Enhanced Photocatalytic Activity of Nanoparticle-Aggregated Ag–AgX(X = Cl, Br)@TiO2 Microspheres Under Visible Light
Corresponding Author: Chenguo Hu
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 49
Abstract
Ag–AgX(X = Cl, Br)@TiO2 nanoparticle-aggregated spheres with different mass ratio of R = TiO2/Ag(X) from 35:1 to 5:1 were synthesized by a facile sol–gel technique with post-photoreduction. The photocatalytic activities of both Ag–AgCl@TiO2 and Ag–AgBr@TiO2 under visible light are effectively improved by ~3 times relative to TiO2 NPAS under the simulated sunlight for the decomposition of methyl orange (MO). Ag–AgBr@TiO2 showed 30% improvement and less stable in photocatalytic activity than that of AgCl@TiO2. The role of Ag and AgX nanoparticles on the surface of Ag–AgX(X = Cl, Br)@TiO2 was discussed. Ag on these samples not only can efficiently harvest visible light especially for AgCl, but also efficiently separate excited electrons and holes via the fast electron transfer from AgX(X = Cl, Br) to metal Ag nanoparticles and then to TiO2-aggregated spheres on the surface of heterostructure. On the basis of their efficient and stable photocatalytic activities under visible-light irradiation, these photocatalysts could be widely used for degradation of organic pollutants in aqueous solution.
Highlights:
1 Ag–AgX(X = Cl, Br)@TiO2 nanoparticle-aggregated spheres (NPAS) have been designed as a photocatalyst, in which AgX works as light harvester, Ag conducts as electron trapping and accumulating site, and TiO2 acts as electron collecting and photocatalytic site.
2 The photocatalytic activities of Ag–AgX(X = Cl, Br)@TiO2 by degradation of methyl orange (MO) under visible light were improved by ~3 times relative to TiO2 NPAS under simulated sunlight.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Wan, M. Long, D. Zhou, L. Zhang, W. Cai, Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide. Nano-Micro Lett. 4(2), 90–97 (2012). doi:10.1007/BF03353698
- M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro Lett. 3(4), 236–241 (2011). doi:10.1007/BF03353678
- Y. Dong, J. Li, X. Li, B. Zhou, The promotion effect of low-molecular hydroxyl compounds on the nano-photoelectrocatalytic degradation of fulvic acid and mechanism. Nano-Micro Lett 8(4), 320–327 (2016). doi:10.1007/s40820-016-0091-7
- M. Wang, W. Li, Y. Zhao, S. Gu, F. Wang, F.Z. Wang, H.D. Li, X.T. Liu, C.J. Ren, Synthesis of BiVO4–TiO2–BiVO4 three-layer composite photocatalyst: effect of layered heterojunction structure on the enhancement of photocatalytic activity. RSC Adv. 79(6), 75482–75490 (2016). doi:10.1039/C6RA16796A
- J. Liu, L. Ruan, S.-B. Adeloju, Y. Wu, BiOI/TiO2 nanotube arrays, a unique flake-tube structured p-n junction with remarkable visible-light photoelectrocatalytic performance and stability. Dalton Trans. 43(4), 1706–1715 (2014). doi:10.1039/C3DT52394B
- G.H. Jiang, R.J. Wang, Y. Wang, X.K. Sun, Preparation of Cu2O/TiO2 Composite porous carbon microspheres as efficient visible light-responsive photocatalysts. Powder Technol. 212(1), 284–288 (2011). doi:10.1016/j.powtec.2011.04.025
- A. Rahman, Y.C. Ching, K.Y. Ching, A.K. Chakraborty, N.S. Liou, Surface modification of natural fiber using Bi2O3/TiO2 composite for photocatalytic self-cleaning. BioResources 10(4), 7405–7418 (2015). doi:10.15376/biores.10.4.7405-7418
- H. Hua, Y. Xi, Z.H. Zhao, X. Xie, C. Hu, H. Liu, Gram-scale wet chemical synthesis of Ag2O/TiO2 aggregated sphere heterostructure with high photocatalytic activity. Mater. Lett. 91(2), 81–83 (2013). doi:10.1016/j.matlet.2012.09.068
- A. Takai, P.V. Kamat, Capture, store, and discharge shuttling photogenerated electrons across TiO2-silver interface. ACS Nano 5(9), 7369–7376 (2011). doi:10.1021/nn202294b
- W.B. Li, F.X. Hua, J.G. Yue, J.W. Li, Ag@AgCl plasmon-induced sensitized ZnO particle for high-efficiency photocatalytic property under visible light. Appl. Surf. Sci. 285(12), 490–497 (2013). doi:10.1016/j.apsusc.2013.08.082
- F. Zhang, Z. Cheng, L. Cui, T. Duan, A. Anan, C. Zhang, L. Kang, Controllable synthesis of Ag@TiO2 heterostructures with enhanced photocatalytic activities under UV and visible excitation. RSC Adv. 6(3), 1844–1850 (2015). doi:10.1039/C5RA17762F
- R. Long, K. Mao, M. Gong, S. Zhou, J. Hu et al., Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effect. Angew. Chem. Int. Ed. 53(12), 3205–3209 (2014). doi:10.1002/anie.201309660
- P. Wang, B. Huang, X. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. 47(41), 7931–7933 (2008). doi:10.1002/anie.200802483
- J. Yu, G. Dai, B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 113(37), 16394–16401 (2009). doi:10.1021/jp905247j
- J. Zhou, Y. Cheng, J. Yu, Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J. Photochem. Photobiol., A 223(2), 82–87 (2011). doi:10.1016/j.jphotochem.2011.07.016
- MathSciNet
- L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal. 2(8), 1677–1683 (2012). doi:10.1021/cs300213m
- J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2. Appl. Surf. Sci. 257(16), 7083–7089 (2011). doi:10.1016/j.apsusc.2011.03.046
- Y. Fan, W. Ma, D. Han, S. Gan, X. Dong, L. Niu, Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 27(25), 3767–3773 (2015). doi:10.1002/adma.201500391
- B. Cai, J. Wang, D. Han, S. Gan, Q. Zhang, Z. Wu, L. Niu, Ternary alloyed AgClxBr 1-x nanocrystals: facile modulation of electronic structures toward advanced photocatalytic performance. Nanoscale 5(22), 10989–10995 (2013). doi:10.1039/c3nr03365a
- H. Li, S. Gan, H. Wang, D. Han, L. Niu, Intercorrelated superhybrid of AgBr supported on graphitic C3N4-decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv. Mater. 27(43), 6906–6913 (2015). doi:10.1002/adma.201502755
- X. Wang, Y. Tang, Z. Chen, T.T. Lim, Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria. J. Mater. Chem. 22(43), 23149–23158 (2012). doi:10.1039/c2jm35503e
- J. Tejeda, N.J. Shevchick, W. Braun, A. Goldmann, M. Cardona, Valence bands of AgCl and AgBr: UV photoemission and theory. Phys. Rev. B 12(12), 1557–1566 (1975). doi:10.1103/PhysRevB.12.1557
- S. Higashimoto, Y. Nakai, M. Azuma, M. Takahashi, Y. Sakata, One-pot synthesis of imine from benzyl alcohol and nitrobenzene on visible-light responsive CdS–TiO2 photocatalysts. RSC Adv. 4(71), 37662–37668 (2014). doi:10.1039/C4RA06231K
- H. Hua, C.G. Hu, Z.H. Zhao, H. Liu, X. Xie, Y. Xi, Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation. Electrochim. Acta 105(26), 130–136 (2013). doi:10.1016/j.electacta.2013.05.002
- G. Prieto, H. Tüysüz, N. Duyckaerts, J. Knossalla, G. Wang, F. Schüth, Hollow nano- and microstructures as catalysts. Chem. Rev. 116(22), 14056–14119 (2016). doi:10.1021/acs.chemrev.6b00374
- Q. Li, F. Wang, L. Sun, Z. Jiang, T. Ye, M. Chen, Q. Bai, C. Wang, X. Han, Design and synthesis of Cu@CuS yolk–shell structures with enhanced photocatalytic activity. Nano-Micro Lett. 9(3), 35 (2017). doi:10.1007/s40820-017-0135-7
- H. Wei, L. Wang, Z. Li, S. Ni, Q. Zhao, Synthesis and photocatalytic activity of one-dimensional CdS@TiO2 core–shell heterostructures. Nano-Micro Lett. 3(1), 6–11 (2011). doi:10.1007/BF03353645
- P. Zhang, L. Wang, X. Zhang, J. Hu, G. Shao, Three-dimensional porous networks of ultra-long electrospun SnO2 nanotubes with high photocatalytic performance. Nano-Micro Lett. 7(1), 86–95 (2015). doi:10.1007/s40820-014-0022-4
- W. Liu, D. Chen, S.H. Yoo, S.O. Cho, Hierarchical visible-light-response Ag/AgCl@TiO2 plasmonic photocatalysts for organic dye degradation. Nanotechnology 24(40), 405706 (2013). doi:10.1088/0957-4484/24/40/405706
- G. Calzaferri, D. Brühwiler, S. Glaus, D. Schürch, A.o Currao, C. Leiggener, Quantum-sized silver, silver chloride and silver sulfide clusters. J. Imaging Sci. Technol. 45(4), 331–339 (2001)
- W.J. Zhou, L.G. Gai, P.G. Hu, J.J. Cui, X.Y. Liu et al., Phase transformation of TiO2 nanobelts and TiO2 (B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity. CrystEngComm 13(22), 6643–6649 (2011). doi:10.1039/c1ce05638g
- H.F. Dang, X.F. Dong, Y.C. Dong, Y. Zhang, S. Hampshire, TiO2 nanotubes coupled with nano-Cu(OH)2 for highly efficient photocatalytic hydrogen production. Int. J. Hydrog Energy 38(5), 2126–2135 (2013). doi:10.1016/j.ijhydene.2012.11.135
- Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, J.P. Claverie, Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method. Small 10(18), 3775–3782 (2014). doi:10.1002/smll.201303489
- J.F. Hamilton, Physical properties of silver halide microcrystals. Photogr. Sci. Eng. 18(5), 493–500 (1974)
- Y. Kang, Q. Leng, D.L. Guo, D.Z. Yang, Y.P. Pu, C.G. Hu, Room-temperature magnetism of ceria nanocubes by inductively transferring electrons to Ce atoms from nearby oxygen vacancy. Nano-Micro Lett. 8(1), 13–19 (2016). doi:10.1007/s40820-015-0056-2
- W.J. Zhou, G.J. Du, P.G. Hu, G.H. Li, D.Z. Wang et al., Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance. J. Mater. Chem. 21(22), 7937–7945 (2011). doi:10.1039/c1jm10588d
- W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl. Mater. Interfaces. 2(8), 2385–2392 (2010). doi:10.1021/am100394x
- X. Liu, D. Zhang, B. Guo, Y. Qu, G. Tian, H. Yue, S. Feng, Recyclable and visible light sensitive Ag–AgBr/TiO2: surface adsorption and photodegradation of MO. Appl. Surf. Sci. 353, 913–923 (2015). doi:10.1016/j.apsusc.2015.06.206
- S. Liu, C. Han, Z.R. Tang, Y.J. Xu, Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Mater. Horiz. 3(4), 270–282 (2016). doi:10.1039/C6MH00063K
- J.L. Liu, C.L. Zhang, B. Ma, T. Yang, X. Gu, X. Wang, C.G. Hu, Rational design of photoelectron-trapped/accumulated site and transportation path for superior photocatalyst. Nano Energy 38, 271–280 (2017). doi:10.1016/j.nanoen.2017.05.052
References
L. Wan, M. Long, D. Zhou, L. Zhang, W. Cai, Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide. Nano-Micro Lett. 4(2), 90–97 (2012). doi:10.1007/BF03353698
M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro Lett. 3(4), 236–241 (2011). doi:10.1007/BF03353678
Y. Dong, J. Li, X. Li, B. Zhou, The promotion effect of low-molecular hydroxyl compounds on the nano-photoelectrocatalytic degradation of fulvic acid and mechanism. Nano-Micro Lett 8(4), 320–327 (2016). doi:10.1007/s40820-016-0091-7
M. Wang, W. Li, Y. Zhao, S. Gu, F. Wang, F.Z. Wang, H.D. Li, X.T. Liu, C.J. Ren, Synthesis of BiVO4–TiO2–BiVO4 three-layer composite photocatalyst: effect of layered heterojunction structure on the enhancement of photocatalytic activity. RSC Adv. 79(6), 75482–75490 (2016). doi:10.1039/C6RA16796A
J. Liu, L. Ruan, S.-B. Adeloju, Y. Wu, BiOI/TiO2 nanotube arrays, a unique flake-tube structured p-n junction with remarkable visible-light photoelectrocatalytic performance and stability. Dalton Trans. 43(4), 1706–1715 (2014). doi:10.1039/C3DT52394B
G.H. Jiang, R.J. Wang, Y. Wang, X.K. Sun, Preparation of Cu2O/TiO2 Composite porous carbon microspheres as efficient visible light-responsive photocatalysts. Powder Technol. 212(1), 284–288 (2011). doi:10.1016/j.powtec.2011.04.025
A. Rahman, Y.C. Ching, K.Y. Ching, A.K. Chakraborty, N.S. Liou, Surface modification of natural fiber using Bi2O3/TiO2 composite for photocatalytic self-cleaning. BioResources 10(4), 7405–7418 (2015). doi:10.15376/biores.10.4.7405-7418
H. Hua, Y. Xi, Z.H. Zhao, X. Xie, C. Hu, H. Liu, Gram-scale wet chemical synthesis of Ag2O/TiO2 aggregated sphere heterostructure with high photocatalytic activity. Mater. Lett. 91(2), 81–83 (2013). doi:10.1016/j.matlet.2012.09.068
A. Takai, P.V. Kamat, Capture, store, and discharge shuttling photogenerated electrons across TiO2-silver interface. ACS Nano 5(9), 7369–7376 (2011). doi:10.1021/nn202294b
W.B. Li, F.X. Hua, J.G. Yue, J.W. Li, Ag@AgCl plasmon-induced sensitized ZnO particle for high-efficiency photocatalytic property under visible light. Appl. Surf. Sci. 285(12), 490–497 (2013). doi:10.1016/j.apsusc.2013.08.082
F. Zhang, Z. Cheng, L. Cui, T. Duan, A. Anan, C. Zhang, L. Kang, Controllable synthesis of Ag@TiO2 heterostructures with enhanced photocatalytic activities under UV and visible excitation. RSC Adv. 6(3), 1844–1850 (2015). doi:10.1039/C5RA17762F
R. Long, K. Mao, M. Gong, S. Zhou, J. Hu et al., Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effect. Angew. Chem. Int. Ed. 53(12), 3205–3209 (2014). doi:10.1002/anie.201309660
P. Wang, B. Huang, X. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. 47(41), 7931–7933 (2008). doi:10.1002/anie.200802483
J. Yu, G. Dai, B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 113(37), 16394–16401 (2009). doi:10.1021/jp905247j
J. Zhou, Y. Cheng, J. Yu, Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films. J. Photochem. Photobiol., A 223(2), 82–87 (2011). doi:10.1016/j.jphotochem.2011.07.016
MathSciNet
L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal. 2(8), 1677–1683 (2012). doi:10.1021/cs300213m
J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2. Appl. Surf. Sci. 257(16), 7083–7089 (2011). doi:10.1016/j.apsusc.2011.03.046
Y. Fan, W. Ma, D. Han, S. Gan, X. Dong, L. Niu, Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 27(25), 3767–3773 (2015). doi:10.1002/adma.201500391
B. Cai, J. Wang, D. Han, S. Gan, Q. Zhang, Z. Wu, L. Niu, Ternary alloyed AgClxBr 1-x nanocrystals: facile modulation of electronic structures toward advanced photocatalytic performance. Nanoscale 5(22), 10989–10995 (2013). doi:10.1039/c3nr03365a
H. Li, S. Gan, H. Wang, D. Han, L. Niu, Intercorrelated superhybrid of AgBr supported on graphitic C3N4-decorated nitrogen-doped graphene: high engineering photocatalytic activities for water purification and CO2 reduction. Adv. Mater. 27(43), 6906–6913 (2015). doi:10.1002/adma.201502755
X. Wang, Y. Tang, Z. Chen, T.T. Lim, Highly stable heterostructured Ag–AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria. J. Mater. Chem. 22(43), 23149–23158 (2012). doi:10.1039/c2jm35503e
J. Tejeda, N.J. Shevchick, W. Braun, A. Goldmann, M. Cardona, Valence bands of AgCl and AgBr: UV photoemission and theory. Phys. Rev. B 12(12), 1557–1566 (1975). doi:10.1103/PhysRevB.12.1557
S. Higashimoto, Y. Nakai, M. Azuma, M. Takahashi, Y. Sakata, One-pot synthesis of imine from benzyl alcohol and nitrobenzene on visible-light responsive CdS–TiO2 photocatalysts. RSC Adv. 4(71), 37662–37668 (2014). doi:10.1039/C4RA06231K
H. Hua, C.G. Hu, Z.H. Zhao, H. Liu, X. Xie, Y. Xi, Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation. Electrochim. Acta 105(26), 130–136 (2013). doi:10.1016/j.electacta.2013.05.002
G. Prieto, H. Tüysüz, N. Duyckaerts, J. Knossalla, G. Wang, F. Schüth, Hollow nano- and microstructures as catalysts. Chem. Rev. 116(22), 14056–14119 (2016). doi:10.1021/acs.chemrev.6b00374
Q. Li, F. Wang, L. Sun, Z. Jiang, T. Ye, M. Chen, Q. Bai, C. Wang, X. Han, Design and synthesis of Cu@CuS yolk–shell structures with enhanced photocatalytic activity. Nano-Micro Lett. 9(3), 35 (2017). doi:10.1007/s40820-017-0135-7
H. Wei, L. Wang, Z. Li, S. Ni, Q. Zhao, Synthesis and photocatalytic activity of one-dimensional CdS@TiO2 core–shell heterostructures. Nano-Micro Lett. 3(1), 6–11 (2011). doi:10.1007/BF03353645
P. Zhang, L. Wang, X. Zhang, J. Hu, G. Shao, Three-dimensional porous networks of ultra-long electrospun SnO2 nanotubes with high photocatalytic performance. Nano-Micro Lett. 7(1), 86–95 (2015). doi:10.1007/s40820-014-0022-4
W. Liu, D. Chen, S.H. Yoo, S.O. Cho, Hierarchical visible-light-response Ag/AgCl@TiO2 plasmonic photocatalysts for organic dye degradation. Nanotechnology 24(40), 405706 (2013). doi:10.1088/0957-4484/24/40/405706
G. Calzaferri, D. Brühwiler, S. Glaus, D. Schürch, A.o Currao, C. Leiggener, Quantum-sized silver, silver chloride and silver sulfide clusters. J. Imaging Sci. Technol. 45(4), 331–339 (2001)
W.J. Zhou, L.G. Gai, P.G. Hu, J.J. Cui, X.Y. Liu et al., Phase transformation of TiO2 nanobelts and TiO2 (B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity. CrystEngComm 13(22), 6643–6649 (2011). doi:10.1039/c1ce05638g
H.F. Dang, X.F. Dong, Y.C. Dong, Y. Zhang, S. Hampshire, TiO2 nanotubes coupled with nano-Cu(OH)2 for highly efficient photocatalytic hydrogen production. Int. J. Hydrog Energy 38(5), 2126–2135 (2013). doi:10.1016/j.ijhydene.2012.11.135
Y. Sang, Z. Zhao, J. Tian, P. Hao, H. Jiang, H. Liu, J.P. Claverie, Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method. Small 10(18), 3775–3782 (2014). doi:10.1002/smll.201303489
J.F. Hamilton, Physical properties of silver halide microcrystals. Photogr. Sci. Eng. 18(5), 493–500 (1974)
Y. Kang, Q. Leng, D.L. Guo, D.Z. Yang, Y.P. Pu, C.G. Hu, Room-temperature magnetism of ceria nanocubes by inductively transferring electrons to Ce atoms from nearby oxygen vacancy. Nano-Micro Lett. 8(1), 13–19 (2016). doi:10.1007/s40820-015-0056-2
W.J. Zhou, G.J. Du, P.G. Hu, G.H. Li, D.Z. Wang et al., Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance. J. Mater. Chem. 21(22), 7937–7945 (2011). doi:10.1039/c1jm10588d
W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl. Mater. Interfaces. 2(8), 2385–2392 (2010). doi:10.1021/am100394x
X. Liu, D. Zhang, B. Guo, Y. Qu, G. Tian, H. Yue, S. Feng, Recyclable and visible light sensitive Ag–AgBr/TiO2: surface adsorption and photodegradation of MO. Appl. Surf. Sci. 353, 913–923 (2015). doi:10.1016/j.apsusc.2015.06.206
S. Liu, C. Han, Z.R. Tang, Y.J. Xu, Heterostructured semiconductor nanowire arrays for artificial photosynthesis. Mater. Horiz. 3(4), 270–282 (2016). doi:10.1039/C6MH00063K
J.L. Liu, C.L. Zhang, B. Ma, T. Yang, X. Gu, X. Wang, C.G. Hu, Rational design of photoelectron-trapped/accumulated site and transportation path for superior photocatalyst. Nano Energy 38, 271–280 (2017). doi:10.1016/j.nanoen.2017.05.052