(17), 3814–3818 (2001). doi:10.1039/b103525h