Molybdenum Oxynitride Atomic Nanoclusters Bonded in Nanosheets of N-Doped Carbon Hierarchical Microspheres for Efficient Sodium Storage
Corresponding Author: Shenglin Xiong
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 163
Abstract
Transition metal nitrides have attracted considerable attention as great potential anode materials due to their excellent metallic conductivity and high theoretical specific capacity. However, their cycling performance is impeded by their instability caused by the reaction mechanism. Herein, we report the engineering and synthesis of a novel hybrid architecture composed of MoO2.0N0.5 atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical hollow microspheres (MoO2.0N0.5/NC) as an anode material for sodium-ion batteries. The facile self-templating strategy for the synthesis of MoO2.0N0.5/NC involves chemical polymerization and subsequent one-step calcination treatments. The design is beneficial to improve the electrochemical kinetics, buffer the volume variation of electrodes during cycling, and provide more interfacial active sites for sodium uptake. Due to these unique structural and compositional merits, these MoO2.0N0.5/NC exhibits excellent sodium storage performance in terms of superior rate capability and stable long cycle life. The work shows a feasible and effective way to design novel host candidates and solve the long-term cycling stability issues for sodium-ion batteries.
Highlights:
1 MoO2.0N0.5 atomic nanoclusters bonded on nanosheets of N/C hierarchical hollow microsphere are synthesized via a facile self- templating strategy.
2 Introduction of MoO2.0N0.5 atomic nanoclusters benefits the enhancement of electrochemical kinetic.
3 Composite of MoO2.0N0.5/NC shows excellent electrochemical performance as an anode material for sodium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Wang, L. Liu, S. Zhao, Y. Liu, Y. Yang et al., Tuning local chemistry of P2 layered–oxide cathode for high energy and long cycles of sodium–ion battery. Nat. Commun. 12, 2256 (2021). https://doi.org/10.1038/s41467-021-22523-3
- G. Zhu, X. Tian, H.C. Tai, Y.Y. Li, J. Li et al., Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 596, 525–530 (2021). https://doi.org/10.1038/s41586-021-03757-z
- M. Huang, Y. Chu, B. Xi, N. Shi, B. Duan et al., TiO2-based heterostructures with different mechanism: a general synergistic effect toward high-performance sodium storage. Small 16(42), 2004054 (2020). https://doi.org/10.1002/smll.202004054
- C. Zhu, P. Kopold, P.A.V. Aken, J. Maier, Y. Yu, High power–high energy sodium battery based on threefold interpenetrating network. Adv. Mater. 28(12), 2409–2416 (2016). https://doi.org/10.1002/adma.201505943
- Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie et al., Multiscale graphene–based materials for applications in sodium ion batteries. Adv. Energy Mater. 9(8), 1803342 (2019). https://doi.org/10.1002/aenm.201803342
- M. Huang, B. Xi, N. Shi, J. Feng, Y. Qian et al., Quantum–matter Bi/TiO2 heterostructure embedded in N–doped porous carbon nanosheets for enhanced sodium storage. Small Struct. 2(4), 2000085 (2021). https://doi.org/10.1002/sstr.202000085
- X. Sun, L. Wang, C. Li, D. Wang, I. Sikandar et al., Dandelion–like Bi2S3/rGO hierarchical microspheres as high–performance anodes for potassium–ion and half/full sodium-ion batteries. Nano Res. 14, 4696–4703 (2021). https://doi.org/10.1007/s12274-021-3407-y
- H. Li, H. Zhang, T. Diemant, R.J. Behm, D. Geiger et al., Reversible copper sulfide conversion in nonflammable trimethyl phosphate electrolytes for safe sodium–ion batteries. Small Struct. 2(8), 2100035 (2021). https://doi.org/10.1002/sstr.202100035
- M. Huang, B. Xi, Z. Feng, F. Wu, D. Wei et al., New insights into the electrochemistry superiority of liquid Na–K alloy in metal batteries. Small 15(12), 1804916 (2019). https://doi.org/10.1002/smll.201804916
- Z.L. Xu, G. Yoon, K.Y. Park, H. Park, O. Tamwattana et al., Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat. Commun. 10, 2598 (2019). https://doi.org/10.1038/s41467-019-10551-z
- M. Chen, Z. Wang, Y. Wang, Y. Li, Q. Chen et al., Sodium–ion storage mechanisms and design strategies of molybdenum–based materials: a review. Appl. Mater. Today 23(6), 100985 (2021). https://doi.org/10.1016/j.apmt.2021.100985
- Y. Jiang, J. Dong, S. Tan, Q. Wei, F. Xiong et al., Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high–rate sodium–ion storage. J. Energy Chem. 55, 295–303 (2021). https://doi.org/10.1016/j.jechem.2020.07.011
- N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang et al., Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high–performance lithium–sulfur batteries. Nano-Micro Lett. 11, 43 (2019). https://doi.org/10.1007/s40820-019-0275-z
- B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu et al., Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanops for ultrafast sodium storage. Adv. Mater. 30(10), 1705788 (2018). https://doi.org/10.1002/adma.201705788
- H. Luo, M. Cao, J. Cao, M. Zhang, S. Tan et al., Cocoon silk–derived, hierarchically porous carbon as anode for highly robust potassium–ion hybrid capacitors. Nano-Micro Lett. 12, 113 (2020). https://doi.org/10.1007/s40820-020-00454-w
- S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao et al., Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high–efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017). https://doi.org/10.1002/aenm.201700403
- W. Ye, F. Wu, N. Shi, H. Zhou, Q. Chi et al., Metal–semiconductor phase twinned hierarchical MoS2 nanowires with expanded interlayers for sodium–ion batteries with ultralong cycle life. Small 16(3), 1906607 (2020). https://doi.org/10.1002/smll.201906607
- J. Chen, Y. Luo, W. Zhang, Y. Qiao, X. Cao et al., Tuning interface bridging between MoSe2 and three–dimensional carbon framework by incorporation of MoC intermediate to boost lithium storage capability. Nano-Micro Lett. 12, 171 (2020). https://doi.org/10.1007/s40820-020-00511-4
- G. Jiang, Y. Qiu, Q. Lu, W. Zhuang, X. Xu et al., Mesoporous thin-wall molybdenum nitride for fast and stable Na/Li storage. ACS Appl. Mater. Interfaces 11(44), 41188–41195 (2019). https://doi.org/10.1021/acsami.9b07060
- S. Wang, H. Ge, S. Sun, J. Zhang, F. Liu et al., A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc. 137(14), 4815–4822 (2015). https://doi.org/10.1021/jacs.5b01446
- C. Zhu, A.L. Wang, W. Xiao, D. Chao, X. Zhang et al., In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 30(13), 1705516 (2018). https://doi.org/10.1002/adma.201705516
- N. Shi, Y. Chu, B. Xi, M. Huang, W. Chen et al., Sandwich structures constructed by ZnSe⊂N-C@MoSe2 located in graphene for efficient sodium storage. Adv. Energy Mater. 10(41), 2002298 (2020). https://doi.org/10.1002/aenm.202002298
- A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321(5894), 1331–1335 (2008). https://doi.org/10.1126/science.1159639
- N. Shi, B. Xi, M. Huang, F. Tian, W. Chen et al., One–step construction of MoS0 74Se1 26/N-doped carbon flower-like hierarchical microspheres with enhanced sodium storage. ACS Appl. Mater. Interfaces 11, 44342–51 (2019). https://doi.org/10.1021/acsami.9b15769
- C. Zhao, J. Kong, L. Yang, X. Yao, S.L. Phua et al., The dopamine–MoVI complexation–assisted large-scale aqueous synthesis of a single–layer MoS2/carbon sandwich structure for ultrafast, long-life lithium–ion batteries. Chem. Commun. 50(68), 9672 (2014). https://doi.org/10.1039/C4CC04099F
- M.J. Sever, J.T. Weisser, J. Monahan, S. Srinivasan, J.J. Wilker, Metal–mediated cross–linking in the generation of a marine–mussel adhesive. Angew. Chem. Int. Ed. 43(4), 448–450 (2004). https://doi.org/10.1002/anie.200352759
- Y. Sun, Y. Zhou, Y. Zhu, Y. Shen, A. Xie, In–situ synthesis of petal–like MoO2@MoN/NF heterojunction as both an advanced binder–free anode and an electrocatalyst for lithium ion batteries and water splitting. ACS Sustain. Chem. Eng. 7(10), 9153–9163 (2019). https://doi.org/10.1021/acssuschemeng.8b06321
- X. Wang, J. Tian, X. Cheng, R. Na, D. Wang et al., Chitosan-Induced synthesis of hierarchical flower ridge–like MoS2/N–doped carbon composites with enhanced lithium storage. ACS Appl. Mater. Interfaces 10(42), 35953–35963 (2018). https://doi.org/10.1021/acsami.8b11593
- L. Ma, X. Zhou, L. Xu, X. Xu, L. Zhang et al., Chitosan–assisted fabrication of ultrathin MoS2/graphene heterostructures for Li–ion battery with excellent electrochemical performance. Electrochim. Acta 167(10), 39–47 (2015). https://doi.org/10.1016/j.electacta.2015.03.129
- F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan et al., MoSe2–covered N, P–doped carbon nanosheets as a long–life and high–rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27(23), 1700522 (2017). https://doi.org/10.1002/adfm.201700522
- Y. Ai, Y. You, F. Wei, X. Jiang, Z. Han et al., Hollow bio–derived polymer nanospheres with ordered mesopores for sodium–ion battery. Nano-Micro Lett. 12, 31 (2020). https://doi.org/10.1007/s40820-020-0370-1
- R. Li, D. Rao, J. Zhou, G. Wu, G. Wang et al., Amorphization–induced surface electronic states modulation of cobaltous oxide nanosheets for lithium–sulfur batteries. Nat. Commun. 12(5), 3102 (2021). https://doi.org/10.1038/s41467-021-23349-9
- T.Y. Ma, J. Ran, S. Dai, M. Jaroniec, S.Z. Qiao, Phosphorus–doped graphitic carbon nitrides grown in situ on carbon–fiber paper: flexible and reversible oxygen electrodes. Angew. Chem. Int. Ed. 54(15), 4646–4650 (2015). https://doi.org/10.1002/anie.201411125
- L. Zhang, Q. Wang, R.K. Jian, D.Y. Wang, Bioinspired iron–loaded polydopamine nanospheres as green flame retardants for epoxy resin: via free radical scavenging and catalytic charring. J. Mater. Chem. A 8(5), 2529–2538 (2020). https://doi.org/10.1039/C9TA11021F
- I. Milošev, H.H. Strehblow, B. Navinšek, Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation. Thin Solid Films 303(1–2), 246–254 (1997). https://doi.org/10.1016/S0040-6090(97)00069-2
- S. Zhang, Y. Zeng, Z. Wang, J. Zhao, G. Dong, Glycerol-controlled synthesis of MoS2 hierarchical architectures with well-tailored subunits and enhanced electrochemical performance for lithium ion batteries. Chem. Eng. J. 334(2), 487–496 (2018). https://doi.org/10.1016/j.cej.2017.10.044
- P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim et al., Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7(8), 2624–2629 (2014). https://doi.org/10.1039/C4EE00957F
- P. He, Y. Fang, X.Y. Yu, X.W. Lou, Hierarchical nanotubes constructed by carbon-coated ultrathin SnS nanosheets for fast capacitive sodium storage. Angew. Chem. Int. Ed. 56(40), 12202–12205 (2017). https://doi.org/10.1002/anie.201706652
- J.C. Russell, V.A. Posey, J. Gray, R. May, D.A. Reed et al., High–performance organic pseudocapacitors via molecular contortion. Nat. Mater. 20(4), 1136–1141 (2021). https://doi.org/10.1038/s41563-021-00954-z
- Y. Zhang, Y. Huang, V. Srot, P.A. Aken, J. Maier et al., Enhanced pseudo–capacitive contributions to high–performance sodium storage in TiO2/C nanofibers via double effects of sulfur modification. Nano-Micro Lett. 12, 165 (2020). https://doi.org/10.1007/s40820-020-00506-1
- S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao et al., Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12(3), 224–230 (2015). https://doi.org/10.1016/j.nanoen.2014.12.032
- H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- M. Zhu, Z. Luo, A. Pan, H. Yang, T. Zhu et al., N–doped one–dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion. Chem. Eng. J. 334(2), 2190–2200 (2018). https://doi.org/10.1016/j.cej.2017.11.158
- C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li et al., Ultrafine MoO2–carbon microstructures enable ultralong–life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7(15), 1602880 (2017). https://doi.org/10.1002/aenm.201602880
- B. Huang, S. Liu, X. Zhao, Y. Li, J. Yang et al., Enhancing sodium–ion storage performance of MoO2/N–doped carbon through interfacial Mo–N–C bond. Sci. China Mater. 64(6), 85–95 (2021). https://doi.org/10.1007/s40843-020-1370-x
- C. Yang, M. Zhang, N. Kong, J. Lan, Y. Yu et al., Self–supported carbon nanofiber films with high–level nitrogen and phosphorus Co–doping for advanced lithium–ion and sodium–ion capacitors. ACS Sustain. Chem. Eng. 7(10), 9291–9300 (2019). https://doi.org/10.1021/acssuschemeng.9b00300
- D. Luo, J. Xu, Q. Guo, L. Fang, X. Zhu et al., Surface–dominated sodium storage towards high capacity and ultrastable anode material for sodium–ion batteries. Adv. Funct. Mater. 28(47), 1805371 (2018). https://doi.org/10.1002/adfm.201805371
- X. Jian, H. Wang, G. Rao, L. Jiang, H. Wang et al., Self–tunable ultrathin carbon nanocups as the electrode material of sodium–ion batteries with unprecedented capacity and stability. Chem. Eng. J. 364(5), 578–588 (2019). https://doi.org/10.1016/j.cej.2019.02.003
- J. Lee, S. Kim, J.H. Park, C. Jo, J. Chun et al., A small–strain niobium nitride anode with ordered mesopores for ultra–stable potassium–ion batteries. J. Mater. Chem. A 8(6), 3119–3127 (2020). https://doi.org/10.1039/C9TA11663J
- Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo et al., High energy and high power lithium-ion capacitors based on boron and nitrogen dual–doped 3D carbon nanofibers as both cathode and anode. Adv. Energy Mater. 7(22), 1701336 (2017). https://doi.org/10.1002/aenm.201701336
- T. Ma, M. Zhang, H. Liu, Y. Wang, Synthesis of CoMoO4–MoO2 nanohybrids supported on graphene as high–efficiency catalyst for hydrogen evolution. J. Electroanal. Chem. 844(1), 78–85 (2019). https://doi.org/10.1016/j.jelechem.2019.05.005
- S. Wei, C. Wang, S. Chen, P. Zhang, K. Zhu et al., Dial the mechanism switch of VN from conversion to intercalation toward long cycling sodium–ion battery. Adv. Energy Mater. 10(12), 1903712 (2020). https://doi.org/10.1002/aenm.201903712
- X.Y. Qiu, Q.C. Zhuang, Q.Q. Zhang, R. Cao, Y.H. Qiang et al., Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy. J. Electroanal. Chem. 687(11), 35–44 (2012). https://doi.org/10.1016/j.jelechem.2012.09.027
- C. Liang, L. Liu, Z. Jia, C. Dai, Y. Xiong, Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to p size effect on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2. Electrochim. Acta 186(12), 413–419 (2015). https://doi.org/10.1016/j.electacta.2015.10.190
References
C. Wang, L. Liu, S. Zhao, Y. Liu, Y. Yang et al., Tuning local chemistry of P2 layered–oxide cathode for high energy and long cycles of sodium–ion battery. Nat. Commun. 12, 2256 (2021). https://doi.org/10.1038/s41467-021-22523-3
G. Zhu, X. Tian, H.C. Tai, Y.Y. Li, J. Li et al., Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 596, 525–530 (2021). https://doi.org/10.1038/s41586-021-03757-z
M. Huang, Y. Chu, B. Xi, N. Shi, B. Duan et al., TiO2-based heterostructures with different mechanism: a general synergistic effect toward high-performance sodium storage. Small 16(42), 2004054 (2020). https://doi.org/10.1002/smll.202004054
C. Zhu, P. Kopold, P.A.V. Aken, J. Maier, Y. Yu, High power–high energy sodium battery based on threefold interpenetrating network. Adv. Mater. 28(12), 2409–2416 (2016). https://doi.org/10.1002/adma.201505943
Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie et al., Multiscale graphene–based materials for applications in sodium ion batteries. Adv. Energy Mater. 9(8), 1803342 (2019). https://doi.org/10.1002/aenm.201803342
M. Huang, B. Xi, N. Shi, J. Feng, Y. Qian et al., Quantum–matter Bi/TiO2 heterostructure embedded in N–doped porous carbon nanosheets for enhanced sodium storage. Small Struct. 2(4), 2000085 (2021). https://doi.org/10.1002/sstr.202000085
X. Sun, L. Wang, C. Li, D. Wang, I. Sikandar et al., Dandelion–like Bi2S3/rGO hierarchical microspheres as high–performance anodes for potassium–ion and half/full sodium-ion batteries. Nano Res. 14, 4696–4703 (2021). https://doi.org/10.1007/s12274-021-3407-y
H. Li, H. Zhang, T. Diemant, R.J. Behm, D. Geiger et al., Reversible copper sulfide conversion in nonflammable trimethyl phosphate electrolytes for safe sodium–ion batteries. Small Struct. 2(8), 2100035 (2021). https://doi.org/10.1002/sstr.202100035
M. Huang, B. Xi, Z. Feng, F. Wu, D. Wei et al., New insights into the electrochemistry superiority of liquid Na–K alloy in metal batteries. Small 15(12), 1804916 (2019). https://doi.org/10.1002/smll.201804916
Z.L. Xu, G. Yoon, K.Y. Park, H. Park, O. Tamwattana et al., Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat. Commun. 10, 2598 (2019). https://doi.org/10.1038/s41467-019-10551-z
M. Chen, Z. Wang, Y. Wang, Y. Li, Q. Chen et al., Sodium–ion storage mechanisms and design strategies of molybdenum–based materials: a review. Appl. Mater. Today 23(6), 100985 (2021). https://doi.org/10.1016/j.apmt.2021.100985
Y. Jiang, J. Dong, S. Tan, Q. Wei, F. Xiong et al., Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high–rate sodium–ion storage. J. Energy Chem. 55, 295–303 (2021). https://doi.org/10.1016/j.jechem.2020.07.011
N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang et al., Battery separators functionalized with edge-rich MoS2/C hollow microspheres for the uniform deposition of Li2S in high–performance lithium–sulfur batteries. Nano-Micro Lett. 11, 43 (2019). https://doi.org/10.1007/s40820-019-0275-z
B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu et al., Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanops for ultrafast sodium storage. Adv. Mater. 30(10), 1705788 (2018). https://doi.org/10.1002/adma.201705788
H. Luo, M. Cao, J. Cao, M. Zhang, S. Tan et al., Cocoon silk–derived, hierarchically porous carbon as anode for highly robust potassium–ion hybrid capacitors. Nano-Micro Lett. 12, 113 (2020). https://doi.org/10.1007/s40820-020-00454-w
S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao et al., Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high–efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017). https://doi.org/10.1002/aenm.201700403
W. Ye, F. Wu, N. Shi, H. Zhou, Q. Chi et al., Metal–semiconductor phase twinned hierarchical MoS2 nanowires with expanded interlayers for sodium–ion batteries with ultralong cycle life. Small 16(3), 1906607 (2020). https://doi.org/10.1002/smll.201906607
J. Chen, Y. Luo, W. Zhang, Y. Qiao, X. Cao et al., Tuning interface bridging between MoSe2 and three–dimensional carbon framework by incorporation of MoC intermediate to boost lithium storage capability. Nano-Micro Lett. 12, 171 (2020). https://doi.org/10.1007/s40820-020-00511-4
G. Jiang, Y. Qiu, Q. Lu, W. Zhuang, X. Xu et al., Mesoporous thin-wall molybdenum nitride for fast and stable Na/Li storage. ACS Appl. Mater. Interfaces 11(44), 41188–41195 (2019). https://doi.org/10.1021/acsami.9b07060
S. Wang, H. Ge, S. Sun, J. Zhang, F. Liu et al., A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc. 137(14), 4815–4822 (2015). https://doi.org/10.1021/jacs.5b01446
C. Zhu, A.L. Wang, W. Xiao, D. Chao, X. Zhang et al., In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 30(13), 1705516 (2018). https://doi.org/10.1002/adma.201705516
N. Shi, Y. Chu, B. Xi, M. Huang, W. Chen et al., Sandwich structures constructed by ZnSe⊂N-C@MoSe2 located in graphene for efficient sodium storage. Adv. Energy Mater. 10(41), 2002298 (2020). https://doi.org/10.1002/aenm.202002298
A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321(5894), 1331–1335 (2008). https://doi.org/10.1126/science.1159639
N. Shi, B. Xi, M. Huang, F. Tian, W. Chen et al., One–step construction of MoS0 74Se1 26/N-doped carbon flower-like hierarchical microspheres with enhanced sodium storage. ACS Appl. Mater. Interfaces 11, 44342–51 (2019). https://doi.org/10.1021/acsami.9b15769
C. Zhao, J. Kong, L. Yang, X. Yao, S.L. Phua et al., The dopamine–MoVI complexation–assisted large-scale aqueous synthesis of a single–layer MoS2/carbon sandwich structure for ultrafast, long-life lithium–ion batteries. Chem. Commun. 50(68), 9672 (2014). https://doi.org/10.1039/C4CC04099F
M.J. Sever, J.T. Weisser, J. Monahan, S. Srinivasan, J.J. Wilker, Metal–mediated cross–linking in the generation of a marine–mussel adhesive. Angew. Chem. Int. Ed. 43(4), 448–450 (2004). https://doi.org/10.1002/anie.200352759
Y. Sun, Y. Zhou, Y. Zhu, Y. Shen, A. Xie, In–situ synthesis of petal–like MoO2@MoN/NF heterojunction as both an advanced binder–free anode and an electrocatalyst for lithium ion batteries and water splitting. ACS Sustain. Chem. Eng. 7(10), 9153–9163 (2019). https://doi.org/10.1021/acssuschemeng.8b06321
X. Wang, J. Tian, X. Cheng, R. Na, D. Wang et al., Chitosan-Induced synthesis of hierarchical flower ridge–like MoS2/N–doped carbon composites with enhanced lithium storage. ACS Appl. Mater. Interfaces 10(42), 35953–35963 (2018). https://doi.org/10.1021/acsami.8b11593
L. Ma, X. Zhou, L. Xu, X. Xu, L. Zhang et al., Chitosan–assisted fabrication of ultrathin MoS2/graphene heterostructures for Li–ion battery with excellent electrochemical performance. Electrochim. Acta 167(10), 39–47 (2015). https://doi.org/10.1016/j.electacta.2015.03.129
F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan et al., MoSe2–covered N, P–doped carbon nanosheets as a long–life and high–rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27(23), 1700522 (2017). https://doi.org/10.1002/adfm.201700522
Y. Ai, Y. You, F. Wei, X. Jiang, Z. Han et al., Hollow bio–derived polymer nanospheres with ordered mesopores for sodium–ion battery. Nano-Micro Lett. 12, 31 (2020). https://doi.org/10.1007/s40820-020-0370-1
R. Li, D. Rao, J. Zhou, G. Wu, G. Wang et al., Amorphization–induced surface electronic states modulation of cobaltous oxide nanosheets for lithium–sulfur batteries. Nat. Commun. 12(5), 3102 (2021). https://doi.org/10.1038/s41467-021-23349-9
T.Y. Ma, J. Ran, S. Dai, M. Jaroniec, S.Z. Qiao, Phosphorus–doped graphitic carbon nitrides grown in situ on carbon–fiber paper: flexible and reversible oxygen electrodes. Angew. Chem. Int. Ed. 54(15), 4646–4650 (2015). https://doi.org/10.1002/anie.201411125
L. Zhang, Q. Wang, R.K. Jian, D.Y. Wang, Bioinspired iron–loaded polydopamine nanospheres as green flame retardants for epoxy resin: via free radical scavenging and catalytic charring. J. Mater. Chem. A 8(5), 2529–2538 (2020). https://doi.org/10.1039/C9TA11021F
I. Milošev, H.H. Strehblow, B. Navinšek, Comparison of TiN, ZrN and CrN hard nitride coatings: electrochemical and thermal oxidation. Thin Solid Films 303(1–2), 246–254 (1997). https://doi.org/10.1016/S0040-6090(97)00069-2
S. Zhang, Y. Zeng, Z. Wang, J. Zhao, G. Dong, Glycerol-controlled synthesis of MoS2 hierarchical architectures with well-tailored subunits and enhanced electrochemical performance for lithium ion batteries. Chem. Eng. J. 334(2), 487–496 (2018). https://doi.org/10.1016/j.cej.2017.10.044
P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim et al., Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7(8), 2624–2629 (2014). https://doi.org/10.1039/C4EE00957F
P. He, Y. Fang, X.Y. Yu, X.W. Lou, Hierarchical nanotubes constructed by carbon-coated ultrathin SnS nanosheets for fast capacitive sodium storage. Angew. Chem. Int. Ed. 56(40), 12202–12205 (2017). https://doi.org/10.1002/anie.201706652
J.C. Russell, V.A. Posey, J. Gray, R. May, D.A. Reed et al., High–performance organic pseudocapacitors via molecular contortion. Nat. Mater. 20(4), 1136–1141 (2021). https://doi.org/10.1038/s41563-021-00954-z
Y. Zhang, Y. Huang, V. Srot, P.A. Aken, J. Maier et al., Enhanced pseudo–capacitive contributions to high–performance sodium storage in TiO2/C nanofibers via double effects of sulfur modification. Nano-Micro Lett. 12, 165 (2020). https://doi.org/10.1007/s40820-020-00506-1
S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao et al., Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12(3), 224–230 (2015). https://doi.org/10.1016/j.nanoen.2014.12.032
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
M. Zhu, Z. Luo, A. Pan, H. Yang, T. Zhu et al., N–doped one–dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion. Chem. Eng. J. 334(2), 2190–2200 (2018). https://doi.org/10.1016/j.cej.2017.11.158
C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li et al., Ultrafine MoO2–carbon microstructures enable ultralong–life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7(15), 1602880 (2017). https://doi.org/10.1002/aenm.201602880
B. Huang, S. Liu, X. Zhao, Y. Li, J. Yang et al., Enhancing sodium–ion storage performance of MoO2/N–doped carbon through interfacial Mo–N–C bond. Sci. China Mater. 64(6), 85–95 (2021). https://doi.org/10.1007/s40843-020-1370-x
C. Yang, M. Zhang, N. Kong, J. Lan, Y. Yu et al., Self–supported carbon nanofiber films with high–level nitrogen and phosphorus Co–doping for advanced lithium–ion and sodium–ion capacitors. ACS Sustain. Chem. Eng. 7(10), 9291–9300 (2019). https://doi.org/10.1021/acssuschemeng.9b00300
D. Luo, J. Xu, Q. Guo, L. Fang, X. Zhu et al., Surface–dominated sodium storage towards high capacity and ultrastable anode material for sodium–ion batteries. Adv. Funct. Mater. 28(47), 1805371 (2018). https://doi.org/10.1002/adfm.201805371
X. Jian, H. Wang, G. Rao, L. Jiang, H. Wang et al., Self–tunable ultrathin carbon nanocups as the electrode material of sodium–ion batteries with unprecedented capacity and stability. Chem. Eng. J. 364(5), 578–588 (2019). https://doi.org/10.1016/j.cej.2019.02.003
J. Lee, S. Kim, J.H. Park, C. Jo, J. Chun et al., A small–strain niobium nitride anode with ordered mesopores for ultra–stable potassium–ion batteries. J. Mater. Chem. A 8(6), 3119–3127 (2020). https://doi.org/10.1039/C9TA11663J
Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo et al., High energy and high power lithium-ion capacitors based on boron and nitrogen dual–doped 3D carbon nanofibers as both cathode and anode. Adv. Energy Mater. 7(22), 1701336 (2017). https://doi.org/10.1002/aenm.201701336
T. Ma, M. Zhang, H. Liu, Y. Wang, Synthesis of CoMoO4–MoO2 nanohybrids supported on graphene as high–efficiency catalyst for hydrogen evolution. J. Electroanal. Chem. 844(1), 78–85 (2019). https://doi.org/10.1016/j.jelechem.2019.05.005
S. Wei, C. Wang, S. Chen, P. Zhang, K. Zhu et al., Dial the mechanism switch of VN from conversion to intercalation toward long cycling sodium–ion battery. Adv. Energy Mater. 10(12), 1903712 (2020). https://doi.org/10.1002/aenm.201903712
X.Y. Qiu, Q.C. Zhuang, Q.Q. Zhang, R. Cao, Y.H. Qiang et al., Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy. J. Electroanal. Chem. 687(11), 35–44 (2012). https://doi.org/10.1016/j.jelechem.2012.09.027
C. Liang, L. Liu, Z. Jia, C. Dai, Y. Xiong, Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to p size effect on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2. Electrochim. Acta 186(12), 413–419 (2015). https://doi.org/10.1016/j.electacta.2015.10.190