Oxygen Vacancy-Rich 2D TiO2 Nanosheets: A Bridge Toward High Stability and Rapid Hydrogen Storage Kinetics of Nano-Confined MgH2
Corresponding Author: Jianxin Zou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 144
Abstract
MgH2 has attracted intensive interests as one of the most promising hydrogen storage materials. Nevertheless, the high desorption temperature, sluggish kinetics, and rapid capacity decay hamper its commercial application. Herein, 2D TiO2 nanosheets with abundant oxygen vacancies are used to fabricate a flower-like MgH2/TiO2 heterostructure with enhanced hydrogen storage performances. Particularly, the onset hydrogen desorption temperature of the MgH2/TiO2 heterostructure is lowered down to 180 °C (295 °C for blank MgH2). The initial desorption rate of MgH2/TiO2 reaches 2.116 wt% min−1 at 300 °C, 35 times of the blank MgH2 under the same conditions. Moreover, the capacity retention is as high as 98.5% after 100 cycles at 300 °C, remarkably higher than those of the previously reported MgH2-TiO2 composites. Both in situ HRTEM observations and ex situ XPS analyses confirm that the synergistic effects from multi-valance of Ti species, accelerated electron transportation caused by oxygen vacancies, formation of catalytic Mg-Ti oxides, and stabilized MgH2 NPs confined by TiO2 nanosheets contribute to the high stability and kinetically accelerated hydrogen storage performances of the composite. The strategy of using 2D substrates with abundant defects to support nano-sized energy storage materials to build heterostructure is therefore promising for the design of high-performance energy materials.
Highlights:
1 A MgH2/TiO2 heterostructure with nano MgH2 assembled on oxygen vacancy-rich 2D TiO2 nanosheets was successfully fabricated via a simple solvothermal strategy.
2 The MgH2/TiO2 heterostructure shows rapid desorption kinetics, low dehydrogenation temperature, and excellent cycling stability.
3 In situ HRTEM observations and ex situ XPS analyses reveal that multi-valance of Ti species, presence of abundant oxygen vacancies, formation of catalytic Mg-Ti oxides, and confinement of TiO2 nanosheets, contribute to the high stability and kinetically accelerated hydrogen sorption performances of Mg.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature 414(6861), 353–358 (2001). https://doi.org/10.1038/35104634
- D. Pukazhselvan, V. Kumar, S.K. Singh, High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1(4), 566–589 (2012). https://doi.org/10.1016/j.nanoen.2012.05.004
- P. Nicola, M. Andrea, M. Vittorio, P. Luca, Interfaces within biphasic nanops give a boost to magnesium-based hydrogen storage. Nano Energy 72, 104654 (2020). https://doi.org/10.1016/j.nanoen.2020.104654
- X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 88, 1–48 (2017). https://doi.org/10.1016/j.pmatsci.2017.03.001
- N.M. Dowell, N. Sunny, N. Brandon, H. Herzog, A.Y. Ku et al., The hydrogen economy: a pragmatic path forward. Joule 5(10), 2524–2529 (2021). https://doi.org/10.1016/j.joule.2021.09.014
- M. Spek, C. Banet, C. Bauer, P. Gabrielli, W. Goldthorpe et al., Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 15(3), 1034–1077 (2022). https://doi.org/10.1039/D1EE02118D
- C. Weidenthaler, M. Felderhoff, Solid-state hydrogen storage for mobile applications: Quo Vadis? Energy Environ. Sci. 4(7), 2495–2502 (2011). https://doi.org/10.1039/c0ee00771d
- H. Shao, G. Xin, J. Zheng, X. Li, E. Akiba, Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy 1(4), 590–601 (2012). https://doi.org/10.1016/j.nanoen.2012.05.005
- P. Larsson, C.M. Araujo, J.A. Larsson, P. Jena, R. Ahuja, Role of catalysts in dehydrogenation of MgH2 nanoclusters. PNAS 105, 8227–8231 (2008). https://doi.org/10.1073/.0711743105
- M. Liu, X. Xiao, S. Zhao, M. Chen, J. Mao et al., Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride. J. Mater. Chem. A 7(10), 5277–5287 (2019). https://doi.org/10.1039/C8TA12431K
- K. Xian, M. Wu, M. Gao, S. Wang, Z. Li et al., A unique nanoflake-shape bimetallic Ti–Nb oxide of superior catalytic effect for hydrogen storage of MgH2. Small (2022). https://doi.org/10.1002/smll.202107013
- X. Lu, L. Zhang, H. Yu, Z. Lu, J. He et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes. Chem. Eng. J. 422, 130101 (2021). https://doi.org/10.1016/j.cej.2021.130101
- Z. Lan, H. Fu, R. Zhao, H. Liu, W. Zhou et al., Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem. Eng. J. 431, 133985 (2022). https://doi.org/10.1016/j.cej.2021.133985
- J. Mao, T. Huang, S. Panda, J. Zou, W. Ding, Direct observations of diffusion controlled microstructure transition in Mg-In/Mg-Ag ultrafine ps with enhanced hydrogen storage and hydrolysis properties. Chem. Eng. J. 418, 129301 (2021). https://doi.org/10.1016/j.cej.2021.129301
- X. Ding, R. Chen, X. Chen, H. Fang, Q. Wang et al., A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment. J. Magnes. Alloy. (2021). https://doi.org/10.1016/j.jma.2021.06.003
- F. Guo, T. Zhang, L. Shi, L. Song, Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg2Ni and LaHx (x = 2, 3) nanocrystallines. J. Magnes. Alloy. (2021). https://doi.org/10.1016/j.jma.2021.06.013
- K.J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski et al., Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10(4), 286–290 (2011). https://doi.org/10.1038/nmat2978
- M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
- W. Zhu, L. Ren, C. Lu, H. Xu, F. Sun et al., Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano 15(11), 18494–18504 (2021). https://doi.org/10.1021/acsnano.1c08343
- C. Lu, J. Zou, X. Zeng, W. Ding, Hydrogen storage properties of core-shell structured Mg@TM (TM = Co, V) composites. Int. J. Hydrog. Energy 42(22), 15246–15255 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.063
- J. Cui, J. Liu, H. Wang, L. Ouyang, D. Sun et al., Mg-TM (TM: Ti, Nb, V Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2(25), 9645–9655 (2014). https://doi.org/10.1039/c4ta00221k
- K. Wang, X. Zhang, Y. Liu, Z. Ren, X. Zhang et al., Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chem. Eng. J. 406, 126831 (2021). https://doi.org/10.1016/j.cej.2020.126831
- S. Milošević, S. Kurko, L. Pasquini, L. Matović, R. Vujasin et al., Fast hydrogen sorption from MgH2-VO2(B) composite materials. J. Power Sources 307, 481–488 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.108
- K. Wang, X. Zhang, Z. Ren, X. Zhang, J. Hu et al., Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Stor. Mater. 23, 79–87 (2019). https://doi.org/10.1016/j.ensm.2019.05.029
- Q. Zhang, Y. Wang, L. Zang, X. Chang, L. Jiao et al., Core-shell Ni3N@Nitrogen-doped carbon: synthesis and application in MgH2. J. Alloys Compd. 703, 381–388 (2017). https://doi.org/10.1016/j.jallcom.2017.01.224
- C. Jie, W. Hui, L. Jiangwen, O. Liuzhang, Z. Qingan et al., Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 1(18), 5603–5611 (2013). https://doi.org/10.1039/c3ta01332d
- J. Ankur, A. Shivani, K. Sanjay, Y. Shotaro, M. Hiroki et al., How does TiF4 affect the decomposition of MgH2 and its complex variants? - an XPS investigation. J. Mater. Chem. A 5(30), 15543 (2017). https://doi.org/10.1039/c7ta03081a
- Y. Zhang, X. Zhuang, Y. Zhu, N. Wan, L. Li et al., Synergistic effects of TiH2 and Pd on hydrogen desorption performances of MgH2. Int. J. Hydrog. Energy 40(46), 16338–16346 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.029
- L. Mykhaylo, D. Roman, A.Y. Volodymyr, E. Jon, G. Jonathan et al., An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance. J. Mater. Chem. A 6, 10740–10754 (2018). https://doi.org/10.1039/c8ta02969e
- R.A. Pavel, C. Fermin, L. Michel, Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. J. Mater. Chem. A 7, 23064–23075 (2019). https://doi.org/10.1039/c9ta05440e
- S.K. Verma, A. Bhatnagar, V. Shukla, P.K. Soni, A.P. Pandey et al., Multiple improvements of hydrogen sorption and their mechanism for MgH2 catalyzed through TiH2@Gr. Int. J. Hydrog. Energy 45(38), 19516–19530 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.031
- K. Wang, G. Wu, H. Cao, H. Li, X. Zhao, Improved reversible dehydrogenation properties of MgH2 by the synergetic effects of graphene oxide-based porous carbon and TiCl3. Int. J. Hydrog. Energy 43(15), 7440–7446 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.195
- G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanops uniformly self-assembled on graphene. Adv. Mater. 27(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
- Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park et al., Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014). https://doi.org/10.1038/ncomms4813
- X. Zhang, L. Hou, A. Ciesielski, P. Samorì, 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6(23), 1600671 (2016). https://doi.org/10.1002/aenm.201600671
- A.A. AbdelHamid, Y. Yu, J. Yang, J.Y. Ying, Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv. Mater. 29(32), 1701427 (2017). https://doi.org/10.1002/adma.201701427
- S.L. Wang, X. Luo, X. Zhou, Y. Zhu, X. Chi et al., Fabrication and properties of a free-standing two-dimensional titania. J. Am. Chem. Soc. 139(43), 15414–15419 (2017). https://doi.org/10.1021/jacs.7b08229
- M. Chen, X.Z. Xiao, M. Zhang, J.F. Mao, J.G. Zheng et al., Insights into 2D graphene-like TiO2 (B) nanosheets as highly efficient catalyst for improved low-temperature hydrogen storage properties of MgH2. Mater. Today Energy 16, 100411 (2020). https://doi.org/10.1016/j.mtener.2020.100411
- Z. Hao, Q. Chen, W. Dai, Y. Ren, Y. Zhou et al., Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage. Adv. Energy Mater. 10(10), 1903107 (2020). https://doi.org/10.1002/aenm.201903107
- G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge et al., Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 9, 1302 (2018). https://doi.org/10.1038/s41467-018-03765-0
- G. Yin, X. Huang, T. Chen, W. Zhao, Q. Bi et al., Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catal. 8(2), 1009–1017 (2018). https://doi.org/10.1021/acscatal.7b03473
- L. Ren, W. Zhu, Q. Zhang, C. Lu, F. Sun et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem. Eng. J. 434, 134701 (2022). https://doi.org/10.1016/j.cej.2022.134701
- C. Lu, Y. Ma, F. Li, H. Zhu, X. Zeng et al., Visualization of fast “hydrogen pump” in core–shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt. J. Mater. Chem. A 7(24), 14629–14637 (2019). https://doi.org/10.1039/c9ta03038g
- J. Yang, Y.L. Jiang, L.J. Li, E. Muhire, M.Z. Gao, High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation. Nanoscale 8(15), 8170–8177 (2016). https://doi.org/10.1039/c5nr09248e
- D. Pukazhselvan, N. Narendar, C. Pedro, C.A. Enrique, O.I. Gonzalo et al., Evolution of reduced Ti containing phase(s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH2. J. Power Sourc 362, 174–183 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.032
- D. Pukazhselvan, N. Narendar, K.S. Sandhya, S. Budhendra, B. Igor et al., Role of chemical interaction between MgH2 and TiO2 additive on the hydrogen storage behavior of MgH2. Appl. Surf. Sci. 420, 740–745 (2017). https://doi.org/10.1016/j.apsusc.2017.05.182
- D. Pukazhselvan, N. Narendar, Y. Tao, R. Devaraj, S. Aliaksandr et al., Chemically transformed additive phases in Mg2TiO4 and MgTiO3 loaded hydrogen storage system MgH2. Appl. Surf. Sci. 472, 99–104 (2019). https://doi.org/10.1016/j.apsusc.2018.04.052
- O. Friedrichs, J.C. Sánchez-López, C. López-Cartes, T. Klassen, R. Bormann et al., Nb2O5 “pathway effect” on hydrogen sorption in Mg. J. Phys. Chem. B 110(15), 7845–7850 (2006). https://doi.org/10.1021/jp0574495
- X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448
- H. Zhang, Q. Kong, S. Hu, D. Zhang, H. Chen et al., Engineering the oxygen vacancies in Na2Ti3O7 for boosting its catalytic performance in MgH2 hydrogen storage. ACS Sustain. Chem. Eng. 10(1), 363–371 (2021). https://doi.org/10.1021/acssuschemeng.1c06444
- D. Pukazhselvan, G. Otero-Irurueta, J. Pérez, B. Singh, I. Bdikin et al., Crystal structure, phase stoichiometry and chemical environment of MgxNbyOx+y nanops and their impact on hydrogen storage in MgH2. Int. J. Hydrog. Energy 41(27), 11709–11715 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.029
- G. Liang, J. Huot, S. Boily, A.V. Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 292(1), 247–252 (1999). https://doi.org/10.1016/S0925-8388(99)00442-9
- J. Zhang, S. Yan, L.P. Yu, X.J. Zhou, T. Zhou et al., Enhanced hydrogen storage properties and mechanisms of magnesium hydride modified by transition metal dissolved magnesium oxides. Int. J. Hydrog. Energy 43(48), 21864–21873 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.017
- H. Yike, A. Cuihua, Z. Qiuyu, Z. Lei, S. Huaxu et al., Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage. Nano Energy 80, 105535 (2020). https://doi.org/10.1016/j.nanoen.2020.105535
References
L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature 414(6861), 353–358 (2001). https://doi.org/10.1038/35104634
D. Pukazhselvan, V. Kumar, S.K. Singh, High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1(4), 566–589 (2012). https://doi.org/10.1016/j.nanoen.2012.05.004
P. Nicola, M. Andrea, M. Vittorio, P. Luca, Interfaces within biphasic nanops give a boost to magnesium-based hydrogen storage. Nano Energy 72, 104654 (2020). https://doi.org/10.1016/j.nanoen.2020.104654
X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 88, 1–48 (2017). https://doi.org/10.1016/j.pmatsci.2017.03.001
N.M. Dowell, N. Sunny, N. Brandon, H. Herzog, A.Y. Ku et al., The hydrogen economy: a pragmatic path forward. Joule 5(10), 2524–2529 (2021). https://doi.org/10.1016/j.joule.2021.09.014
M. Spek, C. Banet, C. Bauer, P. Gabrielli, W. Goldthorpe et al., Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 15(3), 1034–1077 (2022). https://doi.org/10.1039/D1EE02118D
C. Weidenthaler, M. Felderhoff, Solid-state hydrogen storage for mobile applications: Quo Vadis? Energy Environ. Sci. 4(7), 2495–2502 (2011). https://doi.org/10.1039/c0ee00771d
H. Shao, G. Xin, J. Zheng, X. Li, E. Akiba, Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy 1(4), 590–601 (2012). https://doi.org/10.1016/j.nanoen.2012.05.005
P. Larsson, C.M. Araujo, J.A. Larsson, P. Jena, R. Ahuja, Role of catalysts in dehydrogenation of MgH2 nanoclusters. PNAS 105, 8227–8231 (2008). https://doi.org/10.1073/.0711743105
M. Liu, X. Xiao, S. Zhao, M. Chen, J. Mao et al., Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride. J. Mater. Chem. A 7(10), 5277–5287 (2019). https://doi.org/10.1039/C8TA12431K
K. Xian, M. Wu, M. Gao, S. Wang, Z. Li et al., A unique nanoflake-shape bimetallic Ti–Nb oxide of superior catalytic effect for hydrogen storage of MgH2. Small (2022). https://doi.org/10.1002/smll.202107013
X. Lu, L. Zhang, H. Yu, Z. Lu, J. He et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes. Chem. Eng. J. 422, 130101 (2021). https://doi.org/10.1016/j.cej.2021.130101
Z. Lan, H. Fu, R. Zhao, H. Liu, W. Zhou et al., Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem. Eng. J. 431, 133985 (2022). https://doi.org/10.1016/j.cej.2021.133985
J. Mao, T. Huang, S. Panda, J. Zou, W. Ding, Direct observations of diffusion controlled microstructure transition in Mg-In/Mg-Ag ultrafine ps with enhanced hydrogen storage and hydrolysis properties. Chem. Eng. J. 418, 129301 (2021). https://doi.org/10.1016/j.cej.2021.129301
X. Ding, R. Chen, X. Chen, H. Fang, Q. Wang et al., A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment. J. Magnes. Alloy. (2021). https://doi.org/10.1016/j.jma.2021.06.003
F. Guo, T. Zhang, L. Shi, L. Song, Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg2Ni and LaHx (x = 2, 3) nanocrystallines. J. Magnes. Alloy. (2021). https://doi.org/10.1016/j.jma.2021.06.013
K.J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski et al., Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10(4), 286–290 (2011). https://doi.org/10.1038/nmat2978
M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
W. Zhu, L. Ren, C. Lu, H. Xu, F. Sun et al., Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano 15(11), 18494–18504 (2021). https://doi.org/10.1021/acsnano.1c08343
C. Lu, J. Zou, X. Zeng, W. Ding, Hydrogen storage properties of core-shell structured Mg@TM (TM = Co, V) composites. Int. J. Hydrog. Energy 42(22), 15246–15255 (2017). https://doi.org/10.1016/j.ijhydene.2017.04.063
J. Cui, J. Liu, H. Wang, L. Ouyang, D. Sun et al., Mg-TM (TM: Ti, Nb, V Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2(25), 9645–9655 (2014). https://doi.org/10.1039/c4ta00221k
K. Wang, X. Zhang, Y. Liu, Z. Ren, X. Zhang et al., Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chem. Eng. J. 406, 126831 (2021). https://doi.org/10.1016/j.cej.2020.126831
S. Milošević, S. Kurko, L. Pasquini, L. Matović, R. Vujasin et al., Fast hydrogen sorption from MgH2-VO2(B) composite materials. J. Power Sources 307, 481–488 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.108
K. Wang, X. Zhang, Z. Ren, X. Zhang, J. Hu et al., Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Stor. Mater. 23, 79–87 (2019). https://doi.org/10.1016/j.ensm.2019.05.029
Q. Zhang, Y. Wang, L. Zang, X. Chang, L. Jiao et al., Core-shell Ni3N@Nitrogen-doped carbon: synthesis and application in MgH2. J. Alloys Compd. 703, 381–388 (2017). https://doi.org/10.1016/j.jallcom.2017.01.224
C. Jie, W. Hui, L. Jiangwen, O. Liuzhang, Z. Qingan et al., Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 1(18), 5603–5611 (2013). https://doi.org/10.1039/c3ta01332d
J. Ankur, A. Shivani, K. Sanjay, Y. Shotaro, M. Hiroki et al., How does TiF4 affect the decomposition of MgH2 and its complex variants? - an XPS investigation. J. Mater. Chem. A 5(30), 15543 (2017). https://doi.org/10.1039/c7ta03081a
Y. Zhang, X. Zhuang, Y. Zhu, N. Wan, L. Li et al., Synergistic effects of TiH2 and Pd on hydrogen desorption performances of MgH2. Int. J. Hydrog. Energy 40(46), 16338–16346 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.029
L. Mykhaylo, D. Roman, A.Y. Volodymyr, E. Jon, G. Jonathan et al., An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance. J. Mater. Chem. A 6, 10740–10754 (2018). https://doi.org/10.1039/c8ta02969e
R.A. Pavel, C. Fermin, L. Michel, Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. J. Mater. Chem. A 7, 23064–23075 (2019). https://doi.org/10.1039/c9ta05440e
S.K. Verma, A. Bhatnagar, V. Shukla, P.K. Soni, A.P. Pandey et al., Multiple improvements of hydrogen sorption and their mechanism for MgH2 catalyzed through TiH2@Gr. Int. J. Hydrog. Energy 45(38), 19516–19530 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.031
K. Wang, G. Wu, H. Cao, H. Li, X. Zhao, Improved reversible dehydrogenation properties of MgH2 by the synergetic effects of graphene oxide-based porous carbon and TiCl3. Int. J. Hydrog. Energy 43(15), 7440–7446 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.195
G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanops uniformly self-assembled on graphene. Adv. Mater. 27(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park et al., Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014). https://doi.org/10.1038/ncomms4813
X. Zhang, L. Hou, A. Ciesielski, P. Samorì, 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6(23), 1600671 (2016). https://doi.org/10.1002/aenm.201600671
A.A. AbdelHamid, Y. Yu, J. Yang, J.Y. Ying, Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv. Mater. 29(32), 1701427 (2017). https://doi.org/10.1002/adma.201701427
S.L. Wang, X. Luo, X. Zhou, Y. Zhu, X. Chi et al., Fabrication and properties of a free-standing two-dimensional titania. J. Am. Chem. Soc. 139(43), 15414–15419 (2017). https://doi.org/10.1021/jacs.7b08229
M. Chen, X.Z. Xiao, M. Zhang, J.F. Mao, J.G. Zheng et al., Insights into 2D graphene-like TiO2 (B) nanosheets as highly efficient catalyst for improved low-temperature hydrogen storage properties of MgH2. Mater. Today Energy 16, 100411 (2020). https://doi.org/10.1016/j.mtener.2020.100411
Z. Hao, Q. Chen, W. Dai, Y. Ren, Y. Zhou et al., Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage. Adv. Energy Mater. 10(10), 1903107 (2020). https://doi.org/10.1002/aenm.201903107
G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge et al., Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 9, 1302 (2018). https://doi.org/10.1038/s41467-018-03765-0
G. Yin, X. Huang, T. Chen, W. Zhao, Q. Bi et al., Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catal. 8(2), 1009–1017 (2018). https://doi.org/10.1021/acscatal.7b03473
L. Ren, W. Zhu, Q. Zhang, C. Lu, F. Sun et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem. Eng. J. 434, 134701 (2022). https://doi.org/10.1016/j.cej.2022.134701
C. Lu, Y. Ma, F. Li, H. Zhu, X. Zeng et al., Visualization of fast “hydrogen pump” in core–shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt. J. Mater. Chem. A 7(24), 14629–14637 (2019). https://doi.org/10.1039/c9ta03038g
J. Yang, Y.L. Jiang, L.J. Li, E. Muhire, M.Z. Gao, High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation. Nanoscale 8(15), 8170–8177 (2016). https://doi.org/10.1039/c5nr09248e
D. Pukazhselvan, N. Narendar, C. Pedro, C.A. Enrique, O.I. Gonzalo et al., Evolution of reduced Ti containing phase(s) in MgH2/TiO2 system and its effect on the hydrogen storage behavior of MgH2. J. Power Sourc 362, 174–183 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.032
D. Pukazhselvan, N. Narendar, K.S. Sandhya, S. Budhendra, B. Igor et al., Role of chemical interaction between MgH2 and TiO2 additive on the hydrogen storage behavior of MgH2. Appl. Surf. Sci. 420, 740–745 (2017). https://doi.org/10.1016/j.apsusc.2017.05.182
D. Pukazhselvan, N. Narendar, Y. Tao, R. Devaraj, S. Aliaksandr et al., Chemically transformed additive phases in Mg2TiO4 and MgTiO3 loaded hydrogen storage system MgH2. Appl. Surf. Sci. 472, 99–104 (2019). https://doi.org/10.1016/j.apsusc.2018.04.052
O. Friedrichs, J.C. Sánchez-López, C. López-Cartes, T. Klassen, R. Bormann et al., Nb2O5 “pathway effect” on hydrogen sorption in Mg. J. Phys. Chem. B 110(15), 7845–7850 (2006). https://doi.org/10.1021/jp0574495
X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448
H. Zhang, Q. Kong, S. Hu, D. Zhang, H. Chen et al., Engineering the oxygen vacancies in Na2Ti3O7 for boosting its catalytic performance in MgH2 hydrogen storage. ACS Sustain. Chem. Eng. 10(1), 363–371 (2021). https://doi.org/10.1021/acssuschemeng.1c06444
D. Pukazhselvan, G. Otero-Irurueta, J. Pérez, B. Singh, I. Bdikin et al., Crystal structure, phase stoichiometry and chemical environment of MgxNbyOx+y nanops and their impact on hydrogen storage in MgH2. Int. J. Hydrog. Energy 41(27), 11709–11715 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.029
G. Liang, J. Huot, S. Boily, A.V. Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 292(1), 247–252 (1999). https://doi.org/10.1016/S0925-8388(99)00442-9
J. Zhang, S. Yan, L.P. Yu, X.J. Zhou, T. Zhou et al., Enhanced hydrogen storage properties and mechanisms of magnesium hydride modified by transition metal dissolved magnesium oxides. Int. J. Hydrog. Energy 43(48), 21864–21873 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.017
H. Yike, A. Cuihua, Z. Qiuyu, Z. Lei, S. Huaxu et al., Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage. Nano Energy 80, 105535 (2020). https://doi.org/10.1016/j.nanoen.2020.105535