Superelastic Radiative Cooling Metafabric for Comfortable Epidermal Electrophysiological Monitoring
Corresponding Author: Tianxi Liu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 181
Abstract
Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skin-attachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling (PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene–ethylene–butylene–styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet–visible–near-infrared light (maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17 °C cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.
Highlights:
1 Efficient sunlight reflectivity and high mid-infrared radiation emissivity are simultaneously realized in a nonwoven metafabric via PTFE microparticle impregnation and thermal-fusion.
2 The metafabric achieves a maximum cooling effect of 17 °C and fully retains its passive cooling performance even under 50% stretching.
3 High-quality electrophysiological monitoring of ECG, sEMG and EEG is realized through compact and homogeneous encapsulation of liquid metal on the elastomeric fibers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Libanori, X. Chen, Y. Zhao, J. Zhou, Chen, Smart textiles for personalized healthcare. Nat. Electron. 5(3), 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z
- Y. Yu, J. Li, S.A. Solomon, J. Min, J. Tu et al., All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 7(67), eabn0495 (2022). https://doi.org/10.1126/scirobotics.abn0495
- K. Zheng, F. Gu, H. Wei, L. Zhang, X.A. Chen et al., Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human–machine interaction. Small Methods 7(4), 2201534 (2023). https://doi.org/10.1002/smtd.202201534
- X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575(7783), 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
- C. Zhang, H. Zheng, J. Sun, Y. Zhou, W. Xu et al., 3d printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv. Mater. 34(2), 2105996 (2021). https://doi.org/10.1002/adma.202105996
- B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11(1), 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
- N. Matsuhisa, S. Niu, S.J.K. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
- Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
- M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. 117(13), 7063–7070 (2020). https://doi.org/10.1073/pnas.1920911117
- X. Ma, M. Zhang, J. Zhang, S. Wang, S. Cao et al., Highly permeable and ultrastretchable liquid metal micromesh for skin-attachable electronics. ACS Mater. Lett. 4(4), 634–641 (2022). https://doi.org/10.1021/acsmaterialslett.1c00763
- M.H. Kang, G.J. Lee, J.H. Lee, M.S. Kim, Z. Yan et al., Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv. Sci. 8(10), 2004885 (2021). https://doi.org/10.1002/advs.202004885
- J. Li, Y. Fu, J. Zhou, K. Yao, X. Ma et al., Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9(14), eadg1837 (2023). https://doi.org/10.1126/sciadv.adg1837
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che et al., Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3(12), 3088–3099 (2019). https://doi.org/10.1016/j.joule.2019.09.016
- J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10(1), nwac208 (2022). https://doi.org/10.1093/nsr/nwac208
- M. Maqbool, W. Aftab, A. Bashir, A. Usman, H. Guo et al., Engineering of polymer-based materials for thermal management solutions. Compos. Commun. 29, 101048 (2022). https://doi.org/10.1016/j.coco.2021.101048
- G. Kim, K. Park, K.-J. Hwang, S. Jin, Highly sunlight reflective and infrared semi-transparent nanomesh textiles. ACS Nano 15(10), 15962–15971 (2021). https://doi.org/10.1021/acsnano.1c04104
- L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), 1802152 (2018). https://doi.org/10.1002/adma.201802152
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692 (2021). https://doi.org/10.1126/science.abi5484
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- Y. Yamamoto, N. Imai, R. Mashima, R. Konaka, M. Inoue et al., Singlet oxygen from irradiated titanium dioxide and zinc oxide (Academic Press, Boston, 2000), pp.29–37
- M.D. Newman, M. Stotland, J.I. Ellis, The safety of nanosized ps in titanium dioxide– and zinc oxide–based sunscreens. J. Am. Acad. Dermatol. 61(4), 685–692 (2009). https://doi.org/10.1016/j.jaad.2009.02.051
- J. Mandal, Y. Yang, N. Yu, A.P. Raman, Paints as a scalable and effective radiative cooling technology for buildings. Joule 4(7), 1350–1356 (2020). https://doi.org/10.1016/j.joule.2020.04.010
- J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32(48), 2209762 (2022). https://doi.org/10.1002/adfm.202209762
- Z. Zhang, W. Tu, T. Peijs, C.W.M. Bastiaansen, Fabrication and properties of poly(tetrafluoroethylene) nanofibres via sea-island spinning. Polymer 109, 321–331 (2017). https://doi.org/10.1016/j.polymer.2016.12.060
- K. Sato, Y. Tominaga, Y. Imai, T. Yoshiyama, Y. Aburatani, Deformation capability of poly(tetrafluoroethylene) materials: estimation with x-ray diffraction measurements. Polym. Test. 113, 107690 (2022). https://doi.org/10.1016/j.polymertesting.2022.107690
- M. Steube, T. Johann, R.D. Barent, A.H.E. Müller, H. Frey, Rational design of tapered multiblock copolymers for thermoplastic elastomers. Prog. Polym. Sci. 124, 101488 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101488
- I. You, M. Kong, U. Jeong, Block copolymer elastomers for stretchable electronics. Acc. Chem. Res. 52(1), 63–72 (2019). https://doi.org/10.1021/acs.accounts.8b00488
- C. Gu, W. Qin, Y. Wang, X. Li, J. Wang et al., Highly stretchable, durable, and superfine fiber-shaped strain sensor with a porous core-sheath microstructure. Compos. Commun. 36, 101381 (2022). https://doi.org/10.1016/j.coco.2022.101381
- S. Kuester, C. Merlini, G.M.O. Barra, J.C. Ferreira, A. Lucas et al., Processing and characterization of conductive composites based on poly(styrene-b-ethylene-ran-butylene-b-styrene) (sebs) and carbon additives: a comparative study of expanded graphite and carbon black. Compos. B 84, 236–247 (2016). https://doi.org/10.1016/j.compositesb.2015.09.001
- N. Tripathy, E. Perumal, R. Ahmad, J.E. Song, G. Khang, Chapter 40—hybrid composite biomaterials, in Principles of regenerative medicine. ed. by A. Atala, R. Lanza, A.G. Mikos et al. (Academic Press, Boston, 2019), pp.695–714
- V.R. Sastri, Chapter 9—other polymers: styrenics, silicones, thermoplastic, elastomers biopolymers and thermosets, in Plastics in medical devices-properties, requirements, and applications. ed. by V.R. Sastri (William Andrew Publishing, Boston, 2010), pp.217–262
- P. Hu, J. Madsen, A.L. Skov, One reaction to make highly stretchable or extremely soft silicone elastomers from easily available materials. Nat. Commun. 13(1), 370 (2022). https://doi.org/10.1038/s41467-022-28015-2
- H. Ding, W. Zang, J. Li, Y. Jiang, H. Zou et al., Cb/pdms electrodes for dielectric elastomer generator with low energy loss, high energy density and long life. Compos. Commun. 31, 101132 (2022). https://doi.org/10.1016/j.coco.2022.101132
- J. Zhang, Q. Lu, Y. Li, T. Li, M.-H. Lu et al., An ultrastretchable reflective electrode based on a liquid metal film for deformable optoelectronics. ACS Mater. Lett. 3(8), 1104–1111 (2021). https://doi.org/10.1021/acsmaterialslett.1c00216
- F. Chen, Q. Huang, Z. Zheng, Permeable conductors for wearable and on-skin electronics. Small Struct. 3(1), 2100135 (2021). https://doi.org/10.1002/sstr.202100135
- J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable janus e-textiles. Nano Lett. 22(18), 7597–7605 (2022). https://doi.org/10.1021/acs.nanolett.2c02647
- O. Jay, A. Capon, P. Berry, C. Broderick, R. de Dear et al., Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398(10301), 709–724 (2021). https://doi.org/10.1016/S0140-6736(21)01209-5
- J. Piwowarczyk, R. Jędrzejewski, D. Moszyński, K. Kwiatkowski, A. Niemczyk et al., XPS and FTIR studies of polytetrafluoroethylene thin films obtained by physical methods. Polymers 11(10), 1629 (2019). https://doi.org/10.3390/polym11101629
- C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22(10), 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
- Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
- H. Hu, Y. Ma, J. Yue, F. Zhang, Porous gnp/pdms composites with significantly reduced percolation threshold of conductive filler for stretchable strain sensors. Compos. Commun. 29, 101033 (2022). https://doi.org/10.1016/j.coco.2021.101033
- X. Xia, Q. Liang, X. Sun, D. Yu, X. Huang et al., Intrinsically electron conductive, antibacterial, and anti-swelling hydrogels as implantable sensors for bioelectronics. Adv. Funct. Mater. 32(48), 2208024 (2022). https://doi.org/10.1002/adfm.202208024
- F. Politti, C. Casellato, M.M. Kalytczak, M.B.S. Garcia, D.A. Biasotto-Gonzalez, Characteristics of emg frequency bands in temporomandibullar disorders patients. J. Electromyogr. Kinesiol. 31, 119–125 (2016). https://doi.org/10.1016/j.jelekin.2016.10.006
- Y. Xu, G. Zhao, L. Zhu, Q. Fei, Z. Zhang et al., Pencil–paper on-skin electronics. Proc. Natl. Acad. Sci. 117(31), 18292–18301 (2020). https://doi.org/10.1073/pnas.2008422117
- Z. Yan, D. Xu, Z. Lin, P. Wang, B. Cao et al., Highly stretchable van der waals thin films for adaptable and breathable electronic membranes. Science 375(6583), 852–859 (2022). https://doi.org/10.1126/science.abl8941
- B. Park, H.S. Joo, J. Ok, S. Park, W. Jung et al., Cuticular pad–inspired selective frequency damper for nearly dynamic noise–free bioelectronics. Science 376(6593), 624–629 (2022). https://doi.org/10.1126/science.abj9912
References
G. Libanori, X. Chen, Y. Zhao, J. Zhou, Chen, Smart textiles for personalized healthcare. Nat. Electron. 5(3), 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z
Y. Yu, J. Li, S.A. Solomon, J. Min, J. Tu et al., All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 7(67), eabn0495 (2022). https://doi.org/10.1126/scirobotics.abn0495
K. Zheng, F. Gu, H. Wei, L. Zhang, X.A. Chen et al., Flexible, permeable, and recyclable liquid-metal-based transient circuit enables contact/noncontact sensing for wearable human–machine interaction. Small Methods 7(4), 2201534 (2023). https://doi.org/10.1002/smtd.202201534
X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575(7783), 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
C. Zhang, H. Zheng, J. Sun, Y. Zhou, W. Xu et al., 3d printed, solid-state conductive ionoelastomer as a generic building block for tactile applications. Adv. Mater. 34(2), 2105996 (2021). https://doi.org/10.1002/adma.202105996
B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11(1), 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
N. Matsuhisa, S. Niu, S.J.K. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. 117(13), 7063–7070 (2020). https://doi.org/10.1073/pnas.1920911117
X. Ma, M. Zhang, J. Zhang, S. Wang, S. Cao et al., Highly permeable and ultrastretchable liquid metal micromesh for skin-attachable electronics. ACS Mater. Lett. 4(4), 634–641 (2022). https://doi.org/10.1021/acsmaterialslett.1c00763
M.H. Kang, G.J. Lee, J.H. Lee, M.S. Kim, Z. Yan et al., Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv. Sci. 8(10), 2004885 (2021). https://doi.org/10.1002/advs.202004885
J. Li, Y. Fu, J. Zhou, K. Yao, X. Ma et al., Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9(14), eadg1837 (2023). https://doi.org/10.1126/sciadv.adg1837
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che et al., Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3(12), 3088–3099 (2019). https://doi.org/10.1016/j.joule.2019.09.016
J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10(1), nwac208 (2022). https://doi.org/10.1093/nsr/nwac208
M. Maqbool, W. Aftab, A. Bashir, A. Usman, H. Guo et al., Engineering of polymer-based materials for thermal management solutions. Compos. Commun. 29, 101048 (2022). https://doi.org/10.1016/j.coco.2021.101048
G. Kim, K. Park, K.-J. Hwang, S. Jin, Highly sunlight reflective and infrared semi-transparent nanomesh textiles. ACS Nano 15(10), 15962–15971 (2021). https://doi.org/10.1021/acsnano.1c04104
L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), 1802152 (2018). https://doi.org/10.1002/adma.201802152
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692 (2021). https://doi.org/10.1126/science.abi5484
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
Y. Yamamoto, N. Imai, R. Mashima, R. Konaka, M. Inoue et al., Singlet oxygen from irradiated titanium dioxide and zinc oxide (Academic Press, Boston, 2000), pp.29–37
M.D. Newman, M. Stotland, J.I. Ellis, The safety of nanosized ps in titanium dioxide– and zinc oxide–based sunscreens. J. Am. Acad. Dermatol. 61(4), 685–692 (2009). https://doi.org/10.1016/j.jaad.2009.02.051
J. Mandal, Y. Yang, N. Yu, A.P. Raman, Paints as a scalable and effective radiative cooling technology for buildings. Joule 4(7), 1350–1356 (2020). https://doi.org/10.1016/j.joule.2020.04.010
J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32(48), 2209762 (2022). https://doi.org/10.1002/adfm.202209762
Z. Zhang, W. Tu, T. Peijs, C.W.M. Bastiaansen, Fabrication and properties of poly(tetrafluoroethylene) nanofibres via sea-island spinning. Polymer 109, 321–331 (2017). https://doi.org/10.1016/j.polymer.2016.12.060
K. Sato, Y. Tominaga, Y. Imai, T. Yoshiyama, Y. Aburatani, Deformation capability of poly(tetrafluoroethylene) materials: estimation with x-ray diffraction measurements. Polym. Test. 113, 107690 (2022). https://doi.org/10.1016/j.polymertesting.2022.107690
M. Steube, T. Johann, R.D. Barent, A.H.E. Müller, H. Frey, Rational design of tapered multiblock copolymers for thermoplastic elastomers. Prog. Polym. Sci. 124, 101488 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101488
I. You, M. Kong, U. Jeong, Block copolymer elastomers for stretchable electronics. Acc. Chem. Res. 52(1), 63–72 (2019). https://doi.org/10.1021/acs.accounts.8b00488
C. Gu, W. Qin, Y. Wang, X. Li, J. Wang et al., Highly stretchable, durable, and superfine fiber-shaped strain sensor with a porous core-sheath microstructure. Compos. Commun. 36, 101381 (2022). https://doi.org/10.1016/j.coco.2022.101381
S. Kuester, C. Merlini, G.M.O. Barra, J.C. Ferreira, A. Lucas et al., Processing and characterization of conductive composites based on poly(styrene-b-ethylene-ran-butylene-b-styrene) (sebs) and carbon additives: a comparative study of expanded graphite and carbon black. Compos. B 84, 236–247 (2016). https://doi.org/10.1016/j.compositesb.2015.09.001
N. Tripathy, E. Perumal, R. Ahmad, J.E. Song, G. Khang, Chapter 40—hybrid composite biomaterials, in Principles of regenerative medicine. ed. by A. Atala, R. Lanza, A.G. Mikos et al. (Academic Press, Boston, 2019), pp.695–714
V.R. Sastri, Chapter 9—other polymers: styrenics, silicones, thermoplastic, elastomers biopolymers and thermosets, in Plastics in medical devices-properties, requirements, and applications. ed. by V.R. Sastri (William Andrew Publishing, Boston, 2010), pp.217–262
P. Hu, J. Madsen, A.L. Skov, One reaction to make highly stretchable or extremely soft silicone elastomers from easily available materials. Nat. Commun. 13(1), 370 (2022). https://doi.org/10.1038/s41467-022-28015-2
H. Ding, W. Zang, J. Li, Y. Jiang, H. Zou et al., Cb/pdms electrodes for dielectric elastomer generator with low energy loss, high energy density and long life. Compos. Commun. 31, 101132 (2022). https://doi.org/10.1016/j.coco.2022.101132
J. Zhang, Q. Lu, Y. Li, T. Li, M.-H. Lu et al., An ultrastretchable reflective electrode based on a liquid metal film for deformable optoelectronics. ACS Mater. Lett. 3(8), 1104–1111 (2021). https://doi.org/10.1021/acsmaterialslett.1c00216
F. Chen, Q. Huang, Z. Zheng, Permeable conductors for wearable and on-skin electronics. Small Struct. 3(1), 2100135 (2021). https://doi.org/10.1002/sstr.202100135
J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable janus e-textiles. Nano Lett. 22(18), 7597–7605 (2022). https://doi.org/10.1021/acs.nanolett.2c02647
O. Jay, A. Capon, P. Berry, C. Broderick, R. de Dear et al., Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398(10301), 709–724 (2021). https://doi.org/10.1016/S0140-6736(21)01209-5
J. Piwowarczyk, R. Jędrzejewski, D. Moszyński, K. Kwiatkowski, A. Niemczyk et al., XPS and FTIR studies of polytetrafluoroethylene thin films obtained by physical methods. Polymers 11(10), 1629 (2019). https://doi.org/10.3390/polym11101629
C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22(10), 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
H. Hu, Y. Ma, J. Yue, F. Zhang, Porous gnp/pdms composites with significantly reduced percolation threshold of conductive filler for stretchable strain sensors. Compos. Commun. 29, 101033 (2022). https://doi.org/10.1016/j.coco.2021.101033
X. Xia, Q. Liang, X. Sun, D. Yu, X. Huang et al., Intrinsically electron conductive, antibacterial, and anti-swelling hydrogels as implantable sensors for bioelectronics. Adv. Funct. Mater. 32(48), 2208024 (2022). https://doi.org/10.1002/adfm.202208024
F. Politti, C. Casellato, M.M. Kalytczak, M.B.S. Garcia, D.A. Biasotto-Gonzalez, Characteristics of emg frequency bands in temporomandibullar disorders patients. J. Electromyogr. Kinesiol. 31, 119–125 (2016). https://doi.org/10.1016/j.jelekin.2016.10.006
Y. Xu, G. Zhao, L. Zhu, Q. Fei, Z. Zhang et al., Pencil–paper on-skin electronics. Proc. Natl. Acad. Sci. 117(31), 18292–18301 (2020). https://doi.org/10.1073/pnas.2008422117
Z. Yan, D. Xu, Z. Lin, P. Wang, B. Cao et al., Highly stretchable van der waals thin films for adaptable and breathable electronic membranes. Science 375(6583), 852–859 (2022). https://doi.org/10.1126/science.abl8941
B. Park, H.S. Joo, J. Ok, S. Park, W. Jung et al., Cuticular pad–inspired selective frequency damper for nearly dynamic noise–free bioelectronics. Science 376(6593), 624–629 (2022). https://doi.org/10.1126/science.abj9912