Hierarchical Polyimide Nonwoven Fabric with Ultralow-Reflectivity Electromagnetic Interference Shielding and High-Temperature Resistant Infrared Stealth Performance
Corresponding Author: Tianxi Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 82
Abstract
Designing and fabricating a compatible low-reflectivity electromagnetic interference (EMI) shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military. Hence, a hierarchical polyimide (PI) nonwoven fabric is fabricated by alkali treatment, in-situ growth of magnetic particles and "self-activated" electroless Ag plating process. Especially, the hierarchical impedance matching can be constructed by systematically assembling Fe3O4/Ag-loaded PI nonwoven fabric (PFA) and pure Ag-coated PI nonwoven fabric (PA), endowing it with an ultralow-reflectivity EMI shielding performance. In addition, thermal insulation of fluffy three-dimensional (3D) space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance. More importantly, the strong bonding interaction between Fe3O4, Ag, and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance. Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy, and inhibit external infrared detection.
Highlights:
1 Hierarchical polyimide (PI) nonwoven fabric is fabricated by alkali treatment, in-situ growth of magnetic particles, and "self-activated" electroless Ag plating process.
2 Impedance matching structure by assembling Fe3O4/Ag-loaded PI nonwoven fabric (PFA) and pure Ag-coated PI nonwoven fabric (PA) induces more electromagnetic waves enter PFA/PA and be dissipated.
3 The fluffy 3D space structure of PFA with strong adhesion interaction and low infrared emissivity of PA endow PFA/PA with excellent thermal stability in electromagnetic interference shielding and high-temperature resistant infrared stealth performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wei, S. Yang, P. Feng, J. Xue, F. Zhao et al., Construction of Si3N4/SiO2/SiC–Y2Si2O7 composite ceramics with gradual impedance matching structure for high-temperature electromagnetic wave absorption. Ceram. Int. 48, 23172–23181 (2022). https://doi.org/10.1016/j.ceramint.2022.04.298
- Z. Ma, R. Jiang, J. Jing, S. Kang, L. Ma et al., Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding. Nano-Micro Lett. 16, 223 (2024). https://doi.org/10.1007/s40820-024-01450-0
- Y. Zhang, G. Shen, S.S. Lam, S. Ansar, S.-C. Jung et al., A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem. Eng. J. 471, 144679 (2023). https://doi.org/10.1016/j.cej.2023.144679
- B. Yan, X. Bao, Y. Gao, M. Zhou, Y. Yu et al., Antioxidative MXene@GA-decorated textile assisted by metal ion for efficient electromagnetic interference shielding, dual-driven heating, and infrared thermal camouflage. Adv. Fiber Mater. 5, 2080–2098 (2023). https://doi.org/10.1007/s42765-023-00330-3
- J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34, 2309269 (2024). https://doi.org/10.1002/adfm.202309269
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A Appl. Sci. Manuf. 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- C. Liu, J. Lyu, N. Shi, Q. Cheng, Z. Liu et al., Kevlar nanofibrous aerogel-based 3-layer tandem cloak enables highly efficient and long-lasting infrared stealth. Chem. Eng. J. 462, 142249 (2023). https://doi.org/10.1016/j.cej.2023.142249
- M. Chen, X. Jiang, J. Huang, J. Yang, J. Wu et al., Flexible wearable Ti3C2Tx composite carbon fabric textile with infrared stealth and electromagnetic interference shielding effect. Adv. Optical Mater. 12, 2301694 (2024). https://doi.org/10.1002/adom.202301694
- T. Xue, Z. Fu, D. Yu, Y. Yu, Z. Hu et al., Lightweight and flexible Ag-wrapped polyimide aerogel fabrics for electromagnetic interference shielding. Compos. Commun. 43, 101732 (2023). https://doi.org/10.1016/j.coco.2023.101732
- Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
- X. Tang, X. Zhao, Y. Lu, S. Li, Z. Zhang et al., Flexible metalized polyimide nonwoven fabrics for efficient electromagnetic interference shielding. Chem. Eng. J. 480, 148000 (2024). https://doi.org/10.1016/j.cej.2023.148000
- M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6, eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
- T. Shi, D. Liu, H. Cheng, X. Wang, J. Tao, A personal thermal camouflage material based on nanofibrous polyamide membrane. Chem. Eng. J. 483, 149342 (2024). https://doi.org/10.1016/j.cej.2024.149342
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
- F. Liu, Z. Wei, X. Hu, Y. Cai, Z. Chen et al., Asymmetric segregated network design of ultralight and thermal insulating polymer composite foams for green electromagnetic interference shielding. Compos. Commun. 38, 101492 (2023). https://doi.org/10.1016/j.coco.2022.101492
- M. Ma, W. Tao, X. Liao, S. Chen, Y. Shi et al., Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem. Eng. J. 452, 139471 (2023). https://doi.org/10.1016/j.cej.2022.139471
- C.J. Prabagar, S. Anand, M.C. Vu, M.-S. Tran, D. Mani et al., Thermally insulating carbon nanotubes and copper ferrite based porous polydimethylsiloxane foams for absorption-dominant electromagnetic interference shielding performance. Compos. Commun. 42, 101691 (2023). https://doi.org/10.1016/j.coco.2023.101691
- H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S.B. Lee et al., Absorption-dominant mmWave EMI shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nano-Micro Lett. 15, 76 (2023). https://doi.org/10.1007/s40820-023-01058-w
- C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15, 7 (2022). https://doi.org/10.1007/s40820-022-00963-w
- J. Hu, Y. Hu, Y. Ye, R. Shen, Unique applications of carbon materials in infrared stealth: a review. Chem. Eng. J. 452, 139147 (2023). https://doi.org/10.1016/j.cej.2022.139147
- R. Hu, W. Xi, Y. Liu, K. Tang, J. Song et al., Thermal camouflaging metamaterials. Mater. Today 45, 120–141 (2021). https://doi.org/10.1016/j.mattod.2020.11.013
- X. Fan, S. Li, W. Zhang, W. Xu, Recent progress in two-dimensional nanomaterials of graphene and MXenes for thermal camouflage. Ceram. Int. 49, 5559–5572 (2023). https://doi.org/10.1016/j.ceramint.2022.12.034
- Z. Deng, P. Jiang, Z. Wang, L. Xu, Z.-Z. Yu et al., Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 19, e2304278 (2023). https://doi.org/10.1002/smll.202304278
- S. Wang, R. Ding, G. Liang, W. Zhang, F. Yang et al., Direct synthesis of polyimide curly nanofibrous aerogels for high-performance thermal insulation under extreme temperature. Adv. Mater. 36, e2313444 (2024). https://doi.org/10.1002/adma.202313444
- W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, e2204165 (2022). https://doi.org/10.1002/advs.202204165
- Y. Li, Y. Li, L. Zhao, S. Chen, S. Guo et al., Recent progress in the antidegradation strategies of two-dimensional transition metal carbides (MXenes). J. Environ. Chem. Eng. 12, 112762 (2024). https://doi.org/10.1016/j.jece.2024.112762
- H. Zhao, Y. Huang, Y. Han, J. Yun, X. Wang et al., Flexible and lightweight porous polyether sulfone/Cu composite film with bidirectional differential structure for electromagnetic interference shielding and heat conduction. Chem. Eng. J. 440, 135919 (2022). https://doi.org/10.1016/j.cej.2022.135919
- X. Zhao, X. Tang, Y. Qiao, S. Li, Z. Zhang et al., Ultrathin polyimide-based composites with efficient low-reflectivity electromagnetic shielding and infrared stealth performance. Nano Res. 17, 6700–6712 (2024). https://doi.org/10.1007/s12274-024-6650-1
- S. Yang, L. Tang, H. Wei, J. Xue, Z. Wang et al., In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties. Carbon 215, 118445 (2023). https://doi.org/10.1016/j.carbon.2023.118445
- H. Wei, Y. Yu, F. Jiang, J. Xue, F. Zhao et al., Carbon@SiC(SiCnws)-Sc2Si2O7 ceramics with multiple loss mediums for improving electromagnetic shielding performance. J. Eur. Ceram. Soc. 42, 2274–2281 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.067
- Y. Li, K. Wu, Y. Li, S. Guo, L. Zhao et al., Recent progress in caron-based stimulus-responsive electromagnetic interference shielding materials. Nanocomposites 10, 41–58 (2024). https://doi.org/10.1080/20550324.2023.2292878
- M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S.A. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. 34, 2304473 (2024). https://doi.org/10.1002/adfm.202304473
- Z. Du, C. Zhou, H.-Y. Mi, H. Li, Z. Qin et al., Recorded low-reflection in gradient MXene-decorated melamine microwave shielding foam integrated with piezoresistive sensing and energy absorption properties. Compos. Part A Appl. Sci. Manuf. 173, 107694 (2023). https://doi.org/10.1016/j.compositesa.2023.107694
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- A. Schander, J.M. Gancz, M. Tintelott, W. Lang, Towards long-term stable polyimide-based flexible electrical insulation for chronically implanted neural electrodes. Micromachines 12, 1279 (2021). https://doi.org/10.3390/mi12111279
- K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62, e202309010 (2023). https://doi.org/10.1002/anie.202309010
- K. Ruan, J. Gu, Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 55, 4134–4145 (2022). https://doi.org/10.1021/acs.macromol.2c00491
- S. Zhou, J. Dong, X. Li, X. Zhao, Q. Zhang, Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications. Adv. Fiber Mater. 5, 1892–1904 (2023). https://doi.org/10.1007/s42765-023-00317-0
- S. Ikeda, H. Yanagimoto, K. Akamatsu, H. Nawafune, Copper/polyimide heterojunctions: controlling interfacial structures through an additive-based, all-wet chemical process using ion-doped precursors. Adv. Funct. Mater. 17, 889–897 (2007). https://doi.org/10.1002/adfm.200600527
- J. Huang, D. Sun, G. Yang, H. Ma, Z. Chen et al., Facile process for surface metalization: rational design of Ag nanop/polymer brush toward high-efficiency electroless plating. Compos. Sci. Technol. 231, 109819 (2023). https://doi.org/10.1016/j.compscitech.2022.109819
- C. Xu, P. Liu, Z. Wu, H. Zhang, R. Zhang et al., Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 9, e2200804 (2022). https://doi.org/10.1002/advs.202200804
- L. Jiao, J. Li, L.L. Richard, Q. Sun, T. Stracensky et al., Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 20, 1385–1391 (2021). https://doi.org/10.1038/s41563-021-01030-2
- Y. Cong, T. Xia, M. Zou, Z. Li, B. Peng et al., Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite ps with enhanced antibacterial activities. J. Mater. Chem. B 2, 3450–3461 (2014). https://doi.org/10.1039/C4TB00460D
- H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007). https://doi.org/10.1126/science.1147241
- S. Hong, J.S. Lee, J. Ryu, S.H. Lee, D.Y. Lee et al., Bio-inspired strategy for on-surface synthesis of silver nanops for metal/organic hybrid nanomaterials and LDI-MS substrates. Nanotechnology 22, 494020 (2011). https://doi.org/10.1088/0957-4484/22/49/494020
- C. Zhao, Z. Yu, J. Xing, Y. Zou, H. Liu et al., Effect of Ag2S nanocrystals/reduced graphene oxide interface on hydrogen evolution reaction. Catalysts 10, 948 (2020). https://doi.org/10.3390/catal10090948
- S.H. Ryu, Y.K. Han, S.J. Kwon, T. Kim, B.M. Jung et al., Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 428, 131167 (2022). https://doi.org/10.1016/j.cej.2021.131167
- Z. Xie, Y. Cai, Y. Zhan, Y. Meng, Y. Li et al., Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 435, 135118 (2022). https://doi.org/10.1016/j.cej.2022.135118
- B.-W. Liu, M. Cao, Y.-Y. Zhang, Y.-Z. Wang, H.-B. Zhao, Multifunctional protective aerogel with superelasticity over −196 to 500 °C. Nano Res. 15, 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2
- X. Li, M. Wu, J. Chen, X. Zhou, Q. Ren et al., A facile and large-scale approach to prepare macroscopic segregated polyether block amides/carbon nanostructures composites with a gradient structure for absorption-dominated electromagnetic shielding with ultra-low reflection. Compos. Commun. 40, 101628 (2023). https://doi.org/10.1016/j.coco.2023.101628
- Y. Chang, R. Hao, Y. Yang, G. Zhao, Y. Liu et al., Progressive conductivity modular assembled fiber reinforced polymer composites for absorption dominated ultraefficient electromagnetic interference shielding. Compos. Part B Eng. 260, 110766 (2023). https://doi.org/10.1016/j.compositesb.2023.110766
- C. Yuan, X. Li, M. Huang, F. Li, Z. Zhang et al., Multifunctional asymmetric foam with compression-enhanced EMI shielding effectiveness exhibits real-time tunability of reflection/absorption ratio and pressure sensing. Chem. Eng. J. 489, 151359 (2024). https://doi.org/10.1016/j.cej.2024.151359
- G.-Y. Yang, S.-Z. Wang, H.-T. Sun, X.-M. Yao, C.-B. Li et al., Ultralight, conductive Ti3C2Tx MXene/PEDOT:PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 13, 57521–57531 (2021). https://doi.org/10.1021/acsami.1c13303
- J. He, M. Han, K. Wen, C. Liu, W. Zhang et al., Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos. Sci. Technol. 231, 109799 (2023). https://doi.org/10.1016/j.compscitech.2022.109799
- Z. Guo, P. Ren, F. Yang, T. Wu, L. Zhang et al., Robust multifunctional composite films with alternating multilayered architecture for highly efficient electromagnetic interference shielding, Joule heating and infrared stealth. Compos. Part B Eng. 263, 110863 (2023). https://doi.org/10.1016/j.compositesb.2023.110863
References
H. Wei, S. Yang, P. Feng, J. Xue, F. Zhao et al., Construction of Si3N4/SiO2/SiC–Y2Si2O7 composite ceramics with gradual impedance matching structure for high-temperature electromagnetic wave absorption. Ceram. Int. 48, 23172–23181 (2022). https://doi.org/10.1016/j.ceramint.2022.04.298
Z. Ma, R. Jiang, J. Jing, S. Kang, L. Ma et al., Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding. Nano-Micro Lett. 16, 223 (2024). https://doi.org/10.1007/s40820-024-01450-0
Y. Zhang, G. Shen, S.S. Lam, S. Ansar, S.-C. Jung et al., A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem. Eng. J. 471, 144679 (2023). https://doi.org/10.1016/j.cej.2023.144679
B. Yan, X. Bao, Y. Gao, M. Zhou, Y. Yu et al., Antioxidative MXene@GA-decorated textile assisted by metal ion for efficient electromagnetic interference shielding, dual-driven heating, and infrared thermal camouflage. Adv. Fiber Mater. 5, 2080–2098 (2023). https://doi.org/10.1007/s42765-023-00330-3
J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34, 2309269 (2024). https://doi.org/10.1002/adfm.202309269
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
K. Gong, Y. Peng, A. Liu, S. Qi, H. Qiu, Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability. Compos. Part A Appl. Sci. Manuf. 176, 107857 (2024). https://doi.org/10.1016/j.compositesa.2023.107857
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
C. Liu, J. Lyu, N. Shi, Q. Cheng, Z. Liu et al., Kevlar nanofibrous aerogel-based 3-layer tandem cloak enables highly efficient and long-lasting infrared stealth. Chem. Eng. J. 462, 142249 (2023). https://doi.org/10.1016/j.cej.2023.142249
M. Chen, X. Jiang, J. Huang, J. Yang, J. Wu et al., Flexible wearable Ti3C2Tx composite carbon fabric textile with infrared stealth and electromagnetic interference shielding effect. Adv. Optical Mater. 12, 2301694 (2024). https://doi.org/10.1002/adom.202301694
T. Xue, Z. Fu, D. Yu, Y. Yu, Z. Hu et al., Lightweight and flexible Ag-wrapped polyimide aerogel fabrics for electromagnetic interference shielding. Compos. Commun. 43, 101732 (2023). https://doi.org/10.1016/j.coco.2023.101732
Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
X. Tang, X. Zhao, Y. Lu, S. Li, Z. Zhang et al., Flexible metalized polyimide nonwoven fabrics for efficient electromagnetic interference shielding. Chem. Eng. J. 480, 148000 (2024). https://doi.org/10.1016/j.cej.2023.148000
M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6, eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
T. Shi, D. Liu, H. Cheng, X. Wang, J. Tao, A personal thermal camouflage material based on nanofibrous polyamide membrane. Chem. Eng. J. 483, 149342 (2024). https://doi.org/10.1016/j.cej.2024.149342
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32, e1908496 (2020). https://doi.org/10.1002/adma.201908496
F. Liu, Z. Wei, X. Hu, Y. Cai, Z. Chen et al., Asymmetric segregated network design of ultralight and thermal insulating polymer composite foams for green electromagnetic interference shielding. Compos. Commun. 38, 101492 (2023). https://doi.org/10.1016/j.coco.2022.101492
M. Ma, W. Tao, X. Liao, S. Chen, Y. Shi et al., Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem. Eng. J. 452, 139471 (2023). https://doi.org/10.1016/j.cej.2022.139471
C.J. Prabagar, S. Anand, M.C. Vu, M.-S. Tran, D. Mani et al., Thermally insulating carbon nanotubes and copper ferrite based porous polydimethylsiloxane foams for absorption-dominant electromagnetic interference shielding performance. Compos. Commun. 42, 101691 (2023). https://doi.org/10.1016/j.coco.2023.101691
H. Lee, S.H. Ryu, S.J. Kwon, J.R. Choi, S.B. Lee et al., Absorption-dominant mmWave EMI shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nano-Micro Lett. 15, 76 (2023). https://doi.org/10.1007/s40820-023-01058-w
C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15, 7 (2022). https://doi.org/10.1007/s40820-022-00963-w
J. Hu, Y. Hu, Y. Ye, R. Shen, Unique applications of carbon materials in infrared stealth: a review. Chem. Eng. J. 452, 139147 (2023). https://doi.org/10.1016/j.cej.2022.139147
R. Hu, W. Xi, Y. Liu, K. Tang, J. Song et al., Thermal camouflaging metamaterials. Mater. Today 45, 120–141 (2021). https://doi.org/10.1016/j.mattod.2020.11.013
X. Fan, S. Li, W. Zhang, W. Xu, Recent progress in two-dimensional nanomaterials of graphene and MXenes for thermal camouflage. Ceram. Int. 49, 5559–5572 (2023). https://doi.org/10.1016/j.ceramint.2022.12.034
Z. Deng, P. Jiang, Z. Wang, L. Xu, Z.-Z. Yu et al., Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth. Small 19, e2304278 (2023). https://doi.org/10.1002/smll.202304278
S. Wang, R. Ding, G. Liang, W. Zhang, F. Yang et al., Direct synthesis of polyimide curly nanofibrous aerogels for high-performance thermal insulation under extreme temperature. Adv. Mater. 36, e2313444 (2024). https://doi.org/10.1002/adma.202313444
W. Gu, S.J.H. Ong, Y. Shen, W. Guo, Y. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 9, e2204165 (2022). https://doi.org/10.1002/advs.202204165
Y. Li, Y. Li, L. Zhao, S. Chen, S. Guo et al., Recent progress in the antidegradation strategies of two-dimensional transition metal carbides (MXenes). J. Environ. Chem. Eng. 12, 112762 (2024). https://doi.org/10.1016/j.jece.2024.112762
H. Zhao, Y. Huang, Y. Han, J. Yun, X. Wang et al., Flexible and lightweight porous polyether sulfone/Cu composite film with bidirectional differential structure for electromagnetic interference shielding and heat conduction. Chem. Eng. J. 440, 135919 (2022). https://doi.org/10.1016/j.cej.2022.135919
X. Zhao, X. Tang, Y. Qiao, S. Li, Z. Zhang et al., Ultrathin polyimide-based composites with efficient low-reflectivity electromagnetic shielding and infrared stealth performance. Nano Res. 17, 6700–6712 (2024). https://doi.org/10.1007/s12274-024-6650-1
S. Yang, L. Tang, H. Wei, J. Xue, Z. Wang et al., In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties. Carbon 215, 118445 (2023). https://doi.org/10.1016/j.carbon.2023.118445
H. Wei, Y. Yu, F. Jiang, J. Xue, F. Zhao et al., Carbon@SiC(SiCnws)-Sc2Si2O7 ceramics with multiple loss mediums for improving electromagnetic shielding performance. J. Eur. Ceram. Soc. 42, 2274–2281 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.067
Y. Li, K. Wu, Y. Li, S. Guo, L. Zhao et al., Recent progress in caron-based stimulus-responsive electromagnetic interference shielding materials. Nanocomposites 10, 41–58 (2024). https://doi.org/10.1080/20550324.2023.2292878
M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S.A. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. 34, 2304473 (2024). https://doi.org/10.1002/adfm.202304473
Z. Du, C. Zhou, H.-Y. Mi, H. Li, Z. Qin et al., Recorded low-reflection in gradient MXene-decorated melamine microwave shielding foam integrated with piezoresistive sensing and energy absorption properties. Compos. Part A Appl. Sci. Manuf. 173, 107694 (2023). https://doi.org/10.1016/j.compositesa.2023.107694
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
A. Schander, J.M. Gancz, M. Tintelott, W. Lang, Towards long-term stable polyimide-based flexible electrical insulation for chronically implanted neural electrodes. Micromachines 12, 1279 (2021). https://doi.org/10.3390/mi12111279
K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62, e202309010 (2023). https://doi.org/10.1002/anie.202309010
K. Ruan, J. Gu, Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 55, 4134–4145 (2022). https://doi.org/10.1021/acs.macromol.2c00491
S. Zhou, J. Dong, X. Li, X. Zhao, Q. Zhang, Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications. Adv. Fiber Mater. 5, 1892–1904 (2023). https://doi.org/10.1007/s42765-023-00317-0
S. Ikeda, H. Yanagimoto, K. Akamatsu, H. Nawafune, Copper/polyimide heterojunctions: controlling interfacial structures through an additive-based, all-wet chemical process using ion-doped precursors. Adv. Funct. Mater. 17, 889–897 (2007). https://doi.org/10.1002/adfm.200600527
J. Huang, D. Sun, G. Yang, H. Ma, Z. Chen et al., Facile process for surface metalization: rational design of Ag nanop/polymer brush toward high-efficiency electroless plating. Compos. Sci. Technol. 231, 109819 (2023). https://doi.org/10.1016/j.compscitech.2022.109819
C. Xu, P. Liu, Z. Wu, H. Zhang, R. Zhang et al., Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 9, e2200804 (2022). https://doi.org/10.1002/advs.202200804
L. Jiao, J. Li, L.L. Richard, Q. Sun, T. Stracensky et al., Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 20, 1385–1391 (2021). https://doi.org/10.1038/s41563-021-01030-2
Y. Cong, T. Xia, M. Zou, Z. Li, B. Peng et al., Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite ps with enhanced antibacterial activities. J. Mater. Chem. B 2, 3450–3461 (2014). https://doi.org/10.1039/C4TB00460D
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007). https://doi.org/10.1126/science.1147241
S. Hong, J.S. Lee, J. Ryu, S.H. Lee, D.Y. Lee et al., Bio-inspired strategy for on-surface synthesis of silver nanops for metal/organic hybrid nanomaterials and LDI-MS substrates. Nanotechnology 22, 494020 (2011). https://doi.org/10.1088/0957-4484/22/49/494020
C. Zhao, Z. Yu, J. Xing, Y. Zou, H. Liu et al., Effect of Ag2S nanocrystals/reduced graphene oxide interface on hydrogen evolution reaction. Catalysts 10, 948 (2020). https://doi.org/10.3390/catal10090948
S.H. Ryu, Y.K. Han, S.J. Kwon, T. Kim, B.M. Jung et al., Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 428, 131167 (2022). https://doi.org/10.1016/j.cej.2021.131167
Z. Xie, Y. Cai, Y. Zhan, Y. Meng, Y. Li et al., Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 435, 135118 (2022). https://doi.org/10.1016/j.cej.2022.135118
B.-W. Liu, M. Cao, Y.-Y. Zhang, Y.-Z. Wang, H.-B. Zhao, Multifunctional protective aerogel with superelasticity over −196 to 500 °C. Nano Res. 15, 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2
X. Li, M. Wu, J. Chen, X. Zhou, Q. Ren et al., A facile and large-scale approach to prepare macroscopic segregated polyether block amides/carbon nanostructures composites with a gradient structure for absorption-dominated electromagnetic shielding with ultra-low reflection. Compos. Commun. 40, 101628 (2023). https://doi.org/10.1016/j.coco.2023.101628
Y. Chang, R. Hao, Y. Yang, G. Zhao, Y. Liu et al., Progressive conductivity modular assembled fiber reinforced polymer composites for absorption dominated ultraefficient electromagnetic interference shielding. Compos. Part B Eng. 260, 110766 (2023). https://doi.org/10.1016/j.compositesb.2023.110766
C. Yuan, X. Li, M. Huang, F. Li, Z. Zhang et al., Multifunctional asymmetric foam with compression-enhanced EMI shielding effectiveness exhibits real-time tunability of reflection/absorption ratio and pressure sensing. Chem. Eng. J. 489, 151359 (2024). https://doi.org/10.1016/j.cej.2024.151359
G.-Y. Yang, S.-Z. Wang, H.-T. Sun, X.-M. Yao, C.-B. Li et al., Ultralight, conductive Ti3C2Tx MXene/PEDOT:PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 13, 57521–57531 (2021). https://doi.org/10.1021/acsami.1c13303
J. He, M. Han, K. Wen, C. Liu, W. Zhang et al., Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Compos. Sci. Technol. 231, 109799 (2023). https://doi.org/10.1016/j.compscitech.2022.109799
Z. Guo, P. Ren, F. Yang, T. Wu, L. Zhang et al., Robust multifunctional composite films with alternating multilayered architecture for highly efficient electromagnetic interference shielding, Joule heating and infrared stealth. Compos. Part B Eng. 263, 110863 (2023). https://doi.org/10.1016/j.compositesb.2023.110863