Thermally Conductive and UV-EMI Shielding Electronic Textiles for Unrestricted and Multifaceted Health Monitoring
Corresponding Author: Yunpeng Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 199
Abstract
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains, whereas susceptibility to electromagnetic interference (EMI), heat accumulation issues, and ultraviolet (UV)-induced aging problems pose significant constraints on their potential applications. Here, an ultra-elastic, highly breathable, and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals. Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles (NPs), an interwoven thermal conducting fiber network (0.72 W m−1 K−1) is constructed benefiting from the seamless thermal interfaces, facilitating unimpeded heat dissipation for comfort skin wearing. More excitingly, the elastomeric fiber substrates simultaneously achieve outstanding UV protection (UPF = 143.1) and EMI shielding (SET > 65, X-band) capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs. Furthermore, an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor, which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference. This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
Highlights:
1 Ag nanoparticles are evenly plated on BN-embedded fibers as a thermally conductive sheath, bridging the insulating interface between fibers to construct a 3D heat transfer network.
2 The LM-printed e-textile shows outstanding capability for the monitoring of human ECG, sEMG, and EEG signals even under intense EM interference, when commercial electrodes cannot work properly.
3 The e-textile simultaneously manifests excellent EMI shielding (SET > 65, X-band) and UV protection (UPF = 143.1) performance, thus protecting the device and skin from harmful radiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 31, e1901408 (2019). https://doi.org/10.1002/adma.201901408
- J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32(48), 2209762 (2022). https://doi.org/10.1002/adfm.202209762
- F. Chen, Q. Zhuang, Y. Ding, C. Zhang, X. Song et al., Wet-adaptive electronic skin. Adv. Mater. 35, e2305630 (2023). https://doi.org/10.1002/adma.202305630
- S. Shi, Y. Ming, H. Wu, C. Zhi, L. Yang et al., A bionic skin for health management: Excellent breathability, in situ sensing, and big data analysis. Adv. Mater. (2023). https://doi.org/10.1002/adma.202306435
- Y. Peng, J. Dong, J. Sun, Y. Mao, Y. Zhang et al., Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile. Nano Energy 110, 108374 (2023). https://doi.org/10.1016/j.nanoen.2023.108374
- J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 33, e2002640 (2021). https://doi.org/10.1002/adma.202002640
- J.K. Choe, J. Kim, H. Song, J. Bae, J. Kim, A soft, self-sensing tensile valve for perceptive soft robots. Nat. Commun. 14, 3942 (2023). https://doi.org/10.1038/s41467-023-39691-z
- S. Shu, Z. Wang, P. Chen, J. Zhong, W. Tang et al., Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv. Mater. 35, e2211385 (2023). https://doi.org/10.1002/adma.202211385
- X. Lv, J. Mao, S. Yang, H. Zhang, J. Chen et al., Biomimetic multifunctional dielectric elastomer with color-changing, tunable-stiffness and shape-morphing abilities. Compos. Commun. 42, 101670 (2023). https://doi.org/10.1016/j.coco.2023.101670
- T. Zheng, G. Li, L. Zhang, W. Sun, X. Pan et al., A waterproof, breathable nitrocellulose-based triboelectric nanogenerator for human-machine interaction. Nano Energy 114, 108649 (2023). https://doi.org/10.1016/j.nanoen.2023.108649
- K. Chen, K. Liang, H. Liu, R. Liu, Y. Liu et al., Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human-machine interaction. Nano-Micro Lett. 15, 102 (2023). https://doi.org/10.1007/s40820-023-01084-8
- Y. Shi, P. Yang, R. Lei, Z. Liu, X. Dong et al., Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat. Commun. 14, 3315 (2023). https://doi.org/10.1038/s41467-023-39068-2
- C. Wei, W. Lin, L. Wang, Z. Cao, Z. Huang et al., Conformal human-machine integration using highly bending-insensitive, unpixelated, and waterproof epidermal electronics toward metaverse. Nano-Micro Lett. 15, 199 (2023). https://doi.org/10.1007/s40820-023-01176-5
- X. Ma, X. Wu, S. Cao, Y. Zhao, Y. Lin et al., Stretchable and skin-attachable electronic device for remotely controlled wearable cancer therapy. Adv. Sci. 10, e2205343 (2023). https://doi.org/10.1002/advs.202205343
- S. Kim, J. Jang, K. Kang, S. Jin, H. Choi et al., Injection-on-skin granular adhesive for interactive human-machine interface. Adv. Mater. 35, e2307070 (2023). https://doi.org/10.1002/adma.202307070
- J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123(8), 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
- H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-Arousing self-powered fire warning e-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
- H.H. Shi, Y. Pan, L. Xu, X. Feng, W. Wang et al., Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023). https://doi.org/10.1038/s41563-023-01615-z
- F. Han, T. Wang, G. Liu, H. Liu, X. Xie et al., Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater. 34(26), 2109055 (2022). https://doi.org/10.1002/adma.202109055
- Y. Peng, J. Dong, Y. Zhang, Y. Zhang, J. Long et al., Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e-textiles. Nano Energy 120, 109143 (2024). https://doi.org/10.1016/j.nanoen.2023.109143
- Y. Hu, L. Wang, J. Li, Y. Yang, G. Zhao et al., Thin, soft, skin-integrated electronics for real-time and wireless detection of uric acid in sweat. Int. J. Smart Nano Mater. 14, 406–419 (2023). https://doi.org/10.1080/19475411.2023.2236997
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- W. Lee, H. Kim, I. Kang, H. Park, J. Jung et al., Universal assembly of liquid metal ps in polymers enables elastic printed circuit board. Science 378, 637–641 (2022). https://doi.org/10.1126/science.abo6631
- J. Mao, Ju‐Hyung Kim, Soonmin Seo, Current status and outlook of low‐melting‐point metals in biomedical applications. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202307708
- J. Liao, C. Majidi, M. Sitti, Liquid metal actuators: A comparative analysis of surface tension controlled actuation. Adv. Mater. 36, e2300560 (2024). https://doi.org/10.1002/adma.202300560
- C.-P. Feng, F. Wei, K.-Y. Sun, Y. Wang, H.-B. Lan et al., Emerging flexible thermally conductive films: Mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- J. Zhang, L. Dang, F. Zhang, K. Zhang, Q. Kong et al., Effect of the structure of epoxy monomers and curing agents: Toward making intrinsically highly thermally conductive and low-dielectric epoxy resins. JACS Au 3, 3424–3435 (2023). https://doi.org/10.1021/jacsau.3c00582
- Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver Nanowires@Boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62, e202216093 (2023). https://doi.org/10.1002/anie.202216093
- Z. Wang, Z. Wu, L. Weng, S. Ge, D. Jiang et al., A roadmap review of thermally conductive polymer composites: Critical factors, progress, and prospects. Adv. Funct. Mater. 33, 2301549 (2023). https://doi.org/10.1002/adfm.202301549
- G. Xiao, H. Li, Z. Yu, H. Niu, Y. Yao, Highly thermoconductive, strong graphene-based composite films by eliminating nanosheets wrinkles. Nano-Micro Lett. 16, 17 (2023). https://doi.org/10.1007/s40820-023-01252-w
- X. Zhang, J. Li, Q. Gao, Z. Wang, N. Ye et al., Nerve-fiber-inspired construction of 3D graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv. Funct. Mater. 33, 2213274 (2023). https://doi.org/10.1002/adfm.202213274
- H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14, 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
- C. Perez, A.J. McLeod, M.E. Chen, S.I. Yi, S. Vaziri et al., High thermal conductivity of submicrometer aluminum nitride thin films sputter-deposited at low temperature. ACS Nano 17, 21240–21250 (2023). https://doi.org/10.1021/acsnano.3c05485
- Z.Y. Dong, X.Y. Liu, D. Wang, W.G. Wang, B.L. Xiao et al., Effect of Nano-SiC coating on the thermal properties and microstructure of diamond/Al composites. Compos. Commun. 40, 101564 (2023). https://doi.org/10.1016/j.coco.2023.101564
- W. Lu, Q. Deng, M. Liu, B. Ding, Z. Xiong et al., Coaxial wet spinning of boron nitride nanosheet-based composite fibers with enhanced thermal conductivity and mechanical strength. Nano-Micro Lett. 16, 25 (2023). https://doi.org/10.1007/s40820-023-01236-w
- L. Chen, T.-H. Liu, X. Wang, Y. Wang, X. Cui et al., Near-theoretical thermal conductivity silver nanoflakes as reinforcements in gap-filling adhesives. Adv. Mater. 35, e2211100 (2023). https://doi.org/10.1002/adma.202211100
- G. Yang, S. Luo, B. Luo, Y. Zuo, S. Ta et al., The effects of pressure, temperature, and depth/diameter ratio on the microvia filling performance of Ag-coated Cu micro-nanops for advanced electronic packaging. Int. J. Smart Nano Mater. 13, 543–560 (2022). https://doi.org/10.1080/19475411.2022.2107114
- X. Zhang, B. Xie, S. Zhou, X. Yang, Y. Fan et al., Radially oriented functional thermal materials prepared by flow field-driven self-assembly strategy. Nano Energy 104, 107986 (2022). https://doi.org/10.1016/j.nanoen.2022.107986
- Z. Lv, L. Kong, P. Sun, Y. Lin, Y. Wang et al., Dual-functional eco-friendly liquid metal/boron nitride/silk fibroin composite film with outstanding thermal conductivity and electromagnetic shielding efficiency. Compos. Commun. 39, 101565 (2023). https://doi.org/10.1016/j.coco.2023.101565
- D.L. Narayanan, R.N. Saladi, J.L. Fox, Review: Ultraviolet radiation and skin cancer. Int. J. Dermatol. 49, 978–986 (2010). https://doi.org/10.1111/j.1365-4632.2010.04474.x
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3 C2 Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
- L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- J. Ding, R. Shi, C. Gong, C. Wang, Y. Guo et al., Defect engineering activates Schottky heterointerfaces of graphene/CoSe2 composites with ultrathin and lightweight design strategies to boost electromagnetic wave absorption. Adv. Funct. Mater. 33, 2305463 (2023). https://doi.org/10.1002/adfm.202305463
- Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
- S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
- J. Dong, D. Wang, Y. Peng, C. Zhang, F. Lai et al., Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97, 107160 (2022). https://doi.org/10.1016/j.nanoen.2022.107160
- J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable Janus e-textiles. Nano Lett. 22, 7597–7605 (2022). https://doi.org/10.1021/acs.nanolett.2c02647
- H. Lv, Y. Liu, J. Zhou, Y. Bai, H. Shi et al., Efficient piezophotocatalysis of ZnO@PVDF coaxial nanofibers modified with BiVO4 and Ag for the simultaneous generation of H2O2 and removal of pefloxacin and Cr(VI) in water. Chem. Eng. J. 484, 149514 (2024). https://doi.org/10.1016/j.cej.2024.149514
- J. Dong, X. Tang, Y. Peng, C. Fan, L. Li et al., Highly permeable and ultrastretchable e-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194
- J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
- X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang et al., A Real-Time Wearable UV-Radiation Monitor based on a High-Performance p-CuZnS/n-TiO2 Photodetector. Adv. Mater. 30, e1803165 (2018). https://doi.org/10.1002/adma.201803165
- A. De Magis, M. Limmer, V. Mudiyam, D. Monchaud, S. Juranek et al., UV-induced G4 DNA structures recruit ZRF1 which prevents UV-induced senescence. Nat. Commun. 14, 6705 (2023). https://doi.org/10.1038/s41467-023-42494-x
- L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley et al., Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5, 2034–2038 (2005). https://doi.org/10.1021/nl0515753
- W. Tao, M. Ma, X. Liao, W. Shao, S. Chen et al., Cellulose nanofiber/MXene/mesoporous carbon hollow spheres composite films with porous structure for deceased reflected electromagnetic interference shielding. Compos. Commun. 41, 101647 (2023). https://doi.org/10.1016/j.coco.2023.101647
- Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
- T. Xue, C. Zhu, D. Yu, X. Zhang, F. Lai et al., Fast and scalable production of crosslinked polyimide aerogel fibers for ultrathin thermoregulating clothes. Nat. Commun. 14, 8378 (2023). https://doi.org/10.1038/s41467-023-43663-8
References
B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 31, e1901408 (2019). https://doi.org/10.1002/adma.201901408
J. Dong, Y. Peng, X. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32(48), 2209762 (2022). https://doi.org/10.1002/adfm.202209762
F. Chen, Q. Zhuang, Y. Ding, C. Zhang, X. Song et al., Wet-adaptive electronic skin. Adv. Mater. 35, e2305630 (2023). https://doi.org/10.1002/adma.202305630
S. Shi, Y. Ming, H. Wu, C. Zhi, L. Yang et al., A bionic skin for health management: Excellent breathability, in situ sensing, and big data analysis. Adv. Mater. (2023). https://doi.org/10.1002/adma.202306435
Y. Peng, J. Dong, J. Sun, Y. Mao, Y. Zhang et al., Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile. Nano Energy 110, 108374 (2023). https://doi.org/10.1016/j.nanoen.2023.108374
J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 33, e2002640 (2021). https://doi.org/10.1002/adma.202002640
J.K. Choe, J. Kim, H. Song, J. Bae, J. Kim, A soft, self-sensing tensile valve for perceptive soft robots. Nat. Commun. 14, 3942 (2023). https://doi.org/10.1038/s41467-023-39691-z
S. Shu, Z. Wang, P. Chen, J. Zhong, W. Tang et al., Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv. Mater. 35, e2211385 (2023). https://doi.org/10.1002/adma.202211385
X. Lv, J. Mao, S. Yang, H. Zhang, J. Chen et al., Biomimetic multifunctional dielectric elastomer with color-changing, tunable-stiffness and shape-morphing abilities. Compos. Commun. 42, 101670 (2023). https://doi.org/10.1016/j.coco.2023.101670
T. Zheng, G. Li, L. Zhang, W. Sun, X. Pan et al., A waterproof, breathable nitrocellulose-based triboelectric nanogenerator for human-machine interaction. Nano Energy 114, 108649 (2023). https://doi.org/10.1016/j.nanoen.2023.108649
K. Chen, K. Liang, H. Liu, R. Liu, Y. Liu et al., Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human-machine interaction. Nano-Micro Lett. 15, 102 (2023). https://doi.org/10.1007/s40820-023-01084-8
Y. Shi, P. Yang, R. Lei, Z. Liu, X. Dong et al., Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat. Commun. 14, 3315 (2023). https://doi.org/10.1038/s41467-023-39068-2
C. Wei, W. Lin, L. Wang, Z. Cao, Z. Huang et al., Conformal human-machine integration using highly bending-insensitive, unpixelated, and waterproof epidermal electronics toward metaverse. Nano-Micro Lett. 15, 199 (2023). https://doi.org/10.1007/s40820-023-01176-5
X. Ma, X. Wu, S. Cao, Y. Zhao, Y. Lin et al., Stretchable and skin-attachable electronic device for remotely controlled wearable cancer therapy. Adv. Sci. 10, e2205343 (2023). https://doi.org/10.1002/advs.202205343
S. Kim, J. Jang, K. Kang, S. Jin, H. Choi et al., Injection-on-skin granular adhesive for interactive human-machine interface. Adv. Mater. 35, e2307070 (2023). https://doi.org/10.1002/adma.202307070
J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123(8), 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-Arousing self-powered fire warning e-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
H.H. Shi, Y. Pan, L. Xu, X. Feng, W. Wang et al., Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023). https://doi.org/10.1038/s41563-023-01615-z
F. Han, T. Wang, G. Liu, H. Liu, X. Xie et al., Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater. 34(26), 2109055 (2022). https://doi.org/10.1002/adma.202109055
Y. Peng, J. Dong, Y. Zhang, Y. Zhang, J. Long et al., Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e-textiles. Nano Energy 120, 109143 (2024). https://doi.org/10.1016/j.nanoen.2023.109143
Y. Hu, L. Wang, J. Li, Y. Yang, G. Zhao et al., Thin, soft, skin-integrated electronics for real-time and wireless detection of uric acid in sweat. Int. J. Smart Nano Mater. 14, 406–419 (2023). https://doi.org/10.1080/19475411.2023.2236997
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
W. Lee, H. Kim, I. Kang, H. Park, J. Jung et al., Universal assembly of liquid metal ps in polymers enables elastic printed circuit board. Science 378, 637–641 (2022). https://doi.org/10.1126/science.abo6631
J. Mao, Ju‐Hyung Kim, Soonmin Seo, Current status and outlook of low‐melting‐point metals in biomedical applications. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202307708
J. Liao, C. Majidi, M. Sitti, Liquid metal actuators: A comparative analysis of surface tension controlled actuation. Adv. Mater. 36, e2300560 (2024). https://doi.org/10.1002/adma.202300560
C.-P. Feng, F. Wei, K.-Y. Sun, Y. Wang, H.-B. Lan et al., Emerging flexible thermally conductive films: Mechanism, fabrication, application. Nano-Micro Lett. 14, 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
J. Zhang, L. Dang, F. Zhang, K. Zhang, Q. Kong et al., Effect of the structure of epoxy monomers and curing agents: Toward making intrinsically highly thermally conductive and low-dielectric epoxy resins. JACS Au 3, 3424–3435 (2023). https://doi.org/10.1021/jacsau.3c00582
Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver Nanowires@Boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62, e202216093 (2023). https://doi.org/10.1002/anie.202216093
Z. Wang, Z. Wu, L. Weng, S. Ge, D. Jiang et al., A roadmap review of thermally conductive polymer composites: Critical factors, progress, and prospects. Adv. Funct. Mater. 33, 2301549 (2023). https://doi.org/10.1002/adfm.202301549
G. Xiao, H. Li, Z. Yu, H. Niu, Y. Yao, Highly thermoconductive, strong graphene-based composite films by eliminating nanosheets wrinkles. Nano-Micro Lett. 16, 17 (2023). https://doi.org/10.1007/s40820-023-01252-w
X. Zhang, J. Li, Q. Gao, Z. Wang, N. Ye et al., Nerve-fiber-inspired construction of 3D graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv. Funct. Mater. 33, 2213274 (2023). https://doi.org/10.1002/adfm.202213274
H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14, 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
C. Perez, A.J. McLeod, M.E. Chen, S.I. Yi, S. Vaziri et al., High thermal conductivity of submicrometer aluminum nitride thin films sputter-deposited at low temperature. ACS Nano 17, 21240–21250 (2023). https://doi.org/10.1021/acsnano.3c05485
Z.Y. Dong, X.Y. Liu, D. Wang, W.G. Wang, B.L. Xiao et al., Effect of Nano-SiC coating on the thermal properties and microstructure of diamond/Al composites. Compos. Commun. 40, 101564 (2023). https://doi.org/10.1016/j.coco.2023.101564
W. Lu, Q. Deng, M. Liu, B. Ding, Z. Xiong et al., Coaxial wet spinning of boron nitride nanosheet-based composite fibers with enhanced thermal conductivity and mechanical strength. Nano-Micro Lett. 16, 25 (2023). https://doi.org/10.1007/s40820-023-01236-w
L. Chen, T.-H. Liu, X. Wang, Y. Wang, X. Cui et al., Near-theoretical thermal conductivity silver nanoflakes as reinforcements in gap-filling adhesives. Adv. Mater. 35, e2211100 (2023). https://doi.org/10.1002/adma.202211100
G. Yang, S. Luo, B. Luo, Y. Zuo, S. Ta et al., The effects of pressure, temperature, and depth/diameter ratio on the microvia filling performance of Ag-coated Cu micro-nanops for advanced electronic packaging. Int. J. Smart Nano Mater. 13, 543–560 (2022). https://doi.org/10.1080/19475411.2022.2107114
X. Zhang, B. Xie, S. Zhou, X. Yang, Y. Fan et al., Radially oriented functional thermal materials prepared by flow field-driven self-assembly strategy. Nano Energy 104, 107986 (2022). https://doi.org/10.1016/j.nanoen.2022.107986
Z. Lv, L. Kong, P. Sun, Y. Lin, Y. Wang et al., Dual-functional eco-friendly liquid metal/boron nitride/silk fibroin composite film with outstanding thermal conductivity and electromagnetic shielding efficiency. Compos. Commun. 39, 101565 (2023). https://doi.org/10.1016/j.coco.2023.101565
D.L. Narayanan, R.N. Saladi, J.L. Fox, Review: Ultraviolet radiation and skin cancer. Int. J. Dermatol. 49, 978–986 (2010). https://doi.org/10.1111/j.1365-4632.2010.04474.x
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3 C2 Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023). https://doi.org/10.1002/adma.202211642
L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019). https://doi.org/10.1002/adfm.201905197
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
J. Ding, R. Shi, C. Gong, C. Wang, Y. Guo et al., Defect engineering activates Schottky heterointerfaces of graphene/CoSe2 composites with ultrathin and lightweight design strategies to boost electromagnetic wave absorption. Adv. Funct. Mater. 33, 2305463 (2023). https://doi.org/10.1002/adfm.202305463
Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
J. Dong, D. Wang, Y. Peng, C. Zhang, F. Lai et al., Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97, 107160 (2022). https://doi.org/10.1016/j.nanoen.2022.107160
J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable Janus e-textiles. Nano Lett. 22, 7597–7605 (2022). https://doi.org/10.1021/acs.nanolett.2c02647
H. Lv, Y. Liu, J. Zhou, Y. Bai, H. Shi et al., Efficient piezophotocatalysis of ZnO@PVDF coaxial nanofibers modified with BiVO4 and Ag for the simultaneous generation of H2O2 and removal of pefloxacin and Cr(VI) in water. Chem. Eng. J. 484, 149514 (2024). https://doi.org/10.1016/j.cej.2024.149514
J. Dong, X. Tang, Y. Peng, C. Fan, L. Li et al., Highly permeable and ultrastretchable e-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang et al., A Real-Time Wearable UV-Radiation Monitor based on a High-Performance p-CuZnS/n-TiO2 Photodetector. Adv. Mater. 30, e1803165 (2018). https://doi.org/10.1002/adma.201803165
A. De Magis, M. Limmer, V. Mudiyam, D. Monchaud, S. Juranek et al., UV-induced G4 DNA structures recruit ZRF1 which prevents UV-induced senescence. Nat. Commun. 14, 6705 (2023). https://doi.org/10.1038/s41467-023-42494-x
L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley et al., Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5, 2034–2038 (2005). https://doi.org/10.1021/nl0515753
W. Tao, M. Ma, X. Liao, W. Shao, S. Chen et al., Cellulose nanofiber/MXene/mesoporous carbon hollow spheres composite films with porous structure for deceased reflected electromagnetic interference shielding. Compos. Commun. 41, 101647 (2023). https://doi.org/10.1016/j.coco.2023.101647
Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
T. Xue, C. Zhu, D. Yu, X. Zhang, F. Lai et al., Fast and scalable production of crosslinked polyimide aerogel fibers for ultrathin thermoregulating clothes. Nat. Commun. 14, 8378 (2023). https://doi.org/10.1038/s41467-023-43663-8