A MXene-Based Bionic Cascaded-Enzyme Nanoreactor for Tumor Phototherapy/Enzyme Dynamic Therapy and Hypoxia-Activated Chemotherapy
Corresponding Author: Jie Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 22
Abstract
The enzyme-mediated elevation of reactive oxygen species (ROS) at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment. Herein, we proposed a camouflaged bionic cascaded-enzyme nanoreactor based on Ti3C2 nanosheets for combined tumor enzyme dynamic therapy (EDT), phototherapy and deoxygenation-activated chemotherapy. Briefly, glucose oxidase (GOX) and chloroperoxidase (CPO) were chemically conjugated onto Ti3C2 nanosheets, where the deoxygenation-activated drug tirapazamine (TPZ) was also loaded, and the Ti3C2-GOX-CPO/TPZ (TGCT) was embedded into nanosized cancer cell-derived membrane vesicles with high-expressed CD47 (meTGCT). Due to biomimetic membrane camouflage and CD47 overexpression, meTGCT exhibited superior immune escape and homologous targeting capacities, which could effectively enhance the tumor preferential targeting and internalization. Once internalized into tumor cells, the cascade reaction of GOX and CPO could generate HClO for efficient EDT. Simultaneously, additional laser irradiation could accelerate the enzymic-catalytic reaction rate and increase the generation of singlet oxygen (1O2). Furthermore, local hypoxia environment with the oxygen depletion by EDT would activate deoxygenation-sensitive prodrug for additional chemotherapy. Consequently, meTGCT exhibits amplified synergistic therapeutic effects of tumor phototherapy, EDT and chemotherapy for efficient tumor inhibition. This intelligent cascaded-enzyme nanoreactor provides a promising approach to achieve concurrent and significant antitumor therapy.
Highlights:
1 Gene-engineering tumor cell membrane with CD47 over-expression is achieved to improve the macrophage-mediated phagocytosis of tumor cells by blocking CD47 immune checkpoint.
2 A cascade-enzyme nanoreactor combining tumor enzyme dynamic therapy, phototherapy, and deoxygenation-activated chemotherapy is proposed.
3 Glucose oxidase and chloroperoxidase can generate sufficient HClO to kill normoxic tumor cells, and tirapazamine can be subsequently activated to kill hypoxic tumor cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2021. Ca-Cancer J. Clin. 71, 7–33 (2021). https://doi.org/10.3322/caac.21654
- A. Bergamo, G. Sava, Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem. Soc. Rev. 44, 8818–8835 (2015). https://doi.org/10.1039/c5cs00134j
- Y.P. Wang, W.Q. Gao, X.Y. Shi, J.J. Ding, W. Liu et al., Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature (2017). https://doi.org/10.1038/nature22393
- Y. Shamay, J. Shah, M. Isik, A. Mizrachi, J. Leibold et al., Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361 (2018). https://doi.org/10.1038/s41563-017-0007-z
- Q. Wu, Z.G. He, X. Wang, Q. Zhang, Q.C. Wei et al., Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat. Commun. 10, 240 (2019). https://doi.org/10.1038/s41467-018-08234-2
- Q. Zhang, J.J. Wu, J.J. Wang, X. Wang, C. Wu et al., A neutrophil-inspired supramolecular nanogel for magnetocaloric-enzymatic tandem therapy. Angew Chem. Int. Ed. 59, 3732–3738 (2020). https://doi.org/10.1002/anie.201915118
- C. Gorrini, I.S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013). https://doi.org/10.1038/nrd4002
- C. Wang, J.Q. Wang, X.D. Zhang, S.J. Yu, D. Wen et al., In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. (2018). https://doi.org/10.1126/scitranslmed.aan3682
- Z.J. Zhou, J.B. Song, R. Tian, Z. Yang, G.C. Yu et al., Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angew. Chem. Int. Ed. 56, 6492–6496 (2017). https://doi.org/10.1002/anie.201701181
- D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ros-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009). https://doi.org/10.1038/nrd2803
- G. Chen, Y.Y. Yang, Q. Xu, M.J. Ling, H.M. Lin et al., Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy. Nano Lett. 20, 8141–8150 (2020). https://doi.org/10.1021/acs.nanolett.0c03127
- B.M. Babior, C. Takeuchi, J. Ruedi, A. Gutierrez, P. Wentworth, Investigating antibody-catalyzed ozone generation by human neutrophils. Proc. Natl. Acad. Sci. USA 100, 3031–3034 (2003). https://doi.org/10.1073/pnas.0530251100
- R.J. Reiter, Oxidative processes and antioxidative defense-mechanisms in the aging brain. Faseb J. 9, 526–533 (1995)
- S. Colonna, N. Gaggero, C. Richelmi, P. Pasta, Recent biotechnological developments in the use of peroxidases. Trends Biotechnol. 17, 163–168 (1999). https://doi.org/10.1016/S0167-7799(98)01288-8
- E.J. Allain, L.P. Hager, L. Deng, E.N. Jacobsen, Highly enantioselective epoxidation of disubstituted alkenes with hydrogen-peroxide catalyzed by chloroperoxidase. J. Am. Chem. Soc. 115, 4415–4416 (1993). https://doi.org/10.1021/Ja00063a091
- R. Renirie, C. Pierlot, J.M. Aubry, A.F. Hartog, H.E. Schoemaker et al., Vanadium chloroperoxidase as a catalyst for hydrogen peroxide disproportionation to singlet oxygen in mildly acidic aqueous environment. Adv. Synth. Catal (2003). https://doi.org/10.1002/adsc.200303008
- C. Zhang, L. Zhang, W. Wu, F. Gao, R.Q. Li et al., Artificial super neutrophils for inflammation targeting and hclo generation against tumors and infections. Adv. Mater. 31, 1901179 (2019). https://doi.org/10.1002/Adma.201901179
- O. Soehnlein, S. Steffens, A. Hidalgo, C. Weber, Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 17, 248–261 (2017). https://doi.org/10.1038/nri.2017.10
- D. Roos, C.C. Winterbourn, Immunology - lethal weapons. Science 296, 669–671 (2002). https://doi.org/10.1126/science.1071271
- Y. Liu, W.H. Zhang, Y.Y. Cao, Y. Liu, S. Bergmeier et al., Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms. Cancer Lett. 298, 176–185 (2010). https://doi.org/10.1016/j.canlet.2010.07.002
- S.M. Kim, S.G. Roy, B. Chen, T.M. Nguyen, R.J. McMonigle et al., Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J. Clin. Invest. 126, 4088–4102 (2016). https://doi.org/10.1172/JCI87148
- H. Cheng, X.Y. Jiang, R.R. Zheng, S.J. Zuo, L.P. Zhao et al., A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials 195, 75–85 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.003
- W.P. Fan, N. Lu, P. Huang, Y. Liu, Z. Yang et al., Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angew. Chem. Int. Ed. 56, 1229–1233 (2017). https://doi.org/10.1002/anie.201610682
- C. Zhang, D.L. Ni, Y.Y. Liu, H.L. Yao, W.B. Bu et al., Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 12, 378–386 (2017). https://doi.org/10.1038/Nnano.2016.280
- J.J. Liu, Q. Chen, L.Z. Feng, Z. Liu, Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 21, 55–73 (2018). https://doi.org/10.1016/j.nantod.2018.06.008
- Y.C. Ma, Y.Y. Zhao, N.K. Bejjanki, X.F. Tang, W. Jiang et al., Nanoclustered cascaded enzymes for targeted tumor starvation and deoxygenation-activated chemotherapy without systemic toxicity. ACS Nano 13, 8890–8902 (2019). https://doi.org/10.1021/acsnano.9b02466
- J. Chen, L. Liu, S.M. Motevalli, X.L. Wu, X.H. Yang et al., Light-triggered retention and cascaded therapy of albumin-based theranostic nanomedicines to alleviate tumor adaptive treatment tolerance. Adv. Funct. Mater. 28, 1707291 (2018). https://doi.org/10.1002/Adfm.201707291
- T.C. Qin, Z.G. Wang, Y.Q. Wang, F. Besenbacher, M. Otyepka et al., Recent progress in emerging two-dimensional transition metal carbides. Nano-Micro Lett. 13, 183 (2021). https://doi.org/10.1007/s40820-021-00710-7
- W.Q. Qian, S.W. Xu, X.M. Zhang, C.B. Li, W.Y. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00681-9
- D. Wang, B. Xue, T.Y. Ohulchanskyy, Y.B. Liu, A. Yakovliev et al., Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy. Biomaterials 251, 120088 (2020). https://doi.org/10.1016/j.biomaterials.2020.120088
- X. Zhou, H.D. Li, C. Shi, F. Xu, Z. Zhang et al., An apn-activated nir photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 253, 120089 (2020). https://doi.org/10.1016/j.biomaterials.2020.120089
- M. Wang, M.Y. Chang, Q. Chen, D.M. Wang, C.X. Li et al., Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials 252, 120093 (2020). https://doi.org/10.1016/j.biomaterials.2020.120093
- C.H. Takimoto, M.P. Chao, C. Gibbs, M.A. McCamish, J. Liu et al., The macrophage "do not eat me’ signal, cd47, is a clinically validated cancer immunotherapy target. Ann. Oncol. 30, 486–489 (2019). https://doi.org/10.1093/annonc/mdz006
- X.J. Liu, Y. Pu, K. Cron, L.F. Deng, J. Kline et al., Cd47 blockade triggers t cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209 (2015). https://doi.org/10.1038/nm.3931
- Q.J. Lv, L.L. Cheng, Y. Lu, X.G. Zhang, Y.Z. Wang et al., Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv. Sci. 7, 2000515 (2020). https://doi.org/10.1002/Advs.202000515
- J.W. Tian, L. Ding, H.J. Xu, Z. Shen, H.X. Ju et al., Cell-specific and ph-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 135, 18850–18858 (2013). https://doi.org/10.1021/ja408286k
- J.J. Li, A. Dirisala, Z.S. Ge, Y.H. Wang, W. Yin et al., Therapeutic vesicular nanoreactors with tumor-specific activation and self-destruction for synergistic tumor ablation. Angew. Chem. Int. Ed. 56, 14025–14030 (2017). https://doi.org/10.1002/anie.201706964
- L.H. Fu, C. Qi, Y.R. Hu, J. Lin, P. Huang, Glucose oxidase-instructed multimodal synergistic cancer therapy. Adv. Mater. 31, e1808325 (2019). https://doi.org/10.1002/adma.201808325
- L.H. Fu, Y. Wan, C. Qi, J. He, C. Li et al., Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 33, e2006892 (2021). https://doi.org/10.1002/adma.202006892
- L.H. Fu, Y. Wan, C. Li, C. Qi, T. He et al., Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Adv. Funct. Mater. 31, e2009848 (2021). https://doi.org/10.1002/adfm.202009848
- X.G. Zhang, J.J. Tang, C. Li, Y. Lu, L.L. Cheng et al., A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy. Bioact. Mater. 6, 472–489 (2021). https://doi.org/10.1016/j.bioactmat.2020.08.024
- W. Tao, X.Y. Ji, X.D. Xu, M.A. Islam, Z.J. Li et al., Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. 56, 11896–11900 (2017). https://doi.org/10.1002/anie.201703657
- Z. Li, H. Zhang, J. Han, Y. Chen, H. Lin et al., Surface nanopore engineering of 2d mxenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv. Mater. 30, e1706981 (2018). https://doi.org/10.1002/adma.201706981
- X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2d ultrathin mxene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthcare Mater. 7, e1701394 (2018). https://doi.org/10.1002/adhm.201701394
- L. Rao, B. Cai, L.L. Bu, Q.Q. Liao, S.S. Guo et al., Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11, 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
- H. Cheng, J.Y. Zhu, S.Y. Li, J.Y. Zeng, Q. Lei et al., An O-2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv. Funct. Mater. 26, 7847–7860 (2016). https://doi.org/10.1002/adfm.201603212
- J.Y. Zhu, D.W. Zheng, M.K. Zhang, W.Y. Yu, W.X. Qiu et al., Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 16, 5895–5901 (2016). https://doi.org/10.1021/acs.nanolett.6b02786
- W.S. Chen, K. Zeng, H. Liu, J. Ouyang, L.Q. Wang et al., Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer. Adv. Funct. Mater. 27, 1605795 (2017). https://doi.org/10.1002/Adfm.201605795
- J.A. Tang, D.L. Shen, T.G. Caranasos, Z.G. Wang, A.C. Vandergriff et al., Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun (2017). https://doi.org/10.1038/Ncomms13724
- Y.R. Zhang, J.Q. Luo, J.Y. Zhang, W.M. Miao, J.S. Wu et al., Nanoparticle-enabled dual modulation of phagocytic signals to improve macrophage-mediated cancer immunotherapy. Small 16, e2004240 (2020). https://doi.org/10.1002/smll.202004240
- X. Zhou, X. Liu, L. Huang, Macrophage-mediated tumor cell phagocytosis: Opportunity for nanomedicine intervention. Adv. Funct. Mater. 31, 2006220 (2021). https://doi.org/10.1002/adfm.202006220
- A. Ramesh, S. Kumar, A. Nguyen, A. Brouillard, A. Kulkarni, Lipid-based phagocytosis nanoenhancer for macrophage immunotherapy. Nanoscale 12, 1875–1885 (2020). https://doi.org/10.1039/c9nr08670f
- L. Cheng, X. Zhang, J. Tang, Q. Lv, J. Liu, Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of cd47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials 275, 120964 (2021). https://doi.org/10.1016/j.biomaterials.2021.120964
- X. Liu, Y. Liu, P.C. Zhang, X.D. Jin, X.G. Zheng et al., The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under x-ray irradiation. Int. J. Nanomed. 11, 3517–3530 (2016). https://doi.org/10.2147/Ijn.S105348
- Z. Zhang, P. Oliver, J.R. Lancaster Jr., P.O. Schwarzenberger et al., Reactive oxygen species mediate tumor necrosis factor alpha-converting, enzyme-dependent ectodomain shedding induced by phorbol myristate acetate. FASEB J. 15, 303–305 (2001). https://doi.org/10.1096/fj.00-0371fje
References
R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2021. Ca-Cancer J. Clin. 71, 7–33 (2021). https://doi.org/10.3322/caac.21654
A. Bergamo, G. Sava, Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem. Soc. Rev. 44, 8818–8835 (2015). https://doi.org/10.1039/c5cs00134j
Y.P. Wang, W.Q. Gao, X.Y. Shi, J.J. Ding, W. Liu et al., Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature (2017). https://doi.org/10.1038/nature22393
Y. Shamay, J. Shah, M. Isik, A. Mizrachi, J. Leibold et al., Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361 (2018). https://doi.org/10.1038/s41563-017-0007-z
Q. Wu, Z.G. He, X. Wang, Q. Zhang, Q.C. Wei et al., Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat. Commun. 10, 240 (2019). https://doi.org/10.1038/s41467-018-08234-2
Q. Zhang, J.J. Wu, J.J. Wang, X. Wang, C. Wu et al., A neutrophil-inspired supramolecular nanogel for magnetocaloric-enzymatic tandem therapy. Angew Chem. Int. Ed. 59, 3732–3738 (2020). https://doi.org/10.1002/anie.201915118
C. Gorrini, I.S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013). https://doi.org/10.1038/nrd4002
C. Wang, J.Q. Wang, X.D. Zhang, S.J. Yu, D. Wen et al., In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. (2018). https://doi.org/10.1126/scitranslmed.aan3682
Z.J. Zhou, J.B. Song, R. Tian, Z. Yang, G.C. Yu et al., Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angew. Chem. Int. Ed. 56, 6492–6496 (2017). https://doi.org/10.1002/anie.201701181
D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ros-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009). https://doi.org/10.1038/nrd2803
G. Chen, Y.Y. Yang, Q. Xu, M.J. Ling, H.M. Lin et al., Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy. Nano Lett. 20, 8141–8150 (2020). https://doi.org/10.1021/acs.nanolett.0c03127
B.M. Babior, C. Takeuchi, J. Ruedi, A. Gutierrez, P. Wentworth, Investigating antibody-catalyzed ozone generation by human neutrophils. Proc. Natl. Acad. Sci. USA 100, 3031–3034 (2003). https://doi.org/10.1073/pnas.0530251100
R.J. Reiter, Oxidative processes and antioxidative defense-mechanisms in the aging brain. Faseb J. 9, 526–533 (1995)
S. Colonna, N. Gaggero, C. Richelmi, P. Pasta, Recent biotechnological developments in the use of peroxidases. Trends Biotechnol. 17, 163–168 (1999). https://doi.org/10.1016/S0167-7799(98)01288-8
E.J. Allain, L.P. Hager, L. Deng, E.N. Jacobsen, Highly enantioselective epoxidation of disubstituted alkenes with hydrogen-peroxide catalyzed by chloroperoxidase. J. Am. Chem. Soc. 115, 4415–4416 (1993). https://doi.org/10.1021/Ja00063a091
R. Renirie, C. Pierlot, J.M. Aubry, A.F. Hartog, H.E. Schoemaker et al., Vanadium chloroperoxidase as a catalyst for hydrogen peroxide disproportionation to singlet oxygen in mildly acidic aqueous environment. Adv. Synth. Catal (2003). https://doi.org/10.1002/adsc.200303008
C. Zhang, L. Zhang, W. Wu, F. Gao, R.Q. Li et al., Artificial super neutrophils for inflammation targeting and hclo generation against tumors and infections. Adv. Mater. 31, 1901179 (2019). https://doi.org/10.1002/Adma.201901179
O. Soehnlein, S. Steffens, A. Hidalgo, C. Weber, Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 17, 248–261 (2017). https://doi.org/10.1038/nri.2017.10
D. Roos, C.C. Winterbourn, Immunology - lethal weapons. Science 296, 669–671 (2002). https://doi.org/10.1126/science.1071271
Y. Liu, W.H. Zhang, Y.Y. Cao, Y. Liu, S. Bergmeier et al., Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms. Cancer Lett. 298, 176–185 (2010). https://doi.org/10.1016/j.canlet.2010.07.002
S.M. Kim, S.G. Roy, B. Chen, T.M. Nguyen, R.J. McMonigle et al., Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J. Clin. Invest. 126, 4088–4102 (2016). https://doi.org/10.1172/JCI87148
H. Cheng, X.Y. Jiang, R.R. Zheng, S.J. Zuo, L.P. Zhao et al., A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials 195, 75–85 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.003
W.P. Fan, N. Lu, P. Huang, Y. Liu, Z. Yang et al., Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angew. Chem. Int. Ed. 56, 1229–1233 (2017). https://doi.org/10.1002/anie.201610682
C. Zhang, D.L. Ni, Y.Y. Liu, H.L. Yao, W.B. Bu et al., Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 12, 378–386 (2017). https://doi.org/10.1038/Nnano.2016.280
J.J. Liu, Q. Chen, L.Z. Feng, Z. Liu, Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 21, 55–73 (2018). https://doi.org/10.1016/j.nantod.2018.06.008
Y.C. Ma, Y.Y. Zhao, N.K. Bejjanki, X.F. Tang, W. Jiang et al., Nanoclustered cascaded enzymes for targeted tumor starvation and deoxygenation-activated chemotherapy without systemic toxicity. ACS Nano 13, 8890–8902 (2019). https://doi.org/10.1021/acsnano.9b02466
J. Chen, L. Liu, S.M. Motevalli, X.L. Wu, X.H. Yang et al., Light-triggered retention and cascaded therapy of albumin-based theranostic nanomedicines to alleviate tumor adaptive treatment tolerance. Adv. Funct. Mater. 28, 1707291 (2018). https://doi.org/10.1002/Adfm.201707291
T.C. Qin, Z.G. Wang, Y.Q. Wang, F. Besenbacher, M. Otyepka et al., Recent progress in emerging two-dimensional transition metal carbides. Nano-Micro Lett. 13, 183 (2021). https://doi.org/10.1007/s40820-021-00710-7
W.Q. Qian, S.W. Xu, X.M. Zhang, C.B. Li, W.Y. Yang et al., Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00681-9
D. Wang, B. Xue, T.Y. Ohulchanskyy, Y.B. Liu, A. Yakovliev et al., Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy. Biomaterials 251, 120088 (2020). https://doi.org/10.1016/j.biomaterials.2020.120088
X. Zhou, H.D. Li, C. Shi, F. Xu, Z. Zhang et al., An apn-activated nir photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 253, 120089 (2020). https://doi.org/10.1016/j.biomaterials.2020.120089
M. Wang, M.Y. Chang, Q. Chen, D.M. Wang, C.X. Li et al., Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials 252, 120093 (2020). https://doi.org/10.1016/j.biomaterials.2020.120093
C.H. Takimoto, M.P. Chao, C. Gibbs, M.A. McCamish, J. Liu et al., The macrophage "do not eat me’ signal, cd47, is a clinically validated cancer immunotherapy target. Ann. Oncol. 30, 486–489 (2019). https://doi.org/10.1093/annonc/mdz006
X.J. Liu, Y. Pu, K. Cron, L.F. Deng, J. Kline et al., Cd47 blockade triggers t cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209 (2015). https://doi.org/10.1038/nm.3931
Q.J. Lv, L.L. Cheng, Y. Lu, X.G. Zhang, Y.Z. Wang et al., Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv. Sci. 7, 2000515 (2020). https://doi.org/10.1002/Advs.202000515
J.W. Tian, L. Ding, H.J. Xu, Z. Shen, H.X. Ju et al., Cell-specific and ph-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 135, 18850–18858 (2013). https://doi.org/10.1021/ja408286k
J.J. Li, A. Dirisala, Z.S. Ge, Y.H. Wang, W. Yin et al., Therapeutic vesicular nanoreactors with tumor-specific activation and self-destruction for synergistic tumor ablation. Angew. Chem. Int. Ed. 56, 14025–14030 (2017). https://doi.org/10.1002/anie.201706964
L.H. Fu, C. Qi, Y.R. Hu, J. Lin, P. Huang, Glucose oxidase-instructed multimodal synergistic cancer therapy. Adv. Mater. 31, e1808325 (2019). https://doi.org/10.1002/adma.201808325
L.H. Fu, Y. Wan, C. Qi, J. He, C. Li et al., Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 33, e2006892 (2021). https://doi.org/10.1002/adma.202006892
L.H. Fu, Y. Wan, C. Li, C. Qi, T. He et al., Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Adv. Funct. Mater. 31, e2009848 (2021). https://doi.org/10.1002/adfm.202009848
X.G. Zhang, J.J. Tang, C. Li, Y. Lu, L.L. Cheng et al., A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy. Bioact. Mater. 6, 472–489 (2021). https://doi.org/10.1016/j.bioactmat.2020.08.024
W. Tao, X.Y. Ji, X.D. Xu, M.A. Islam, Z.J. Li et al., Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. 56, 11896–11900 (2017). https://doi.org/10.1002/anie.201703657
Z. Li, H. Zhang, J. Han, Y. Chen, H. Lin et al., Surface nanopore engineering of 2d mxenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv. Mater. 30, e1706981 (2018). https://doi.org/10.1002/adma.201706981
X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2d ultrathin mxene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthcare Mater. 7, e1701394 (2018). https://doi.org/10.1002/adhm.201701394
L. Rao, B. Cai, L.L. Bu, Q.Q. Liao, S.S. Guo et al., Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11, 3496–3505 (2017). https://doi.org/10.1021/acsnano.7b00133
H. Cheng, J.Y. Zhu, S.Y. Li, J.Y. Zeng, Q. Lei et al., An O-2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv. Funct. Mater. 26, 7847–7860 (2016). https://doi.org/10.1002/adfm.201603212
J.Y. Zhu, D.W. Zheng, M.K. Zhang, W.Y. Yu, W.X. Qiu et al., Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 16, 5895–5901 (2016). https://doi.org/10.1021/acs.nanolett.6b02786
W.S. Chen, K. Zeng, H. Liu, J. Ouyang, L.Q. Wang et al., Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer. Adv. Funct. Mater. 27, 1605795 (2017). https://doi.org/10.1002/Adfm.201605795
J.A. Tang, D.L. Shen, T.G. Caranasos, Z.G. Wang, A.C. Vandergriff et al., Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun (2017). https://doi.org/10.1038/Ncomms13724
Y.R. Zhang, J.Q. Luo, J.Y. Zhang, W.M. Miao, J.S. Wu et al., Nanoparticle-enabled dual modulation of phagocytic signals to improve macrophage-mediated cancer immunotherapy. Small 16, e2004240 (2020). https://doi.org/10.1002/smll.202004240
X. Zhou, X. Liu, L. Huang, Macrophage-mediated tumor cell phagocytosis: Opportunity for nanomedicine intervention. Adv. Funct. Mater. 31, 2006220 (2021). https://doi.org/10.1002/adfm.202006220
A. Ramesh, S. Kumar, A. Nguyen, A. Brouillard, A. Kulkarni, Lipid-based phagocytosis nanoenhancer for macrophage immunotherapy. Nanoscale 12, 1875–1885 (2020). https://doi.org/10.1039/c9nr08670f
L. Cheng, X. Zhang, J. Tang, Q. Lv, J. Liu, Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of cd47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials 275, 120964 (2021). https://doi.org/10.1016/j.biomaterials.2021.120964
X. Liu, Y. Liu, P.C. Zhang, X.D. Jin, X.G. Zheng et al., The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under x-ray irradiation. Int. J. Nanomed. 11, 3517–3530 (2016). https://doi.org/10.2147/Ijn.S105348
Z. Zhang, P. Oliver, J.R. Lancaster Jr., P.O. Schwarzenberger et al., Reactive oxygen species mediate tumor necrosis factor alpha-converting, enzyme-dependent ectodomain shedding induced by phorbol myristate acetate. FASEB J. 15, 303–305 (2001). https://doi.org/10.1096/fj.00-0371fje