Hole-Transport Management Enables 23%-Efficient and Stable Inverted Perovskite Solar Cells with 84% Fill Factor
Corresponding Author: Yaohua Mai
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 117
Abstract
NiOx-based inverted perovskite solar cells (PSCs) have presented great potential toward low-cost, highly efficient and stable next-generation photovoltaics. However, the presence of energy-level mismatch and contact-interface defects between hole-selective contacts (HSCs) and perovskite-active layer (PAL) still limits device efficiency improvement. Here, we report a graded configuration based on both interface-cascaded structures and p-type molecule-doped composites with two-/three-dimensional formamidinium-based triple-halide perovskites. We find that the interface defects-induced non-radiative recombination presented at HSCs/PAL interfaces is remarkably suppressed because of efficient hole extraction and transport. Moreover, a strong chemical interaction, halogen bonding and coordination bonding are found in the molecule-doped perovskite composites, which significantly suppress the formation of halide vacancy and parasitic metallic lead. As a result, NiOx-based inverted PSCs present a power-conversion-efficiency over 23% with a high fill factor of 0.84 and open-circuit voltage of 1.162 V, which are comparable to the best reported around 1.56-electron volt bandgap perovskites. Furthermore, devices with encapsulation present high operational stability over 1,200 h during T90 lifetime measurement (the time as a function of PCE decreases to 90% of its initial value) under 1-sun illumination in ambient-air conditions.
Highlights:
1 A graded inverted solar cell configuration is developed by hole-transport management aiming to suppress interface defects-induced non-radiative recombination for efficient hole transport.
2 NiOx-based inverted PSCs present a power-conversion-efficiency over 23% with a high fill factor of 0.84 and open-circuit voltage of 1.162 volts, one of the best performances reported so far for 1.56-electron volt bandgap formamidinium-based triple-halide perovskites.
3 Devices show high operational stability over 1,200 h during T90 lifetime measurement under 1-sun illumination in ambient-air conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.-G. Park, Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10, 1903106 (2020). https://doi.org/10.1002/aenm.201903106
- Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
- B. Shi, P. Wang, J. Feng, C. Xue, G. Yang et al., Split-ring structured all-inorganic perovskite photodetector arrays for masterly internet of things. Nano-Micro Lett. 15, 3 (2023). https://doi.org/10.1007/s40820-022-00961-y
- Y. Wang, G.M. Arumugam, T. Mahmoudi, Y. Mai, Y.-B. Hahn, A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy 87, 106141 (2021). https://doi.org/10.1016/j.nanoen.2021.106141
- R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu et al., Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 14, 5074–5083 (2021). https://doi.org/10.1039/D1EE01519B
- H. Zhang, N.-G. Park, Towards sustainability with self-healing and recyclable perovskite solar cells. eScience 2, 567–572 (2022). https://doi.org/10.1016/j.esci.2022.11.001
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012). https://doi.org/10.1038/srep00591
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- M. Li, J. Zhou, L. Tan, H. Li, Y. Liu et al., Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innov 3, 100310 (2022). https://doi.org/10.1016/j.xinn.2022.100310
- F. Yang, D. Jang, L. Dong, S. Qiu, A. Distler et al., Upscaling solution-processed perovskite photovoltaics. Adv. Energy Mater. 11, 2101973 (2021). https://doi.org/10.1002/aenm.202101973
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, J. Qiu, High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480–1485 (2013). https://doi.org/10.1039/C3EE40343B
- Y. Wang, T. Mahmoudi, W.-Y. Rho, H.-Y. Yang, S. Seo et al., Ambient-air-solution-processed efficient and highly stable perovskite solar cells based on CH3NH3PbI3−xClx-NiO composite with Al2O3/NiO interfacial engineering. Nano Energy 40, 408–417 (2017). https://doi.org/10.1016/J.NANOEN.2017.08.047
- Y. Wang, T. Mahmoudi, H.-Y. Yang, K.S. Bhat, J.-Y. Yoo et al., Fully-ambient-processed mesoscopic semitransparent perovskite solar cells by islands-structure-MAPbI3−xClx−NiO composite and Al2O3/NiO interface engineering. Nano Energy 49, 59–66 (2018). https://doi.org/10.1016/j.nanoen.2018.04.036
- J.-Y. Shao, D. Li, J. Shi, C. Ma, Y. Wang et al., Recent progress in perovskite solar cells: material science. Sci. China Chem. 66, 10–64 (2023). https://doi.org/10.1007/s11426-022-1445-2
- J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature (2023). https://doi.org/10.1038/s41586-023-05825-y
- M.A. Green, E.D. Dunlop, G. Siefer, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (Version 60). Prog. Photovollt-Res Appl. 31, 3–16 (2023). https://doi.org/10.1002/pip.3595
- NREL. https://www.nrel.gov/pv/cell-efficiency.html (Accessed: Dec 2022)
- Y. Jiang, L. Qiu, E.J. Juarez-Perez, L.K. Ono, Z. Hu et al., Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 4, 585–593 (2019). https://doi.org/10.1038/s41560-019-0406-2
- R. Cheacharoen, N. Rolston, D. Harwood, K.A. Bush, R.H. Dauskardt et al., Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018). https://doi.org/10.1039/C7EE02564E
- S. Wu, L. Liu, B. Zhang, Y. Gao, L. Shang et al., Multifunctional two-dimensional benzodifuran-based polymer for eco-friendly perovskite solar cells featuring high stability. ACS Appl. Mater. Interfaces 14, 41389–41399 (2022). https://doi.org/10.1021/acsami.2c09607
- Y. Cheng, L. Ding, Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy Environ. Sci. 14, 3233–3255 (2021). https://doi.org/10.1039/D1EE00493J
- M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
- T. Elmelund, B. Seger, M. Kuno, P.V. Kamat, How interplay between photo and thermal activation dictates halide ion segregation in mixed halide perovskites. ACS Energy Lett. 5, 56–63 (2020). https://doi.org/10.1021/acsenergylett.9b02265
- W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 99 (2022). https://doi.org/10.1007/s40820-022-00842-4
- Y. Wang, Y. Yang, S. Wu, C. Zhang, Z. Wang et al., Interfacial engineering with carbon-graphite-CuδNi1-δO for ambient-air stable composite-based hole-conductor-free perovskite solar cells. Nanoscale Adv. 2, 5883–5889 (2020). https://doi.org/10.1039/D0NA00852D
- S. Tan, T. Huang, I. Yavuz, R. Wang, T.W. Yoon et al., Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022). https://doi.org/10.1038/s41586-022-04604-5
- Y. Wang, H. Ju, T. Mahmoudi, C. Liu, C. Zhang et al., Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency. Nano Energy 88, 106285 (2021). https://doi.org/10.1016/j.nanoen.2021.106285
- T. Mahmoudi, Y. Wang, Y.-B. Hahn, Stability enhancement in perovskite solar cells with perovskite/silver-graphene composites in the active layer. ACS Energy Lett. 4, 235–241 (2018). https://doi.org/10.1021/acsenergylett.8b02201
- T. Mahmoudi, M. Kohan, W.-Y. Rho, Y. Wang, Y.-H. Im et al., Tin-based perovskite solar cells reach over 13% with inclusion of n-doped graphene oxide in active, hole-transport, and interfacial layers. Adv. Energy Mater. 12, 2201977 (2022). https://doi.org/10.1002/aenm.202201977
- T. Mahmoudi, Y. Wang, Y.-B. Hahn, SrTiO3/Al2O3-Graphene electron transport layer for highly stable and efficient composites-based perovskite solar cells with 20.6% efficiency. Adv. Energy Mater. 10, 1903369 (2020). https://doi.org/10.1002/aenm.201903369
- T. Mahmoudi, Y. Wang, Y.-B. Hahn, Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and NiO interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy 79, 105452 (2021). https://doi.org/10.1016/j.nanoen.2020.105452
- Y. Wang, T. Mahmoudi, Y.-B. Hahn, Highly stable and efficient perovskite solar cells based on FAMA-Perovskite-Cu:NiO composites with 20.7% efficiency and 80.5% fill factor. Adv. Energy Mater. 10, 2000967 (2020). https://doi.org/10.1002/aenm.202000967
- Y. Wang, T. Mahmoudi, W.-Y. Rho, Y.-B. Hahn, Fully-ambient-air and antisolvent-free-processed stable perovskite solar cells with perovskite-based composites and interface engineering. Nano Energy 64, 103964 (2019). https://doi.org/10.1016/j.nanoen.2019.103964
- Y. Wang, W.-Y. Rho, H.-Y. Yang, T. Mahmoudi, S. Seo et al., Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3–NiO nanops composite. Nano Energy 27, 535–544 (2016). https://doi.org/10.1016/j.nanoen.2016.08.006
- S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2
- H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
- H. Ju, Y. Ma, Y. Cao, Z. Wang, L. Liu et al., Roles of long-chain alkylamine ligands in triple-halide perovskites for efficient NiOx-based inverted perovskite solar cells. Solar RRL 6, 2101082 (2022). https://doi.org/10.1002/solr.202101082
- Z. Wang, L. Liu, Y. Wang, Y. Ma, Z. Yang et al., Green antisolvent-mediators stabilize perovskites for efficient NiOx-based inverted solar cells with Voc approaching 1.2 V. Chem. Eng. J. 457, 141204 (2023). https://doi.org/10.1016/j.cej.2022.141204
- P. Ru, E. Bi, Y. Zhang, Y. Wang, W. Kong et al., High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2022). https://doi.org/10.1002/aenm.201903487
- L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
- W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang et al., Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022). https://doi.org/10.1038/s41560-021-00966-8
- D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020). https://doi.org/10.1038/s41578-019-0151-y
- C. Ma, N.-G. Park, A realistic methodology for 30% efficient perovskite solar cells. Chem 6, 1254–1264 (2020). https://doi.org/10.1016/j.chempr.2020.04.013
- G. Li, J. Song, J. Wu, Z. Song, X. Wang et al., Efficient and stable 2D@3D/2D perovskite solar cells based on dual optimization of grain boundary and interface. ACS Energy Lett. 6, 3614–3623 (2021). https://doi.org/10.1021/acsenergylett.1c01649
- M. Liu, S. Dahlstrom, C. Ahlang, S. Wilken, A. Degterev et al., Beyond hydrophobicity: how F4-TCNQ doping of the hole transport material improves stability of mesoporous triple-cation perovskite solar cells. J. Mater. Chem. A 10, 11721–11731 (2022). https://doi.org/10.1039/D2TA02588D
- W.-Q. Wu, Z. Yang, P.N. Rudd, Y. Shao, X. Dai et al., Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 5, eaav8925 (2019). https://doi.org/10.1126/sciadv.aav8925
- C. Luo, G. Zheng, X. Wang, F. Gao, C. Zhan et al., Solid-solid chemical bonding featuring targeted defect passivation for efficient perovskite photovoltaics. Energy Environ. Sci. 16, 178–189 (2023). https://doi.org/10.1039/D2EE02732A
- C. Li, Y. Pan, J. Hu, S. Qiu, C. Zhang et al., Vertically Aligned 2D/3D Pb-Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5, 1386–1395 (2020). https://doi.org/10.1021/acsenergylett.0c00634
- W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang et al., Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Comm. 9, 1625 (2018). https://doi.org/10.1038/s41467-018-04028-8
- C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Comm. 10, 815 (2019). https://doi.org/10.1038/s41467-019-08507-4
- D. Song, D. Wei, P. Cui, M. Li, Z. Duan et al., Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J. Mater. Chem. A 4, 6091–6097 (2016). https://doi.org/10.1039/C6TA00577B
- G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi et al., The halogen bond. Chem. Rev. 116, 2478–2601 (2016). https://doi.org/10.1021/acs.chemrev.5b00484
- X. Fu, T. He, S. Zhang, X. Lei, Y. Jiang et al., Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. Chem 7, 3131–3143 (2021). https://doi.org/10.1016/j.chempr.2021.08.009
- T. Wang, Y. Fu, L. Jin, S. Deng, D. Pan et al., Phenethylammonium functionalization enhances near-surface carrier diffusion in hybrid perovskites. J. Am. Chem. Soc. 142, 16254–16264 (2020). https://doi.org/10.1021/jacs.0c04377
- R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
- C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide Interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775 (2020). https://doi.org/10.1016/j.joule.2020.06.004
References
N.-G. Park, Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10, 1903106 (2020). https://doi.org/10.1002/aenm.201903106
Y. Hassan, J.H. Park, M.L. Crawford, A. Sadhanala, J. Lee et al., Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021). https://doi.org/10.1038/s41586-021-03217-8
B. Shi, P. Wang, J. Feng, C. Xue, G. Yang et al., Split-ring structured all-inorganic perovskite photodetector arrays for masterly internet of things. Nano-Micro Lett. 15, 3 (2023). https://doi.org/10.1007/s40820-022-00961-y
Y. Wang, G.M. Arumugam, T. Mahmoudi, Y. Mai, Y.-B. Hahn, A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy 87, 106141 (2021). https://doi.org/10.1016/j.nanoen.2021.106141
R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu et al., Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 14, 5074–5083 (2021). https://doi.org/10.1039/D1EE01519B
H. Zhang, N.-G. Park, Towards sustainability with self-healing and recyclable perovskite solar cells. eScience 2, 567–572 (2022). https://doi.org/10.1016/j.esci.2022.11.001
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012). https://doi.org/10.1038/srep00591
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
M. Li, J. Zhou, L. Tan, H. Li, Y. Liu et al., Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innov 3, 100310 (2022). https://doi.org/10.1016/j.xinn.2022.100310
F. Yang, D. Jang, L. Dong, S. Qiu, A. Distler et al., Upscaling solution-processed perovskite photovoltaics. Adv. Energy Mater. 11, 2101973 (2021). https://doi.org/10.1002/aenm.202101973
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, J. Qiu, High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480–1485 (2013). https://doi.org/10.1039/C3EE40343B
Y. Wang, T. Mahmoudi, W.-Y. Rho, H.-Y. Yang, S. Seo et al., Ambient-air-solution-processed efficient and highly stable perovskite solar cells based on CH3NH3PbI3−xClx-NiO composite with Al2O3/NiO interfacial engineering. Nano Energy 40, 408–417 (2017). https://doi.org/10.1016/J.NANOEN.2017.08.047
Y. Wang, T. Mahmoudi, H.-Y. Yang, K.S. Bhat, J.-Y. Yoo et al., Fully-ambient-processed mesoscopic semitransparent perovskite solar cells by islands-structure-MAPbI3−xClx−NiO composite and Al2O3/NiO interface engineering. Nano Energy 49, 59–66 (2018). https://doi.org/10.1016/j.nanoen.2018.04.036
J.-Y. Shao, D. Li, J. Shi, C. Ma, Y. Wang et al., Recent progress in perovskite solar cells: material science. Sci. China Chem. 66, 10–64 (2023). https://doi.org/10.1007/s11426-022-1445-2
J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature (2023). https://doi.org/10.1038/s41586-023-05825-y
M.A. Green, E.D. Dunlop, G. Siefer, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (Version 60). Prog. Photovollt-Res Appl. 31, 3–16 (2023). https://doi.org/10.1002/pip.3595
NREL. https://www.nrel.gov/pv/cell-efficiency.html (Accessed: Dec 2022)
Y. Jiang, L. Qiu, E.J. Juarez-Perez, L.K. Ono, Z. Hu et al., Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 4, 585–593 (2019). https://doi.org/10.1038/s41560-019-0406-2
R. Cheacharoen, N. Rolston, D. Harwood, K.A. Bush, R.H. Dauskardt et al., Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018). https://doi.org/10.1039/C7EE02564E
S. Wu, L. Liu, B. Zhang, Y. Gao, L. Shang et al., Multifunctional two-dimensional benzodifuran-based polymer for eco-friendly perovskite solar cells featuring high stability. ACS Appl. Mater. Interfaces 14, 41389–41399 (2022). https://doi.org/10.1021/acsami.2c09607
Y. Cheng, L. Ding, Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy Environ. Sci. 14, 3233–3255 (2021). https://doi.org/10.1039/D1EE00493J
M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
T. Elmelund, B. Seger, M. Kuno, P.V. Kamat, How interplay between photo and thermal activation dictates halide ion segregation in mixed halide perovskites. ACS Energy Lett. 5, 56–63 (2020). https://doi.org/10.1021/acsenergylett.9b02265
W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 99 (2022). https://doi.org/10.1007/s40820-022-00842-4
Y. Wang, Y. Yang, S. Wu, C. Zhang, Z. Wang et al., Interfacial engineering with carbon-graphite-CuδNi1-δO for ambient-air stable composite-based hole-conductor-free perovskite solar cells. Nanoscale Adv. 2, 5883–5889 (2020). https://doi.org/10.1039/D0NA00852D
S. Tan, T. Huang, I. Yavuz, R. Wang, T.W. Yoon et al., Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022). https://doi.org/10.1038/s41586-022-04604-5
Y. Wang, H. Ju, T. Mahmoudi, C. Liu, C. Zhang et al., Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency. Nano Energy 88, 106285 (2021). https://doi.org/10.1016/j.nanoen.2021.106285
T. Mahmoudi, Y. Wang, Y.-B. Hahn, Stability enhancement in perovskite solar cells with perovskite/silver-graphene composites in the active layer. ACS Energy Lett. 4, 235–241 (2018). https://doi.org/10.1021/acsenergylett.8b02201
T. Mahmoudi, M. Kohan, W.-Y. Rho, Y. Wang, Y.-H. Im et al., Tin-based perovskite solar cells reach over 13% with inclusion of n-doped graphene oxide in active, hole-transport, and interfacial layers. Adv. Energy Mater. 12, 2201977 (2022). https://doi.org/10.1002/aenm.202201977
T. Mahmoudi, Y. Wang, Y.-B. Hahn, SrTiO3/Al2O3-Graphene electron transport layer for highly stable and efficient composites-based perovskite solar cells with 20.6% efficiency. Adv. Energy Mater. 10, 1903369 (2020). https://doi.org/10.1002/aenm.201903369
T. Mahmoudi, Y. Wang, Y.-B. Hahn, Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and NiO interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy 79, 105452 (2021). https://doi.org/10.1016/j.nanoen.2020.105452
Y. Wang, T. Mahmoudi, Y.-B. Hahn, Highly stable and efficient perovskite solar cells based on FAMA-Perovskite-Cu:NiO composites with 20.7% efficiency and 80.5% fill factor. Adv. Energy Mater. 10, 2000967 (2020). https://doi.org/10.1002/aenm.202000967
Y. Wang, T. Mahmoudi, W.-Y. Rho, Y.-B. Hahn, Fully-ambient-air and antisolvent-free-processed stable perovskite solar cells with perovskite-based composites and interface engineering. Nano Energy 64, 103964 (2019). https://doi.org/10.1016/j.nanoen.2019.103964
Y. Wang, W.-Y. Rho, H.-Y. Yang, T. Mahmoudi, S. Seo et al., Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3–NiO nanops composite. Nano Energy 27, 535–544 (2016). https://doi.org/10.1016/j.nanoen.2016.08.006
S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2
H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
H. Ju, Y. Ma, Y. Cao, Z. Wang, L. Liu et al., Roles of long-chain alkylamine ligands in triple-halide perovskites for efficient NiOx-based inverted perovskite solar cells. Solar RRL 6, 2101082 (2022). https://doi.org/10.1002/solr.202101082
Z. Wang, L. Liu, Y. Wang, Y. Ma, Z. Yang et al., Green antisolvent-mediators stabilize perovskites for efficient NiOx-based inverted solar cells with Voc approaching 1.2 V. Chem. Eng. J. 457, 141204 (2023). https://doi.org/10.1016/j.cej.2022.141204
P. Ru, E. Bi, Y. Zhang, Y. Wang, W. Kong et al., High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2022). https://doi.org/10.1002/aenm.201903487
L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang et al., Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022). https://doi.org/10.1038/s41560-021-00966-8
D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020). https://doi.org/10.1038/s41578-019-0151-y
C. Ma, N.-G. Park, A realistic methodology for 30% efficient perovskite solar cells. Chem 6, 1254–1264 (2020). https://doi.org/10.1016/j.chempr.2020.04.013
G. Li, J. Song, J. Wu, Z. Song, X. Wang et al., Efficient and stable 2D@3D/2D perovskite solar cells based on dual optimization of grain boundary and interface. ACS Energy Lett. 6, 3614–3623 (2021). https://doi.org/10.1021/acsenergylett.1c01649
M. Liu, S. Dahlstrom, C. Ahlang, S. Wilken, A. Degterev et al., Beyond hydrophobicity: how F4-TCNQ doping of the hole transport material improves stability of mesoporous triple-cation perovskite solar cells. J. Mater. Chem. A 10, 11721–11731 (2022). https://doi.org/10.1039/D2TA02588D
W.-Q. Wu, Z. Yang, P.N. Rudd, Y. Shao, X. Dai et al., Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 5, eaav8925 (2019). https://doi.org/10.1126/sciadv.aav8925
C. Luo, G. Zheng, X. Wang, F. Gao, C. Zhan et al., Solid-solid chemical bonding featuring targeted defect passivation for efficient perovskite photovoltaics. Energy Environ. Sci. 16, 178–189 (2023). https://doi.org/10.1039/D2EE02732A
C. Li, Y. Pan, J. Hu, S. Qiu, C. Zhang et al., Vertically Aligned 2D/3D Pb-Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5, 1386–1395 (2020). https://doi.org/10.1021/acsenergylett.0c00634
W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang et al., Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Comm. 9, 1625 (2018). https://doi.org/10.1038/s41467-018-04028-8
C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Comm. 10, 815 (2019). https://doi.org/10.1038/s41467-019-08507-4
D. Song, D. Wei, P. Cui, M. Li, Z. Duan et al., Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J. Mater. Chem. A 4, 6091–6097 (2016). https://doi.org/10.1039/C6TA00577B
G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi et al., The halogen bond. Chem. Rev. 116, 2478–2601 (2016). https://doi.org/10.1021/acs.chemrev.5b00484
X. Fu, T. He, S. Zhang, X. Lei, Y. Jiang et al., Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. Chem 7, 3131–3143 (2021). https://doi.org/10.1016/j.chempr.2021.08.009
T. Wang, Y. Fu, L. Jin, S. Deng, D. Pan et al., Phenethylammonium functionalization enhances near-surface carrier diffusion in hybrid perovskites. J. Am. Chem. Soc. 142, 16254–16264 (2020). https://doi.org/10.1021/jacs.0c04377
R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
C.C. Boyd, R.C. Shallcross, T. Moot, R. Kerner, L. Bertoluzzi et al., Overcoming redox reactions at perovskite-nickel oxide Interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775 (2020). https://doi.org/10.1016/j.joule.2020.06.004