Efficient and Stable Perovskite Solar Cells and Modules Enabled by Tailoring Additive Distribution According to the Film Growth Dynamics
Corresponding Author: Chong Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 39
Abstract
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method. In this work, we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film, resulting in the differences of additive distribution. We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface, and prepared perovskite solar cells with a certified efficiency of 23.75%. Furthermore, this work also demonstrates an efficiency of 20.18% for the large-area perovskite solar module (PSM) with an aperture area of 60.84 cm2. The PSM possesses remarkable continuous operation stability for maximum power point tracking of T90 > 1000 h in ambient air.
Highlights:
1 Two pre-crystallization processes of gas quenching and vacuum quenching lead to different order of crystallization dynamics within the perovskite thin film, resulting in the differences of additive distribution.
2 A tailor designed 1,3-bis(4-methoxyphenyl)thiourea was utilized to improve the buried interface, leading to a certified efficiency of 23.75% for blade-coated perovskite solar cell.
3 The perovskite solar module (aperture area: 60.84 cm2) demonstrates an efficiency of 20.18% with excellent operational stability (maximum power point tracking of T90 > 1000 h).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 32, 425–441 (2024). https://doi.org/10.1002/pip.3831
- C. Liu, Y.-B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49, 1653–1687 (2020). https://doi.org/10.1039/C9CS00711C
- Q. Liu, W. Cai, W. Wang, H. Wang, Y. Zhong et al., Controlling phase transition toward future low-cost and eco-friendly printing of perovskite solar cells. J. Phys. Chem. Lett. 13, 6503–6513 (2022). https://doi.org/10.1021/acs.jpclett.2c01506
- W. Xiang, J. Zhang, S.F. Liu, S. Albrecht, A. Hagfeldt et al., Intermediate phase engineering of halide perovskites for photovoltaics. Joule 6, 315 (2022). https://doi.org/10.1016/j.joule.2021.11.013
- S. Sánchez, L. Pfeifer, N. Vlachopoulos, A. Hagfeldt, Rapid hybrid perovskite film crystallization from solution. Chem. Soc. Rev. 50, 7108 (2021). https://doi.org/10.1039/D0CS01272F
- Q. Gao, J. Qi, K. Chen, M. Xia, Y. Hu et al., Halide perovskite crystallization processes and methods in nanocrystals, single crystals, and thin films. Adv. Mater. 34, 2200720 (2022). https://doi.org/10.1002/adma.202200720
- J. Sun, F. Li, J. Yuan, W. Ma, Advances in metal halide perovskite film preparation: the role of anti-solvent treatment. Small Methods 5, 2100046 (2021). https://doi.org/10.1002/smtd.202100046
- A.D. Taylor, Q. Sun, K.P. Goetz, Q. An, T. Schramm et al., A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 12, 1878 (2021). https://doi.org/10.1038/s41467-021-22049-8
- A. Zhu, L. Chen, A. Zhang, C. Zhu, X. Zhang et al., Playdough-like carbon electrode: a promising strategy for high efficiency perovskite solar cells and modules. eScience 4, 100221 (2024). https://doi.org/10.1016/j.esci.2023.100221
- S.L. Hamukwaya, H. Hao, Z. Zhao, J. Dong, T. Zhong et al., A review of recent developments in preparation methods for large-area perovskite solar cells. Coatings 12, 252 (2022). https://doi.org/10.3390/coatings12020252
- C.S. Pathak, H. Choi, H. Kim, J. Lim, S.K. Cho et al., Recent progress in coating methods for large-area perovskite solar module fabrication. Sol. RRL 8, 2300860 (2024). https://doi.org/10.1002/solr.202300860
- G. Tong, D.Y. Son, L.K. Ono, Y. Liu, Y. Hu et al., Scalable fabrication of > 90 cm2 perovskite solar modules with > 1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater. 11, 2003712 (2021). https://doi.org/10.1002/aenm.202003712
- G. Tong, J. Zhang, T. Bu, L.K. Ono, C. Zhang et al., Holistic strategies lead to enhanced efficiency and stability of hybrid chemical vapor deposition based perovskite solar cells and modules. Adv. Energy Mater. 13, 2300153 (2023). https://doi.org/10.1002/aenm.202300153
- G. Tong, L.K. Ono, Y. Liu, H. Zhang, T. Bu et al., Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 13, 155 (2021). https://doi.org/10.1007/s40820-021-00675-7
- Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry et al., Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 1–20 (2018). https://doi.org/10.1038/natrevmats.2018.17
- M. Jung, S.-G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 48, 2011–2038 (2019). https://doi.org/10.1039/C8CS00656C
- L. Zeng, S. Chen, K. Forberich, C.J. Brabec, Y. Mai et al., Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy Environ. Sci. 13, 4666–4690 (2020). https://doi.org/10.1039/D0EE02575E
- F. Yang, D. Jang, L. Dong, S. Qiu, A. Distler et al., Upscaling solution-processed perovskite photovoltaics. Adv. Energy Mater. 11, 2101973 (2021). https://doi.org/10.1002/aenm.202101973
- S. Ternes, F. Laufer, U.W. Paetzold, Modeling and fundamental dynamics of vacuum, gas, and antisolvent quenching for scalable perovskite processes. Adv. Sci. 11, 2308901 (2024). https://doi.org/10.1002/advs.202308901
- A. Babayigit, J. D’Haen, H.-G. Boyen, B. Conings, Gas quenching for perovskite thin film deposition. Joule 2, 1205–1209 (2018). https://doi.org/10.1016/j.joule.2018.06.009
- Y. Yu, F. Zhang, T. Hou, X. Sun, H. Yu et al., A review on gas-quenching technique for efficient perovskite solar cells. Sol. RRL 5, 2100386 (2021). https://doi.org/10.1002/solr.202100386
- S. Qiu, M. Majewski, L. Dong, D. Jang, V.M.L. Corre et al., In situ probing the crystallization kinetics in gas-quenching-assisted coating of perovskite films. Adv. Energy Mater. 14, 2303210 (2024). https://doi.org/10.1002/aenm.202303210
- H. Hu, M. Singh, X. Wan, J. Tang, C.-W. Chu et al., Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. J. Mater. Chem. A 8, 1578–1603 (2020). https://doi.org/10.1039/C9TA11245F
- J. Feng, Y. Jiao, H. Wang, X. Zhu, Y. Sun et al., High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ. Sci. 14, 3035–3043 (2021). https://doi.org/10.1039/D1EE00634G
- R. Szostak, S. Sanchez, P.E. Marchezi, A.S. Marques, J.C. Silva et al., Revealing the perovskite film formation using the gas quenching method by in situ GIWAXS: morphology, properties, and device performance. Adv. Funct. Mater. 31, 2007473 (2021). https://doi.org/10.1002/adfm.202007473
- Y.M. Xie, Q. Xue, H.L. Yip, Metal-halide perovskite crystallization kinetics: a review of experimental and theoretical studies. Adv. Energy Mater. 11, 2100784 (2021). https://doi.org/10.1002/aenm.202100784
- F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020). https://doi.org/10.1002/aenm.201902579
- D.P. McMeekin, P. Holzhey, S.O. Fürer, S.P. Harvey, L.T. Schelhas et al., Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023). https://doi.org/10.1038/s41563-022-01399-8
- S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021). https://doi.org/10.1126/science.abi6323
- X. Dai, Y. Deng, C.H. Van Brackle, S. Chen, P.N. Rudd et al., Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 10, 1903108 (2020). https://doi.org/10.1002/aenm.201903108
- M. Wang, W. Wu, Y. Liu, S. Yuan, D. Tian et al., Buried interface modulation via preferential crystallization in all-inorganic perovskite solar cells: the case of multifunctional Ti3C2Tx. Adv. Funct. Mater. 33, 2300700 (2023). https://doi.org/10.1002/adfm.202300700
- S. Chen, X. Xiao, B. Chen, L.L. Kelly, J. Zhao et al., Crystallization in one-step solution deposition of perovskite films: Upward or downward? Sci. Adv. 7, eabb2412 (2021). https://doi.org/10.1126/sciadv.abb2412
- X. Cao, L. Zhi, Y. Li, F. Fang, X. Cui et al., Fabrication of perovskite films with large columnar grains via solvent-mediated Ostwald ripening for efficient inverted perovskite solar cells. ACS Appl. Energy Mater. 1, 868–875 (2018). https://doi.org/10.1021/acsaem.7b00300
- H. Su, J. Zhang, Y. Hu, Y. Yao, X. Zheng et al., Modulation on electrostatic potential of passivator for highly efficient and stable perovskite solar cells. Adv. Funct. Mater. 33, 2213123 (2023). https://doi.org/10.1002/adfm.202213123
- J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu et al., Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide. ACS Energy Lett. 4, 2913–2921 (2019). https://doi.org/10.1021/acsenergylett.9b02375
- H. Zhang, Q. Tian, W. Xiang, Y. Du, Z. Wang et al., Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells. Adv. Mater. 35, 2301140 (2023). https://doi.org/10.1002/adma.202301140
- H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
- X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021). https://doi.org/10.1002/adma.202006435
- M. Ma, Y. Zeng, Y. Yang, C. Zhang, Y. Ma et al., Dendrimer modification strategy based on the understanding of the photovoltaic mechanism of a perovskite device under full sun and indoor light. ACS Appl. Mater. Interfaces 15, 25550–25557 (2023). https://doi.org/10.1021/acsami.3c02979
- L. Liu, A. Mei, T. Liu, P. Jiang, Y. Sheng et al., Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790–1793 (2015). https://doi.org/10.1021/ja5125594
- B. Zhang, J. Oh, Z. Sun, Y. Cho, S. Jeong et al., Buried guanidinium passivator with favorable binding energy for perovskite solar cells. ACS Energy Lett. 8, 1848–1856 (2023). https://doi.org/10.1021/acsenergylett.2c02881
- R. Chen, J. Wang, Z. Liu, F. Ren, S. Liu et al., Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839 (2023). https://doi.org/10.1038/s41560-023-01288-7
References
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl. 32, 425–441 (2024). https://doi.org/10.1002/pip.3831
C. Liu, Y.-B. Cheng, Z. Ge, Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49, 1653–1687 (2020). https://doi.org/10.1039/C9CS00711C
Q. Liu, W. Cai, W. Wang, H. Wang, Y. Zhong et al., Controlling phase transition toward future low-cost and eco-friendly printing of perovskite solar cells. J. Phys. Chem. Lett. 13, 6503–6513 (2022). https://doi.org/10.1021/acs.jpclett.2c01506
W. Xiang, J. Zhang, S.F. Liu, S. Albrecht, A. Hagfeldt et al., Intermediate phase engineering of halide perovskites for photovoltaics. Joule 6, 315 (2022). https://doi.org/10.1016/j.joule.2021.11.013
S. Sánchez, L. Pfeifer, N. Vlachopoulos, A. Hagfeldt, Rapid hybrid perovskite film crystallization from solution. Chem. Soc. Rev. 50, 7108 (2021). https://doi.org/10.1039/D0CS01272F
Q. Gao, J. Qi, K. Chen, M. Xia, Y. Hu et al., Halide perovskite crystallization processes and methods in nanocrystals, single crystals, and thin films. Adv. Mater. 34, 2200720 (2022). https://doi.org/10.1002/adma.202200720
J. Sun, F. Li, J. Yuan, W. Ma, Advances in metal halide perovskite film preparation: the role of anti-solvent treatment. Small Methods 5, 2100046 (2021). https://doi.org/10.1002/smtd.202100046
A.D. Taylor, Q. Sun, K.P. Goetz, Q. An, T. Schramm et al., A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 12, 1878 (2021). https://doi.org/10.1038/s41467-021-22049-8
A. Zhu, L. Chen, A. Zhang, C. Zhu, X. Zhang et al., Playdough-like carbon electrode: a promising strategy for high efficiency perovskite solar cells and modules. eScience 4, 100221 (2024). https://doi.org/10.1016/j.esci.2023.100221
S.L. Hamukwaya, H. Hao, Z. Zhao, J. Dong, T. Zhong et al., A review of recent developments in preparation methods for large-area perovskite solar cells. Coatings 12, 252 (2022). https://doi.org/10.3390/coatings12020252
C.S. Pathak, H. Choi, H. Kim, J. Lim, S.K. Cho et al., Recent progress in coating methods for large-area perovskite solar module fabrication. Sol. RRL 8, 2300860 (2024). https://doi.org/10.1002/solr.202300860
G. Tong, D.Y. Son, L.K. Ono, Y. Liu, Y. Hu et al., Scalable fabrication of > 90 cm2 perovskite solar modules with > 1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater. 11, 2003712 (2021). https://doi.org/10.1002/aenm.202003712
G. Tong, J. Zhang, T. Bu, L.K. Ono, C. Zhang et al., Holistic strategies lead to enhanced efficiency and stability of hybrid chemical vapor deposition based perovskite solar cells and modules. Adv. Energy Mater. 13, 2300153 (2023). https://doi.org/10.1002/aenm.202300153
G. Tong, L.K. Ono, Y. Liu, H. Zhang, T. Bu et al., Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 13, 155 (2021). https://doi.org/10.1007/s40820-021-00675-7
Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry et al., Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 1–20 (2018). https://doi.org/10.1038/natrevmats.2018.17
M. Jung, S.-G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 48, 2011–2038 (2019). https://doi.org/10.1039/C8CS00656C
L. Zeng, S. Chen, K. Forberich, C.J. Brabec, Y. Mai et al., Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy Environ. Sci. 13, 4666–4690 (2020). https://doi.org/10.1039/D0EE02575E
F. Yang, D. Jang, L. Dong, S. Qiu, A. Distler et al., Upscaling solution-processed perovskite photovoltaics. Adv. Energy Mater. 11, 2101973 (2021). https://doi.org/10.1002/aenm.202101973
S. Ternes, F. Laufer, U.W. Paetzold, Modeling and fundamental dynamics of vacuum, gas, and antisolvent quenching for scalable perovskite processes. Adv. Sci. 11, 2308901 (2024). https://doi.org/10.1002/advs.202308901
A. Babayigit, J. D’Haen, H.-G. Boyen, B. Conings, Gas quenching for perovskite thin film deposition. Joule 2, 1205–1209 (2018). https://doi.org/10.1016/j.joule.2018.06.009
Y. Yu, F. Zhang, T. Hou, X. Sun, H. Yu et al., A review on gas-quenching technique for efficient perovskite solar cells. Sol. RRL 5, 2100386 (2021). https://doi.org/10.1002/solr.202100386
S. Qiu, M. Majewski, L. Dong, D. Jang, V.M.L. Corre et al., In situ probing the crystallization kinetics in gas-quenching-assisted coating of perovskite films. Adv. Energy Mater. 14, 2303210 (2024). https://doi.org/10.1002/aenm.202303210
H. Hu, M. Singh, X. Wan, J. Tang, C.-W. Chu et al., Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. J. Mater. Chem. A 8, 1578–1603 (2020). https://doi.org/10.1039/C9TA11245F
J. Feng, Y. Jiao, H. Wang, X. Zhu, Y. Sun et al., High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ. Sci. 14, 3035–3043 (2021). https://doi.org/10.1039/D1EE00634G
R. Szostak, S. Sanchez, P.E. Marchezi, A.S. Marques, J.C. Silva et al., Revealing the perovskite film formation using the gas quenching method by in situ GIWAXS: morphology, properties, and device performance. Adv. Funct. Mater. 31, 2007473 (2021). https://doi.org/10.1002/adfm.202007473
Y.M. Xie, Q. Xue, H.L. Yip, Metal-halide perovskite crystallization kinetics: a review of experimental and theoretical studies. Adv. Energy Mater. 11, 2100784 (2021). https://doi.org/10.1002/aenm.202100784
F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020). https://doi.org/10.1002/aenm.201902579
D.P. McMeekin, P. Holzhey, S.O. Fürer, S.P. Harvey, L.T. Schelhas et al., Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023). https://doi.org/10.1038/s41563-022-01399-8
S. Chen, X. Dai, S. Xu, H. Jiao, L. Zhao et al., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021). https://doi.org/10.1126/science.abi6323
X. Dai, Y. Deng, C.H. Van Brackle, S. Chen, P.N. Rudd et al., Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 10, 1903108 (2020). https://doi.org/10.1002/aenm.201903108
M. Wang, W. Wu, Y. Liu, S. Yuan, D. Tian et al., Buried interface modulation via preferential crystallization in all-inorganic perovskite solar cells: the case of multifunctional Ti3C2Tx. Adv. Funct. Mater. 33, 2300700 (2023). https://doi.org/10.1002/adfm.202300700
S. Chen, X. Xiao, B. Chen, L.L. Kelly, J. Zhao et al., Crystallization in one-step solution deposition of perovskite films: Upward or downward? Sci. Adv. 7, eabb2412 (2021). https://doi.org/10.1126/sciadv.abb2412
X. Cao, L. Zhi, Y. Li, F. Fang, X. Cui et al., Fabrication of perovskite films with large columnar grains via solvent-mediated Ostwald ripening for efficient inverted perovskite solar cells. ACS Appl. Energy Mater. 1, 868–875 (2018). https://doi.org/10.1021/acsaem.7b00300
H. Su, J. Zhang, Y. Hu, Y. Yao, X. Zheng et al., Modulation on electrostatic potential of passivator for highly efficient and stable perovskite solar cells. Adv. Funct. Mater. 33, 2213123 (2023). https://doi.org/10.1002/adfm.202213123
J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu et al., Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide. ACS Energy Lett. 4, 2913–2921 (2019). https://doi.org/10.1021/acsenergylett.9b02375
H. Zhang, Q. Tian, W. Xiang, Y. Du, Z. Wang et al., Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells. Adv. Mater. 35, 2301140 (2023). https://doi.org/10.1002/adma.202301140
H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021). https://doi.org/10.1002/adma.202006435
M. Ma, Y. Zeng, Y. Yang, C. Zhang, Y. Ma et al., Dendrimer modification strategy based on the understanding of the photovoltaic mechanism of a perovskite device under full sun and indoor light. ACS Appl. Mater. Interfaces 15, 25550–25557 (2023). https://doi.org/10.1021/acsami.3c02979
L. Liu, A. Mei, T. Liu, P. Jiang, Y. Sheng et al., Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790–1793 (2015). https://doi.org/10.1021/ja5125594
B. Zhang, J. Oh, Z. Sun, Y. Cho, S. Jeong et al., Buried guanidinium passivator with favorable binding energy for perovskite solar cells. ACS Energy Lett. 8, 1848–1856 (2023). https://doi.org/10.1021/acsenergylett.2c02881
R. Chen, J. Wang, Z. Liu, F. Ren, S. Liu et al., Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839 (2023). https://doi.org/10.1038/s41560-023-01288-7