Electrostatic Interaction Tailored Anion-Rich Solvation Sheath Stabilizing High-Voltage Lithium Metal Batteries
Corresponding Author: Baohua Li
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 147
Abstract
Through tailoring interfacial chemistry, electrolyte engineering is a facile yet effective strategy for high-performance lithium (Li) metal batteries, where the solvation structure is critical for interfacial chemistry. Herein, the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed. The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath, inducing stable solid electrolyte interphase with fast Li+ transport kinetics on the anode. This as-designed electrolyte exhibits excellent compatibility with Li metal anode (a Li deposition/stripping Coulombic efficiency of 99.3%) and high-voltage LiCoO2 cathode. Consequently, the 50 μm-thin Li||high-loading LiCoO2 cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V, lean electrolyte, and wide temperature range (− 20 to 60 °C). This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for high-performance Li metal batteries.
Highlights:
1 The effect of electrostatic interaction on regulating an anion-rich solvation in electrolyte is firstly proposed.
2 The moderate electrostatic interaction between anion and solvent promotes anion-rich solvation sheath, inducing a stable electrolyte|electrode interface with fast Li+ transport kinetics.
3 The outstanding electrochemical performance of 50 μm-thin Li||high-loading LiCoO2 batteries is achieved at high voltage of 4.5 V (even up to 4.6 V), lean electrolyte of 15 μL, and wide temperature range of − 20 to 60 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- B. Han, D. Xu, S.S. Chi, D. He, Z. Zhang et al., 500 wh kg−1 class Li metal battery enabled by a self-organized core–shell composite anode. Adv. Mater. 32(42), 2004793 (2020). https://doi.org/10.1002/adma.202004793
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017). https://doi.org/10.1038/nmat4834
- S.K. Heiskanen, J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3(10), 2322–2333 (2019). https://doi.org/10.1016/j.joule.2019.08.018
- H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7(1), 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425
- X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33(52), 2007945 (2021). https://doi.org/10.1002/adma.202007945
- Z. Yu, N.P. Balsara, O. Borodin, A.A. Gewirth, N.T. Hahn et al., Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS Energy Lett. 7(1), 461–470 (2022). https://doi.org/10.1021/acsenergylett.1c02391
- J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard et al., High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). https://doi.org/10.1038/ncomms7362
- S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102
- X. Ren, P. Gao, L. Zou, S. Jiao, X. Cao et al., Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. PNAS 117(46), 28603 (2020). https://doi.org/10.1073/pnas.2010852117
- W. Xue, M. Huang, Y. Li, Y.G. Zhu, R. Gao et al., Ultra-high-voltage Ni-rich layered cathodes in practical li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6(5), 495–505 (2021). https://doi.org/10.1038/s41560-021-00792-y
- Y.X. Yao, X. Chen, C. Yan, X.Q. Zhang, W.L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60(8), 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
- Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao et al., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020). https://doi.org/10.1038/s41560-020-0634-5
- Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143(44), 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
- Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. 59(9), 3505–3510 (2020). https://doi.org/10.1002/anie.201914250
- J. Fu, X. Ji, J. Chen, L. Chen, X. Fan et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 59(49), 22194–22201 (2020). https://doi.org/10.1002/anie.202009575
- K.M. Abraham, Z. Jiang, B. Carroll, Highly conductive peo-like polymer electrolytes. Chem. Mater. 9(9), 1978–1988 (1997). https://doi.org/10.1021/cm970075a
- B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2018). https://doi.org/10.1002/aenm.201702097
- B. Hess, C. Kutzner, D. Spoel, E. Lindahl, Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008). https://doi.org/10.1021/ct700301q
- U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
- B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, Lincs: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H
- V. Amendola, L. Fabbrizzi, L. Mosca, Anion recognition by hydrogen bonding: urea-based receptors. Chem. Soc. Rev. 39(10), 3889–3915 (2010). https://doi.org/10.1039/B822552B
- S. Saha, Anion-induced electron transfer. Acc. Chem. Res. 51(9), 2225–2236 (2018). https://doi.org/10.1021/acs.accounts.8b00197
- F. Ren, Z. Li, J. Chen, P. Huguet, Z. Peng et al., Solvent–diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14(3), 4211–4219 (2022). https://doi.org/10.1021/acsami.1c21638
- J. Wu, X. Wang, Q. Liu, S. Wang, D. Zhou et al., A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat. Commun. 12, 5746 (2021). https://doi.org/10.1038/s41467-021-26073-6
- P.K. Muhuri, B. Das, D.K. Hazra, Ionic association of some lithium salts in 1,2-dimethoxyethane. A raman spectroscopic and conductivity study. J. Phys. Chem. B 101(17), 3329–3332 (1997). https://doi.org/10.1021/jp963747d
- Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem. Commun. 49(95), 11194–11196 (2013). https://doi.org/10.1039/C3CC46665E
- L.L. Jiang, C. Yan, Y.X. Yao, W. Cai, J.Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60(7), 3402–3406 (2020). https://doi.org/10.1002/anie.202009738
- P.R. Olivato, S.A. Guerrero, M.H. Yreijo, R. Rittner, C.F. Tormena, Conformational and electronic interaction studies of 2-fluoro-substituted N. N-dimethylacetamides. J. Mol. Struct. 607(2), 87–99 (2002). https://doi.org/10.1016/S0022-2860(01)00761-X
- S.D. Han, J.L. Allen, E. Jónsson, P. Johansson, D.W. McOwen et al., Solvate structures and computational/spectroscopic characterization of lithium difluoro(oxalato)borate (lidfob) electrolytes. J. Phys. Chem. C 117(11), 5521–5531 (2013). https://doi.org/10.1021/jp309102c
- Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7(1), 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
- H. Jia, Y. Xu, X. Zhang, S.D. Burton, P. Gao et al., Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries. Angew. Chem. Int. Ed. 60(23), 12999–13006 (2021). https://doi.org/10.1002/anie.202102403
- Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun et al., An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy Mater. 10(14), 1903843 (2020). https://doi.org/10.1002/aenm.201903843
- J.G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120(24), 13312–13348 (2020). https://doi.org/10.1021/acs.chemrev.0c00275
- Y. Gao, T. Rojas, K. Wang, S. Liu, D. Wang et al., Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5(7), 534–542 (2020). https://doi.org/10.1038/s41560-020-0640-7
- X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai et al., Tailoring electrolyte solvation chemistry toward an inorganic-rich solid-electrolyte interphase at a Li metal anode. ACS Energy Lett. 6(6), 2054–2063 (2021). https://doi.org/10.1021/acsenergylett.1c00647
- S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
- J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen et al., Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139(33), 11550–11558 (2017). https://doi.org/10.1021/jacs.7b05251
- X. Fan, X. Ji, F. Han, J. Yue, J. Chen et al., Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4(12), eaau9245 (2018). https://doi.org/10.1126/sciadv.aau9245
- P. Jaumaux, J. Wu, D. Shanmukaraj, Y. Wang, D. Zhou et al., Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31(10), 2008644 (2020). https://doi.org/10.1002/adfm.202008644
- X. Lin, G. Zhou, J. Liu, J. Yu, M.B. Effat et al., Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Adv. Energy Mater. 10(43), 2001235 (2020). https://doi.org/10.1002/aenm.202001235
- X. Ren, X. Zhang, Z. Shadike, L. Zou, H. Jia et al., Designing advanced in situ electrode/electrolyte interphases for wide temperature operation of 4.5 V LiLiCoO2 batteries. Adv. Mater. 32(49), 2004898 (2020). https://doi.org/10.1002/adma.202004898
- D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15(2), 550–578 (2022). https://doi.org/10.1039/D1EE01789F
- Y. Li, S. Wan, G.M. Veith, R.R. Unocic, M.P. Paranthaman et al., A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv. Energy Mater. 7(4), 1601397 (2017). https://doi.org/10.1002/aenm.201601397
- Q. Wang, Z. Yao, C. Zhao, T. Verhallen, D.P. Tabor et al., Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 11, 4188 (2020). https://doi.org/10.1038/s41467-020-17976-x
- S. Liu, D. Liu, S. Wang, X. Cai, K. Qian et al., Understanding the cathode electrolyte interface formation in aqueous electrolyte by scanning electrochemical microscopy. J. Mater. Chem. A 7(21), 12993–12996 (2019). https://doi.org/10.1039/C9TA03199E
References
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
B. Han, D. Xu, S.S. Chi, D. He, Z. Zhang et al., 500 wh kg−1 class Li metal battery enabled by a self-organized core–shell composite anode. Adv. Mater. 32(42), 2004793 (2020). https://doi.org/10.1002/adma.202004793
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017). https://doi.org/10.1038/nmat4834
S.K. Heiskanen, J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3(10), 2322–2333 (2019). https://doi.org/10.1016/j.joule.2019.08.018
H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7(1), 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425
X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33(52), 2007945 (2021). https://doi.org/10.1002/adma.202007945
Z. Yu, N.P. Balsara, O. Borodin, A.A. Gewirth, N.T. Hahn et al., Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS Energy Lett. 7(1), 461–470 (2022). https://doi.org/10.1021/acsenergylett.1c02391
J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard et al., High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). https://doi.org/10.1038/ncomms7362
S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30(21), 1706102 (2018). https://doi.org/10.1002/adma.201706102
X. Ren, P. Gao, L. Zou, S. Jiao, X. Cao et al., Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. PNAS 117(46), 28603 (2020). https://doi.org/10.1073/pnas.2010852117
W. Xue, M. Huang, Y. Li, Y.G. Zhu, R. Gao et al., Ultra-high-voltage Ni-rich layered cathodes in practical li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6(5), 495–505 (2021). https://doi.org/10.1038/s41560-021-00792-y
Y.X. Yao, X. Chen, C. Yan, X.Q. Zhang, W.L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60(8), 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao et al., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020). https://doi.org/10.1038/s41560-020-0634-5
Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143(44), 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. 59(9), 3505–3510 (2020). https://doi.org/10.1002/anie.201914250
J. Fu, X. Ji, J. Chen, L. Chen, X. Fan et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 59(49), 22194–22201 (2020). https://doi.org/10.1002/anie.202009575
K.M. Abraham, Z. Jiang, B. Carroll, Highly conductive peo-like polymer electrolytes. Chem. Mater. 9(9), 1978–1988 (1997). https://doi.org/10.1021/cm970075a
B.D. Adams, J. Zheng, X. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2018). https://doi.org/10.1002/aenm.201702097
B. Hess, C. Kutzner, D. Spoel, E. Lindahl, Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008). https://doi.org/10.1021/ct700301q
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee et al., A smooth p mesh ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, Lincs: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997). https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H
V. Amendola, L. Fabbrizzi, L. Mosca, Anion recognition by hydrogen bonding: urea-based receptors. Chem. Soc. Rev. 39(10), 3889–3915 (2010). https://doi.org/10.1039/B822552B
S. Saha, Anion-induced electron transfer. Acc. Chem. Res. 51(9), 2225–2236 (2018). https://doi.org/10.1021/acs.accounts.8b00197
F. Ren, Z. Li, J. Chen, P. Huguet, Z. Peng et al., Solvent–diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14(3), 4211–4219 (2022). https://doi.org/10.1021/acsami.1c21638
J. Wu, X. Wang, Q. Liu, S. Wang, D. Zhou et al., A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat. Commun. 12, 5746 (2021). https://doi.org/10.1038/s41467-021-26073-6
P.K. Muhuri, B. Das, D.K. Hazra, Ionic association of some lithium salts in 1,2-dimethoxyethane. A raman spectroscopic and conductivity study. J. Phys. Chem. B 101(17), 3329–3332 (1997). https://doi.org/10.1021/jp963747d
Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem. Commun. 49(95), 11194–11196 (2013). https://doi.org/10.1039/C3CC46665E
L.L. Jiang, C. Yan, Y.X. Yao, W. Cai, J.Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60(7), 3402–3406 (2020). https://doi.org/10.1002/anie.202009738
P.R. Olivato, S.A. Guerrero, M.H. Yreijo, R. Rittner, C.F. Tormena, Conformational and electronic interaction studies of 2-fluoro-substituted N. N-dimethylacetamides. J. Mol. Struct. 607(2), 87–99 (2002). https://doi.org/10.1016/S0022-2860(01)00761-X
S.D. Han, J.L. Allen, E. Jónsson, P. Johansson, D.W. McOwen et al., Solvate structures and computational/spectroscopic characterization of lithium difluoro(oxalato)borate (lidfob) electrolytes. J. Phys. Chem. C 117(11), 5521–5531 (2013). https://doi.org/10.1021/jp309102c
Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7(1), 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
H. Jia, Y. Xu, X. Zhang, S.D. Burton, P. Gao et al., Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries. Angew. Chem. Int. Ed. 60(23), 12999–13006 (2021). https://doi.org/10.1002/anie.202102403
Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun et al., An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy Mater. 10(14), 1903843 (2020). https://doi.org/10.1002/aenm.201903843
J.G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120(24), 13312–13348 (2020). https://doi.org/10.1021/acs.chemrev.0c00275
Y. Gao, T. Rojas, K. Wang, S. Liu, D. Wang et al., Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5(7), 534–542 (2020). https://doi.org/10.1038/s41560-020-0640-7
X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai et al., Tailoring electrolyte solvation chemistry toward an inorganic-rich solid-electrolyte interphase at a Li metal anode. ACS Energy Lett. 6(6), 2054–2063 (2021). https://doi.org/10.1021/acsenergylett.1c00647
S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3(9), 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen et al., Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139(33), 11550–11558 (2017). https://doi.org/10.1021/jacs.7b05251
X. Fan, X. Ji, F. Han, J. Yue, J. Chen et al., Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4(12), eaau9245 (2018). https://doi.org/10.1126/sciadv.aau9245
P. Jaumaux, J. Wu, D. Shanmukaraj, Y. Wang, D. Zhou et al., Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31(10), 2008644 (2020). https://doi.org/10.1002/adfm.202008644
X. Lin, G. Zhou, J. Liu, J. Yu, M.B. Effat et al., Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Adv. Energy Mater. 10(43), 2001235 (2020). https://doi.org/10.1002/aenm.202001235
X. Ren, X. Zhang, Z. Shadike, L. Zou, H. Jia et al., Designing advanced in situ electrode/electrolyte interphases for wide temperature operation of 4.5 V LiLiCoO2 batteries. Adv. Mater. 32(49), 2004898 (2020). https://doi.org/10.1002/adma.202004898
D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15(2), 550–578 (2022). https://doi.org/10.1039/D1EE01789F
Y. Li, S. Wan, G.M. Veith, R.R. Unocic, M.P. Paranthaman et al., A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv. Energy Mater. 7(4), 1601397 (2017). https://doi.org/10.1002/aenm.201601397
Q. Wang, Z. Yao, C. Zhao, T. Verhallen, D.P. Tabor et al., Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 11, 4188 (2020). https://doi.org/10.1038/s41467-020-17976-x
S. Liu, D. Liu, S. Wang, X. Cai, K. Qian et al., Understanding the cathode electrolyte interface formation in aqueous electrolyte by scanning electrochemical microscopy. J. Mater. Chem. A 7(21), 12993–12996 (2019). https://doi.org/10.1039/C9TA03199E