Nanostructuring of Mg-Based Hydrogen Storage Materials: Recent Advances for Promoting Key Applications
Corresponding Author: Jianxin Zou
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 93
Abstract
With the depletion of fossil fuels and global warming, there is an urgent demand to seek green, low-cost, and high-efficiency energy resources. Hydrogen has been considered as a potential candidate to replace fossil fuels, due to its high gravimetric energy density (142 MJ kg−1), high abundance (H2O), and environmental-friendliness. However, due to its low volume density, effective and safe hydrogen storage techniques are now becoming the bottleneck for the "hydrogen economy". Under such a circumstance, Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity (~ 7.6 wt% for MgH2), low cost, and excellent reversibility. However, the high thermodynamic stability (ΔH = − 74.7 kJ mol−1 H2) and sluggish kinetics result in a relatively high desorption temperature (> 300 °C), which severely restricts widespread applications of MgH2. Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH2, possibly meeting the demand for rapid hydrogen desorption, economic viability, and effective thermal management in practical applications. Herein, the fundamental theories, recent advances, and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed. The synthetic strategies are classified into four categories: free-standing nano-sized Mg/MgH2 through electrochemical/vapor-transport/ultrasonic methods, nanostructured Mg-based composites via mechanical milling methods, construction of core-shell nano-structured Mg-based composites by chemical reduction approaches, and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy. Through applying these strategies, near room temperature ab/de-sorption (< 100 °C) with considerable high capacity (> 6 wt%) has been achieved in nano Mg/MgH2 systems. Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided.
Highlights:
1 A comprehensive discussion of the recent advances in the nanostructure engineering of Mg-based hydrogen storage materials is presented.
2 The fundamental theories of hydrogen storage in nanostructured Mg-based hydrogen storage materials and their practical applications are reviewed.
3 The challenges and recommendations of current nanostructured hydrogen storage materials are pointed out.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.W. Crabtree, M.S. Dresselhaus, The hydrogen fuel alternative. MRS Bull. 33(4), 421–428 (2011). https://doi.org/10.1557/mrs2008.84
- M. Dornheim, N. Eigen, G. Barkhordarian, T. Klassen, R. Bormann, Tailoring hydrogen storage materials towards application. Adv. Eng. Mater. 8(5), 377–385 (2006). https://doi.org/10.1002/adem.200600018
- J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Hydrogen energy, economy and storage: review and recommendation. Int. J. Hydrogen Energy 44(29), 15072–15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
- L. Schlapbach, Hydrogen-fuelled vehicles. Nature 460(7257), 809–811 (2009). https://doi.org/10.1038/460809a
- Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński et al., Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120, 109620 (2020). https://doi.org/10.1016/j.rser.2019.109620
- J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39(2), 656–675 (2010). https://doi.org/10.1039/B802882F
- I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds et al., The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12(2), 463–491 (2019). https://doi.org/10.1039/C8EE01157E
- M.G. Rasul, M.A. Hazrat, M.A. Sattar, M.I. Jahirul, M.J. Shearer, The future of hydrogen: challenges on production, storage and applications. Energy Convers. Manag. 272, 116326 (2022). https://doi.org/10.1016/j.enconman.2022.116326
- T. Capurso, M. Stefanizzi, M. Torresi, S.M. Camporeale, Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers. Manag. 251, 114898 (2022). https://doi.org/10.1016/j.enconman.2021.114898
- M.R. Usman, Hydrogen storage methods: review and current status. Renew. Sustain. Energy Rev. 167, 112743 (2022). https://doi.org/10.1016/j.rser.2022.112743
- J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao et al., Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 37(1), 1048–1057 (2012). https://doi.org/10.1016/j.ijhydene.2011.02.125
- J. Zheng, L. Chen, J. Wang, X. Xi, H. Zhu et al., Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank. Energy Convers. Manag. 186, 526–534 (2019). https://doi.org/10.1016/j.enconman.2019.02.073
- Z. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, O.K. Farha, Porous materials for hydrogen storage. Chem 8(3), 693–716 (2022). https://doi.org/10.1016/j.chempr.2022.01.012
- L. Ouyang, K. Chen, J. Jiang, X.-S. Yang, M. Zhu, Hydrogen storage in light-metal based systems: a review. J. Alloys Compd. 829, 154597 (2020). https://doi.org/10.1016/j.jallcom.2020.154597
- B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32(9), 1121–1140 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.022
- C. Weidenthaler, M. Felderhoff, Solid-state hydrogen storage for mobile applications: Quo Vadis? Energy Environ. Sci. 4(7), 2495–2502 (2011). https://doi.org/10.1039/c0ee00771d
- F. Cheng, Z. Tao, J. Liang, J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem. Commun. 48(59), 7334–7343 (2012). https://doi.org/10.1039/C2CC30740E
- C. Zhou, Y. Peng, Q. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling. J. Mater. Sci. Technol. 50, 178–183 (2020). https://doi.org/10.1016/j.jmst.2020.01.063
- S. Dong, C. Li, J. Wang, H. Liu, Z. Ding et al., The “burst effect” of hydrogen desorption in MgH2 dehydrogenation. J. Mater. Chem. A 10, 22363–22372 (2022). https://doi.org/10.1039/d2ta06458h
- Y. Shang, C. Pistidda, G. Gizer, T. Klassen, M. Dornheim, Mg-based materials for hydrogen storage. J. Magnes. Alloys 9(6), 1837–1860 (2021). https://doi.org/10.1016/j.jma.2021.06.007
- P. Liu, J. Lian, H. Chen, X. Liu, Y. Chen et al., In-situ synthesis of Mg2Ni–Ce6O11 catalyst for improvement of hydrogen storage in magnesium. Chem. Eng. J. 385, 123448 (2020). https://doi.org/10.1016/j.cej.2019.123448
- X. Ding, R. Chen, X. Chen, H. Fang, Q. Wang et al., A novel method towards improving the hydrogen storage properties of hypoeutectic Mg–Ni alloy via ultrasonic treatment. J. Magnes. Alloys (2021). https://doi.org/10.1016/j.jma.2021.06.003
- F. Guo, T. Zhang, L. Shi, L. Song, Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg2Ni and LaHx (x = 2, 3) nanocrystallines. J. Magnes. Alloys (2021). https://doi.org/10.1016/j.jma.2021.06.013
- N. Terashita, K. Kobayashi, T. Sasai, E. Akiba, Structural and hydriding properties of (Mg1−xCax)Ni2 Laves phase alloys. J. Alloys Compd. 327(1), 275–280 (2001). https://doi.org/10.1016/S0925-8388(01)01563-8
- N. Ding, Y. Li, F. Liang, B. Liu, W. Liu et al., Highly efficient hydrogen storage capacity of 2.5 wt% above 0.1 MPa using Y and Cr codoped V-based alloys. ACS Appl. Energy Mater. 5(3), 3282–3289 (2022). https://doi.org/10.1021/acsaem.1c03901
- J. Huot, G. Liang, R. Schulz, Mechanically alloyed metal hydride systems. Appl. Phys. A: Mater. Sci. Process. 72(2), 187–195 (2001). https://doi.org/10.1007/s003390100772
- Y. Sun, T. Ma, K.-F. Aguey-Zinsou, Magnesium supported on nickel nanobelts for hydrogen storage: coupling nanosizing and catalysis. ACS Appl. Nano Mater. 1(3), 1272–1279 (2018). https://doi.org/10.1021/acsanm.8b00033
- J. Zhang, Y. Zhu, H. Lin, Y. Liu, Y. Zhang et al., Metal hydride nanops with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv. Mater. 29(24), 1700760 (2017). https://doi.org/10.1002/adma.201700760
- D. He, Y. Wang, C. Wu, Q. Li, W. Ding et al., Enhanced hydrogen desorption properties of magnesium hydride by coupling non-metal doping and nano-confinement. Appl. Phys. Lett. 10(1063/1), 4938245 (2015)
- Z. Zhao-Karger, J. Hu, A. Roth, D. Wang, C. Kübel et al., Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem. Commun. 46, 8353–8355 (2010). https://doi.org/10.1039/C0CC03072D
- G. Xia, L. Zhang, X. Chen, Y. Huang, D. Sun et al., Carbon hollow nanobubbles on porous carbon nanofibers: an ideal host for high-performance sodium–sulfur batteries and hydrogen storage. Energy Storage Mater. 14, 314–323 (2018). https://doi.org/10.1016/j.ensm.2018.05.008
- M. Lotoskyy, R. Denys, V.A. Yartys, J. Eriksen, J. Goh et al., An outstanding effect of graphite in nano-MgH2–TiH2 on hydrogen storage performance. J. Mater. Chem. A 6(23), 10740–10754 (2018). https://doi.org/10.1039/C8TA02969E
- Z. Yuan, S. Li, K. Wang, N. Xu, W. Sun et al., In-situ formed Pt nano-clusters serving as destabilization-catalysis bi-functional additive for MgH2. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.135050
- B. Liu, B. Zhang, X. Chen, Y. Lv, H. Huang et al., Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst. Mater. Today Nano 17, 100168 (2022). https://doi.org/10.1016/j.mtnano.2021.100168
- C. Meng, P. Yanhui, L. Zhenyang, H. Gang, L. Xiaofang et al., Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 13(8), 2063–2071 (2020). https://doi.org/10.1007/s12274-020-2808-7
- M. Chen, X. Xiao, X. Wang, Y. Lu, M. Zhang et al., Self-templated carbon enhancing catalytic effect of ZrO2 nanops on the excellent dehydrogenation kinetics of MgH2. Carbon 166, 46–55 (2020). https://doi.org/10.1016/j.carbon.2020.05.025
- J.J. Reilly, R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 7(11), 2254–2256 (1968). https://doi.org/10.1021/ic50069a016
- S.V. Halilov, D.J. Singh, M. Gupta, R. Gupta, Stability and electronic structure of the complex K2PtCl6-structure hydrides DMH6 (D = Mg, Ca, Sr; M = Fe, Ru, Os). Phys. Rev. B 70(19), 195117 (2004). https://doi.org/10.1103/PhysRevB.70.195117
- J. Harris, On the adsorption and desorption of H2 at metal surfaces. Appl. Phys. A 47(1), 63–71 (1988). https://doi.org/10.1007/BF00619699
- X. Huang, X. Xiao, Y. He, Z. Yao, X. Ye, H. Kou, C. Chen, T. Huang, X. Fan, L. Chen, Probing an intermediate state by X-ray absorption near-edge structure in nickel-doped 2LiBH4–MgH2 reactive hydride composite at moderate temperature. Mater. Today Nano 12, 100090 (2020). https://doi.org/10.1016/j.mtnano.2020.100090
- X. Wang, X. Xiao, Z. Liang, S. Zhang, J. Qi et al., Ultrahigh reversible hydrogen capacity and synergetic mechanism of 2LiBH4–MgH2 system catalyzed by dual-metal fluoride. Chem. Eng. J. 433, 134482 (2022). https://doi.org/10.1016/j.cej.2021.134482
- M. Rueda, L.M. Sanz-Moral, Á. Martín, Innovative methods to enhance the properties of solid hydrogen storage materials based on hydrides through nanoconfinement: a review. J. Supercrit. Fluids 141, 198–217 (2018). https://doi.org/10.1016/j.supflu.2018.02.010
- X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao et al., Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 9, 100064 (2020). https://doi.org/10.1016/j.mtnano.2019.100064
- N.S. Norberg, T.S. Arthur, S.J. Fredrick, A.L. Prieto, Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J. Am. Chem. Soc. 133(28), 10679–10681 (2011). https://doi.org/10.1021/ja201791y
- M. Konarova, A. Tanksale, J. Norberto Beltramini, G. Qing Lu, Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy 2(1), 98–104 (2013)
- C.J. Webb, A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 84, 96–106 (2015). https://doi.org/10.1016/j.jpcs.2014.06.014
- A. Jain, S. Agarwal, T. Ichikawa, Catalytic tuning of sorption kinetics of lightweight hydrides: a review of the materials and mechanism. Catalysts 8(12), 651 (2018). https://doi.org/10.3390/catal8120651
- R. Bardhan, A.M. Ruminski, A. Brand, J.J. Urban, Magnesium nanocrystal-polymer composites: a new platform for designer hydrogen storage materials. Energy Environ. Sci. 4(12), 4882–4895 (2011). https://doi.org/10.1039/C1EE02258J
- E.A.V. Ebsworth, Hydrogen compounds of the metallic elements. J. Inorg. Nucl. Chem. 29(7), 1823 (1967). https://doi.org/10.1016/0022-1902(67)80236-7
- B. Bogdanović, K. Bohmhammel, B. Christ, A. Reiser, K. Schlichte et al., Thermodynamic investigation of the magnesium–hydrogen system. J. Alloys Compd. 282(1), 84–92 (1999). https://doi.org/10.1016/S0925-8388(98)00829-9
- K.-F. Aguey-Zinsou, J.-R. Ares-Fernández, Hydrogen in magnesium: new perspectives toward functional stores. Energy Environ. Sci. 3(5), 526–543 (2010). https://doi.org/10.1039/B921645F
- J. Zhang, Z. Li, Y. Wu, X. Guo, J. Ye et al., Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv. 9(1), 408–428 (2019). https://doi.org/10.1039/C8RA05596C
- S. Cheung, W.-Q. Deng, A.C.T. van Duin, W.A. Goddard, ReaxFFMgH reactive force field for magnesium hydride systems. J. Phys. Chem. A 109(5), 851–859 (2005). https://doi.org/10.1021/jp0460184
- A. Gupta, G.V. Baron, P. Perreault, S. Lenaerts, R.-G. Ciocarlan et al., Hydrogen clathrates: next generation hydrogen storage materials. Energy Storage Mater. 41, 69–107 (2021). https://doi.org/10.1016/j.ensm.2021.05.044
- M. Pezat, B. Darriet, P. Hagenmuller, A comparative study of magnesium-rich rare-earth-based alloys for hydrogen storage. J. Less-Common Met. 74(2), 427–434 (1980). https://doi.org/10.1016/0022-5088(80)90181-2
- J.F. Fernández, C.R. Sánchez, Rate determining step in the absorption and desorption of hydrogen by magnesium. J. Alloys Compd. 340(1), 189–198 (2002). https://doi.org/10.1016/S0925-8388(02)00120-2
- P. Spatz, H.A. Aebischer, A. Krozer, L. Schlapbach, The diffusion of H in Mg and the nucleation and growth of MgH2 in thin films. Z. Phys. Chem. 181(1–2), 393–397 (1993). https://doi.org/10.1524/zpch.1993.181.Part_1_2.393
- H.T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim et al., Absorption kinetics and hydride formation in magnesium films: effect of driving force revisited. Acta Mater. 85, 279–289 (2015). https://doi.org/10.1016/j.actamat.2014.11.031
- V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov et al., Magnesium based materials for hydrogen based energy storage: past, present and future. Int. J. Hydrogen Energy 44(15), 7809–7859 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.212
- R.A. Varin, T. Czujko, Z. Wronski, P size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 17(15), 3856–3865 (2006). https://doi.org/10.1016/j.actamat.2022.118654
- G. Barkhordarian, T. Klassen, R. Bormann, Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents. J. Alloys Compd. 407(1), 249–255 (2006). https://doi.org/10.1016/j.jallcom.2005.05.037
- P.S. Rudman, Hydriding and dehydriding kinetics. J. Less-Common Met. 89(1), 93–110 (1983). https://doi.org/10.1016/0022-5088(83)90253-9
- Y. Pang, Q. Li, A review on kinetic models and corresponding analysis methods for hydrogen storage materials. Int. J. Hydrogen Energy 41(40), 18072–18087 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.018
- M.H. Mintz, Y. Zeiri, Hydriding kinetics of powders. J. Alloys Compd. 216(2), 159–175 (1995). https://doi.org/10.1016/0925-8388(94)01269-N
- L. Mooij, B. Dam, Nucleation and growth mechanisms of nano magnesium hydride from the hydrogen sorption kinetics. Phys. Chem. Chem. Phys. 15(27), 11501–11510 (2013). https://doi.org/10.1039/C3CP51735G
- H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957). https://doi.org/10.1021/ac60131a045
- T. Huang, H. Liu, C. Zhou, Effect of driving force on the activation energies for dehydrogenation and hydrogenation of catalyzed MgH2. Int. J. Hydrogen Energy 46(76), 37986–37994 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.044
- R.W.P. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. van Dillen, K.P. de Jong, Hydrogen storage in magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 127(47), 16675–16680 (2005). https://doi.org/10.1021/ja054569h
- C. Hu, Z. Zheng, T. Si, Q. Zhang, Enhanced hydrogen desorption kinetics and cycle durability of amorphous TiMgVNi3-doped MgH2. Int. J. Hydrogen Energy 47(6), 3918–3926 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.010
- C. Peng, Y. Li, Q. Zhang, Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: the role of in-situ hydrogenolysis of nickelocene in ball milling process. J. Alloys Compd. 900, 163547 (2022). https://doi.org/10.1016/j.jallcom.2021.163547
- Y. Fu, L. Zhang, Y. Li, S. Guo, Z. Yu et al., Catalytic effect of MOF-derived transition metal catalyst FeCoS@C on hydrogen storage of magnesium. J. Mater. Sci. Technol. 138, 59–69 (2023). https://doi.org/10.1016/j.jmst.2022.08.019
- M. Felderhoff, B. Bogdanović, High temperature metal hydrides as heat storage materials for solar and related applications. Int. J. Hydrogen Energy 10(1), 325–344 (2009). https://doi.org/10.3390/ijms10010325
- L.Z. Ouyang, S.Y. Ye, H.W. Dong, M. Zhu, Effect of interfacial free energy on hydriding reaction of Mg–Ni thin films. Appl. Phys. Lett. 90(2), 021917 (2007). https://doi.org/10.1063/1.2428877
- Y. Jia, C. Sun, S. Shen, J. Zou, S.S. Mao et al., Combination of nanosizing and interfacial effect: future perspective for designing Mg-based nanomaterials for hydrogen storage. Renew. Sustain. Energy Rev. 44, 289–303 (2015). https://doi.org/10.1016/j.rser.2014.12.032
- K.-F. Aguey-Zinsou, J.-R. Ares-Fernández, Synthesis of colloidal magnesium: a near room temperature store for hydrogen. Chem. Mater. 20, 376 (2008). https://doi.org/10.1021/cm702897f
- W. Li, C. Li, C. Zhou, H. Ma, J. Chen, Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and Mg/Air battery applications. Angew. Chem. Int. Ed. 45(36), 6009–6012 (2006). https://doi.org/10.1002/anie.200600099
- W.Y. Li, C.S. Li, H. Ma, J. Chen, Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J. Am. Chem. Soc. 129(21), 6710–6711 (2007). https://doi.org/10.1021/ja071323z
- X. Zhang, Y. Liu, Z. Ren, X. Zhang, J. Hu et al., Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 14, 2302–2313 (2021). https://doi.org/10.1039/D0EE03160G
- J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 293, 495–500 (1999). https://doi.org/10.1016/S0925-8388(99)00474-0
- G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 292(1), 247–252 (1999). https://doi.org/10.1016/S0925-8388(99)00442-9
- J.L. Bobet, E. Akiba, Y. Nakamura, B. Darriet, Study of Mg–M (M = Co, Ni and Fe) mixture elaborated by reactive mechanical alloying—hydrogen sorption properties. Int. J. Hydrog. Energy 25(10), 987–996 (2000). https://doi.org/10.1016/s0360-3199(00)00002-1
- N. Hanada, T. Ichikawa, H. Fujii, Catalytic effect of nanop 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 109(15), 7188–7194 (2005). https://doi.org/10.1021/jp044576c
- L. Dan, H. Wang, J. Liu, L. Ouyang, M. Zhu, H2 plasma reducing Ni nanops for superior catalysis on hydrogen sorption of MgH2. ACS Appl. Mater. Interfaces 5(4), 4976–4984 (2022). https://doi.org/10.1021/acsaem.2c00206
- X. Lu, L. Zhang, H. Yu, Z. Lu, J. He et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes. Chem. Eng. J. 422, 130101 (2021). https://doi.org/10.1016/j.cej.2021.130101
- K. Wang, X. Zhang, Y. Liu, Z. Ren, X. Zhang et al., Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chem. Eng. J. 406, 126831 (2021). https://doi.org/10.1016/j.cej.2020.126831
- K.C. Tome, S. Xi, Y. Fu, C. Lu, N. Lu et al., Remarkable catalytic effect of Ni and ZrO2 nanops on the hydrogen sorption properties of MgH2. Int. J. Hydrogen Energy 47(7), 4716–4724 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.102
- N.S. Mustafa, M. Ismail, Hydrogen sorption improvement of MgH2 catalyzed by CeO2 nanopowder. J. Alloys Compd. 695, 2532–2538 (2017). https://doi.org/10.1016/j.jallcom.2016.11.158
- A. Bhatnagar, S.K. Pandey, A.K. Vishwakarma, S. Singh, V. Shukla et al., Fe3O4@graphene as a superior catalyst for hydrogen de/absorption from/in MgH2/Mg. J. Mater. Chem. A 4(38), 14761–14772 (2016). https://doi.org/10.1039/C6TA05998H
- C. Peng, C. Yang, Q. Zhang, Few-layer MXene Ti3C2Tx supported Ni@C nanoflakes as a catalyst for hydrogen desorption of MgH2. J. Mater. Chem. A 10(23), 12409–12417 (2022). https://doi.org/10.1039/D2TA02958H
- Z. Lan, H. Fu, R. Zhao, H. Liu, W. Zhou et al., Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem. Eng. J. 431, 133985 (2022). https://doi.org/10.1016/j.cej.2021.133985
- H. Liu, C. Lu, X. Wang, L. Xu, X. Huang et al., Combinations of V2C and Ti3C2 MXenes for boosting the hydrogen storage performances of MgH2. ACS Appl. Mater. Interfaces 13(11), 13235–13247 (2021). https://doi.org/10.1021/acsami.0c23150
- G. Haiguang, S. Rui, Z. Jinglian, L. Yana, S. Yuting et al., Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2. Appl. Surf. Sci. 564, 150302 (2021). https://doi.org/10.1016/j.apsusc.2021.150302
- G. Haiguang, S. Yuting, S. Rui, L. Yana, Z. Jinglian et al., Effect of few-layer Ti3C2Tx supported nano-Ni via self-assembly reduction on hydrogen storage performance of MgH2. ACS Appl. Mater. Interfaces 564, 150302 (2021). https://doi.org/10.1021/acsami.0c15686
- K. Wang, X. Zhang, Z. Ren, X. Zhang, J. Hu et al., Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Storage Mater. 23, 79–87 (2019). https://doi.org/10.1016/j.ensm.2019.05.029
- W. Oelerich, T. Klassen, R. Bormann, Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg. J. Alloys Compd. 322(1–2), L5–L9 (2001). https://doi.org/10.1016/s0925-8388(01)01173-2
- A.R. Yavari, A. LeMoulec, F.R. de Castro, S. Deledda, O. Friedrichs et al., Improvement in H-sorption kinetics of MgH2 powders by using Fe nanops generated by reactive FeF3 addition. Scr. Mater. 52(8), 719–724 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.020
- M. Liu, X. Xiao, S. Zhao, M. Chen, J. Mao et al., Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride. J. Mater. Chem. A 7(10), 5277–5287 (2019). https://doi.org/10.1039/C8TA12431K
- J. Zang, S. Wang, R. Hu, H. Man, J. Zhang et al., Ni, beyond thermodynamic tuning, maintains the catalytic activity of V species in Ni3(VO4)2 doped MgH2. J. Mater. Chem. A 9(13), 8341–8349 (2021). https://doi.org/10.1039/d0ta12079k
- T. Huang, X. Huang, C. Hu, J. Wang, H. Liu et al., Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods. Mater. Today Energy 19, 100613 (2021). https://doi.org/10.1016/j.mtener.2020.100613
- K. Xian, M. Wu, M. Gao, S. Wang, Z. Li et al., A unique nanoflake-shape bimetallic Ti–Nb oxide of superior catalytic effect for hydrogen storage of MgH2. Small 18(43), 2107013 (2022). https://doi.org/10.1002/smll.202107013
- X. Wen, H. Liang, R. Zhao, F. Hong, W. Shi et al., Regulation of the integrated hydrogen storage properties of magnesium hydride using 3D self-assembled amorphous carbon-embedded porous niobium pentoxide. J. Mater. Chem. A 10(32), 16941–16951 (2022). https://doi.org/10.1039/D2TA04700D
- W. Zhu, S. Panda, C. Lu, Z. Ma, D. Khan et al., Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2. ACS Appl. Mater. Interfaces 12(45), 50333–50343 (2020). https://doi.org/10.1021/acsami.0c12767
- H. Tianping, H. Xu, H. Chuanzhu, W. Jie, L. Huabing et al., MOF-derived Ni nanops dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2. Chem. Eng. J. 421, 127851 (2021). https://doi.org/10.1016/j.cej.2020.127851
- M. Liu, X. Xiao, S. Zhao, S. Saremi-Yarahmadi, M. Chen et al., ZIF-67 derived Co@CNTs nanops: remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism. Int. J. Hydrog. Energy 44(2), 1059–1069 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.078
- L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu, Application of dielectric barrier discharge plasma-assisted milling in energy storage materials—a review. J. Alloys Compd. 691, 422–435 (2017). https://doi.org/10.1016/j.jallcom.2016.08.179
- L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun et al., Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF2 composite directly synthesized by plasma milling. J. Alloys Compd. 586, 113–117 (2014). https://doi.org/10.1016/j.jallcom.2013.10.029
- J. Cui, J. Liu, H. Wang, L. Ouyang, D. Sun et al., Mg–TM (TM: Ti, Nb, V Co, Mo or Ni) core–shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2(25), 9645–9655 (2014). https://doi.org/10.1039/c4ta00221k
- C. Jie, W. Hui, L. Jiangwen, O. Liuzhang, Z. Qingan et al., Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 1(18), 5603–5611 (2013). https://doi.org/10.1039/c3ta01332d
- C. Lu, J. Zou, X. Shi, X. Zeng, W. Ding, Synthesis and hydrogen storage properties of core–shell structured binary Mg@Ti and ternary Mg@Ti@Ni composites. Int. J. Hydrog. Energy 42(4), 2239–2247 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.088
- C. Lu, Y. Ma, F. Li, H. Zhu, X. Zeng et al., Visualization of fast “hydrogen pump” in core–shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt. J. Mater. Chem. A 7(24), 14629–14637 (2019). https://doi.org/10.1039/c9ta03038g
- A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan et al., Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 118(22), 10775–10839 (2018). https://doi.org/10.1021/acs.chemrev.8b00313
- A.G. Turnbull, Thermochemistry of biscyclopentadienyl metal compounds. Aust. J. Chem. 20(10), 2059–2067 (1967). https://doi.org/10.1071/CH9672059
- J.-J. Liang, W.C.P. Kung, Confinement of Mg–MgH2 systems into carbon nanotubes changes hydrogen sorption energetics. J. Phys. Chem. B 109(38), 17837–17841 (2005). https://doi.org/10.1021/jp052134a
- P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake et al., The preparation of carbon-supported magnesium nanops using melt infiltration. Chem. Mater. 19(24), 6052–6057 (2007). https://doi.org/10.1021/cm702205v
- M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
- G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanops uniformly self-assembled on graphene. Adv. Mater. 27(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
- W. Zhu, L. Ren, C. Lu, H. Xu, F. Sun et al., Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano 15(11), 18494–18504 (2021). https://doi.org/10.1021/acsnano.1c08343
- S. Liu, J. Liu, X. Liu, J. Shang, L. Xu et al., Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021). https://doi.org/10.1038/s41565-020-00818-8
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- P. Kumar, S. Singh, S.A.R. Hashmi, K.-H. Kim, MXenes: emerging 2D materials for hydrogen storage. Nano Energy 85, 105989 (2021). https://doi.org/10.1016/j.nanoen.2021.105989
- D.W. Lim, J.W. Yoon, K.Y. Ryu, M.P. Suh, Magnesium nanocrystals embedded in a metal–organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption. Angew. Chem. Int. Ed. 51(39), 9814–9817 (2012). https://doi.org/10.1002/anie.201206055
- S.S. Shinde, D.-H. Kim, J.-Y. Yu, J.-H. Lee, Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage. Nanoscale 9(21), 7094–7103 (2017). https://doi.org/10.1039/C7NR01699A
- Z. Ma, S. Panda, Q. Zhang, F. Sun, D. Khan et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chem. Eng. J. 406, 126790 (2021). https://doi.org/10.1016/j.cej.2020.126790
- L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 14(1), 144 (2022). https://doi.org/10.1007/s40820-022-00891-9
- Z. Ma, Q. Zhang, S. Panda, W. Zhu, F. Sun et al., In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni–MOF scaffold for hydrogen storage. Sustain. Energy Fuels 4(9), 4694–4703 (2020). https://doi.org/10.1039/D0SE00818D
- T. Qiu, S. Gao, Z. Liang, D.G. Wang, H. Tabassum et al., Pristine hollow metal–organic frameworks: design, synthesis and application. Angew. Chem. Int. Ed. 60, 17314 (2021). https://doi.org/10.1002/anie.202012699
- L. Ren, W. Zhu, Q. Zhang, C. Lu, F. Sun et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem. Eng. J. 434, 134701 (2022). https://doi.org/10.1016/j.cej.2022.134701
- M. Huang, L. Ouyang, J. Ye, J. Liu, X. Yao et al., Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts. J. Mater. Chem. A 5(18), 8566–8575 (2017). https://doi.org/10.1039/C7TA02457F
- Y. Zhao, T. Li, H. Huang, T. Xu, B. Liu et al., A highly efficient hydrolysis of MgH2 catalyzed by NiCo@C bimetallic synergistic effect. J. Mater. Sci. Technol. 137, 176–183 (2023). https://doi.org/10.1016/j.jmst.2022.08.005
- M. Song, L. Zhang, F. Wu, H. Zhang, H. Zhao et al., Recent advances of magnesium hydride as an energy storage material. J. Mater. Sci. Technol. 149, 99–111 (2023). https://doi.org/10.1016/j.jmst.2022.11.032
- L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang et al., Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv. Energy Mater. 7(19), 1700299 (2017). https://doi.org/10.1002/aenm.201700299
- Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem. Int. Ed. 59(22), 8623–8629 (2020). https://doi.org/10.1002/anie.201915988
- K. Chen, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Converting H+ from coordinated water into H− enables super facile synthesis of LiBH4. Green Chem. 21(16), 4380–4387 (2019). https://doi.org/10.1039/C9GC01897B
- P. Gao, S. Ju, Z. Liu, G. Xia, D. Sun et al., Metal hydrides with in situ built electron/ion dual-conductive framework for stable all-solid-state Li-ion batteries. ACS Nano 16(5), 8040–8050 (2022). https://doi.org/10.1021/acsnano.2c01038
- H. Zhang, Y. Wang, S. Ju, P. Gao, T. Zou et al., 3D artificial electron and ion conductive pathway enabled by MgH2 nanops supported on g-C3N4 towards dendrite-free Li metal anode. Energy Storage Mater. 52, 220–229 (2022). https://doi.org/10.1016/j.ensm.2022.08.001
- S. Zhong, S. Ju, Y. Shao, W. Chen, T. Zhang et al., Magnesium hydride nanops anchored on MXene sheets as high capacity anode for lithium-ion batteries. J. Energy Chem. 62, 431–439 (2021). https://doi.org/10.1016/j.jechem.2021.03.049
References
G.W. Crabtree, M.S. Dresselhaus, The hydrogen fuel alternative. MRS Bull. 33(4), 421–428 (2011). https://doi.org/10.1557/mrs2008.84
M. Dornheim, N. Eigen, G. Barkhordarian, T. Klassen, R. Bormann, Tailoring hydrogen storage materials towards application. Adv. Eng. Mater. 8(5), 377–385 (2006). https://doi.org/10.1002/adem.200600018
J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Hydrogen energy, economy and storage: review and recommendation. Int. J. Hydrogen Energy 44(29), 15072–15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
L. Schlapbach, Hydrogen-fuelled vehicles. Nature 460(7257), 809–811 (2009). https://doi.org/10.1038/460809a
Z. Abdin, A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński et al., Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120, 109620 (2020). https://doi.org/10.1016/j.rser.2019.109620
J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39(2), 656–675 (2010). https://doi.org/10.1039/B802882F
I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds et al., The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12(2), 463–491 (2019). https://doi.org/10.1039/C8EE01157E
M.G. Rasul, M.A. Hazrat, M.A. Sattar, M.I. Jahirul, M.J. Shearer, The future of hydrogen: challenges on production, storage and applications. Energy Convers. Manag. 272, 116326 (2022). https://doi.org/10.1016/j.enconman.2022.116326
T. Capurso, M. Stefanizzi, M. Torresi, S.M. Camporeale, Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers. Manag. 251, 114898 (2022). https://doi.org/10.1016/j.enconman.2021.114898
M.R. Usman, Hydrogen storage methods: review and current status. Renew. Sustain. Energy Rev. 167, 112743 (2022). https://doi.org/10.1016/j.rser.2022.112743
J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao et al., Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 37(1), 1048–1057 (2012). https://doi.org/10.1016/j.ijhydene.2011.02.125
J. Zheng, L. Chen, J. Wang, X. Xi, H. Zhu et al., Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank. Energy Convers. Manag. 186, 526–534 (2019). https://doi.org/10.1016/j.enconman.2019.02.073
Z. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, O.K. Farha, Porous materials for hydrogen storage. Chem 8(3), 693–716 (2022). https://doi.org/10.1016/j.chempr.2022.01.012
L. Ouyang, K. Chen, J. Jiang, X.-S. Yang, M. Zhu, Hydrogen storage in light-metal based systems: a review. J. Alloys Compd. 829, 154597 (2020). https://doi.org/10.1016/j.jallcom.2020.154597
B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32(9), 1121–1140 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.022
C. Weidenthaler, M. Felderhoff, Solid-state hydrogen storage for mobile applications: Quo Vadis? Energy Environ. Sci. 4(7), 2495–2502 (2011). https://doi.org/10.1039/c0ee00771d
F. Cheng, Z. Tao, J. Liang, J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem. Commun. 48(59), 7334–7343 (2012). https://doi.org/10.1039/C2CC30740E
C. Zhou, Y. Peng, Q. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling. J. Mater. Sci. Technol. 50, 178–183 (2020). https://doi.org/10.1016/j.jmst.2020.01.063
S. Dong, C. Li, J. Wang, H. Liu, Z. Ding et al., The “burst effect” of hydrogen desorption in MgH2 dehydrogenation. J. Mater. Chem. A 10, 22363–22372 (2022). https://doi.org/10.1039/d2ta06458h
Y. Shang, C. Pistidda, G. Gizer, T. Klassen, M. Dornheim, Mg-based materials for hydrogen storage. J. Magnes. Alloys 9(6), 1837–1860 (2021). https://doi.org/10.1016/j.jma.2021.06.007
P. Liu, J. Lian, H. Chen, X. Liu, Y. Chen et al., In-situ synthesis of Mg2Ni–Ce6O11 catalyst for improvement of hydrogen storage in magnesium. Chem. Eng. J. 385, 123448 (2020). https://doi.org/10.1016/j.cej.2019.123448
X. Ding, R. Chen, X. Chen, H. Fang, Q. Wang et al., A novel method towards improving the hydrogen storage properties of hypoeutectic Mg–Ni alloy via ultrasonic treatment. J. Magnes. Alloys (2021). https://doi.org/10.1016/j.jma.2021.06.003
F. Guo, T. Zhang, L. Shi, L. Song, Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg2Ni and LaHx (x = 2, 3) nanocrystallines. J. Magnes. Alloys (2021). https://doi.org/10.1016/j.jma.2021.06.013
N. Terashita, K. Kobayashi, T. Sasai, E. Akiba, Structural and hydriding properties of (Mg1−xCax)Ni2 Laves phase alloys. J. Alloys Compd. 327(1), 275–280 (2001). https://doi.org/10.1016/S0925-8388(01)01563-8
N. Ding, Y. Li, F. Liang, B. Liu, W. Liu et al., Highly efficient hydrogen storage capacity of 2.5 wt% above 0.1 MPa using Y and Cr codoped V-based alloys. ACS Appl. Energy Mater. 5(3), 3282–3289 (2022). https://doi.org/10.1021/acsaem.1c03901
J. Huot, G. Liang, R. Schulz, Mechanically alloyed metal hydride systems. Appl. Phys. A: Mater. Sci. Process. 72(2), 187–195 (2001). https://doi.org/10.1007/s003390100772
Y. Sun, T. Ma, K.-F. Aguey-Zinsou, Magnesium supported on nickel nanobelts for hydrogen storage: coupling nanosizing and catalysis. ACS Appl. Nano Mater. 1(3), 1272–1279 (2018). https://doi.org/10.1021/acsanm.8b00033
J. Zhang, Y. Zhu, H. Lin, Y. Liu, Y. Zhang et al., Metal hydride nanops with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv. Mater. 29(24), 1700760 (2017). https://doi.org/10.1002/adma.201700760
D. He, Y. Wang, C. Wu, Q. Li, W. Ding et al., Enhanced hydrogen desorption properties of magnesium hydride by coupling non-metal doping and nano-confinement. Appl. Phys. Lett. 10(1063/1), 4938245 (2015)
Z. Zhao-Karger, J. Hu, A. Roth, D. Wang, C. Kübel et al., Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem. Commun. 46, 8353–8355 (2010). https://doi.org/10.1039/C0CC03072D
G. Xia, L. Zhang, X. Chen, Y. Huang, D. Sun et al., Carbon hollow nanobubbles on porous carbon nanofibers: an ideal host for high-performance sodium–sulfur batteries and hydrogen storage. Energy Storage Mater. 14, 314–323 (2018). https://doi.org/10.1016/j.ensm.2018.05.008
M. Lotoskyy, R. Denys, V.A. Yartys, J. Eriksen, J. Goh et al., An outstanding effect of graphite in nano-MgH2–TiH2 on hydrogen storage performance. J. Mater. Chem. A 6(23), 10740–10754 (2018). https://doi.org/10.1039/C8TA02969E
Z. Yuan, S. Li, K. Wang, N. Xu, W. Sun et al., In-situ formed Pt nano-clusters serving as destabilization-catalysis bi-functional additive for MgH2. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.135050
B. Liu, B. Zhang, X. Chen, Y. Lv, H. Huang et al., Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst. Mater. Today Nano 17, 100168 (2022). https://doi.org/10.1016/j.mtnano.2021.100168
C. Meng, P. Yanhui, L. Zhenyang, H. Gang, L. Xiaofang et al., Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 13(8), 2063–2071 (2020). https://doi.org/10.1007/s12274-020-2808-7
M. Chen, X. Xiao, X. Wang, Y. Lu, M. Zhang et al., Self-templated carbon enhancing catalytic effect of ZrO2 nanops on the excellent dehydrogenation kinetics of MgH2. Carbon 166, 46–55 (2020). https://doi.org/10.1016/j.carbon.2020.05.025
J.J. Reilly, R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem. 7(11), 2254–2256 (1968). https://doi.org/10.1021/ic50069a016
S.V. Halilov, D.J. Singh, M. Gupta, R. Gupta, Stability and electronic structure of the complex K2PtCl6-structure hydrides DMH6 (D = Mg, Ca, Sr; M = Fe, Ru, Os). Phys. Rev. B 70(19), 195117 (2004). https://doi.org/10.1103/PhysRevB.70.195117
J. Harris, On the adsorption and desorption of H2 at metal surfaces. Appl. Phys. A 47(1), 63–71 (1988). https://doi.org/10.1007/BF00619699
X. Huang, X. Xiao, Y. He, Z. Yao, X. Ye, H. Kou, C. Chen, T. Huang, X. Fan, L. Chen, Probing an intermediate state by X-ray absorption near-edge structure in nickel-doped 2LiBH4–MgH2 reactive hydride composite at moderate temperature. Mater. Today Nano 12, 100090 (2020). https://doi.org/10.1016/j.mtnano.2020.100090
X. Wang, X. Xiao, Z. Liang, S. Zhang, J. Qi et al., Ultrahigh reversible hydrogen capacity and synergetic mechanism of 2LiBH4–MgH2 system catalyzed by dual-metal fluoride. Chem. Eng. J. 433, 134482 (2022). https://doi.org/10.1016/j.cej.2021.134482
M. Rueda, L.M. Sanz-Moral, Á. Martín, Innovative methods to enhance the properties of solid hydrogen storage materials based on hydrides through nanoconfinement: a review. J. Supercrit. Fluids 141, 198–217 (2018). https://doi.org/10.1016/j.supflu.2018.02.010
X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao et al., Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 9, 100064 (2020). https://doi.org/10.1016/j.mtnano.2019.100064
N.S. Norberg, T.S. Arthur, S.J. Fredrick, A.L. Prieto, Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J. Am. Chem. Soc. 133(28), 10679–10681 (2011). https://doi.org/10.1021/ja201791y
M. Konarova, A. Tanksale, J. Norberto Beltramini, G. Qing Lu, Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy 2(1), 98–104 (2013)
C.J. Webb, A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 84, 96–106 (2015). https://doi.org/10.1016/j.jpcs.2014.06.014
A. Jain, S. Agarwal, T. Ichikawa, Catalytic tuning of sorption kinetics of lightweight hydrides: a review of the materials and mechanism. Catalysts 8(12), 651 (2018). https://doi.org/10.3390/catal8120651
R. Bardhan, A.M. Ruminski, A. Brand, J.J. Urban, Magnesium nanocrystal-polymer composites: a new platform for designer hydrogen storage materials. Energy Environ. Sci. 4(12), 4882–4895 (2011). https://doi.org/10.1039/C1EE02258J
E.A.V. Ebsworth, Hydrogen compounds of the metallic elements. J. Inorg. Nucl. Chem. 29(7), 1823 (1967). https://doi.org/10.1016/0022-1902(67)80236-7
B. Bogdanović, K. Bohmhammel, B. Christ, A. Reiser, K. Schlichte et al., Thermodynamic investigation of the magnesium–hydrogen system. J. Alloys Compd. 282(1), 84–92 (1999). https://doi.org/10.1016/S0925-8388(98)00829-9
K.-F. Aguey-Zinsou, J.-R. Ares-Fernández, Hydrogen in magnesium: new perspectives toward functional stores. Energy Environ. Sci. 3(5), 526–543 (2010). https://doi.org/10.1039/B921645F
J. Zhang, Z. Li, Y. Wu, X. Guo, J. Ye et al., Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv. 9(1), 408–428 (2019). https://doi.org/10.1039/C8RA05596C
S. Cheung, W.-Q. Deng, A.C.T. van Duin, W.A. Goddard, ReaxFFMgH reactive force field for magnesium hydride systems. J. Phys. Chem. A 109(5), 851–859 (2005). https://doi.org/10.1021/jp0460184
A. Gupta, G.V. Baron, P. Perreault, S. Lenaerts, R.-G. Ciocarlan et al., Hydrogen clathrates: next generation hydrogen storage materials. Energy Storage Mater. 41, 69–107 (2021). https://doi.org/10.1016/j.ensm.2021.05.044
M. Pezat, B. Darriet, P. Hagenmuller, A comparative study of magnesium-rich rare-earth-based alloys for hydrogen storage. J. Less-Common Met. 74(2), 427–434 (1980). https://doi.org/10.1016/0022-5088(80)90181-2
J.F. Fernández, C.R. Sánchez, Rate determining step in the absorption and desorption of hydrogen by magnesium. J. Alloys Compd. 340(1), 189–198 (2002). https://doi.org/10.1016/S0925-8388(02)00120-2
P. Spatz, H.A. Aebischer, A. Krozer, L. Schlapbach, The diffusion of H in Mg and the nucleation and growth of MgH2 in thin films. Z. Phys. Chem. 181(1–2), 393–397 (1993). https://doi.org/10.1524/zpch.1993.181.Part_1_2.393
H.T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim et al., Absorption kinetics and hydride formation in magnesium films: effect of driving force revisited. Acta Mater. 85, 279–289 (2015). https://doi.org/10.1016/j.actamat.2014.11.031
V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov et al., Magnesium based materials for hydrogen based energy storage: past, present and future. Int. J. Hydrogen Energy 44(15), 7809–7859 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.212
R.A. Varin, T. Czujko, Z. Wronski, P size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 17(15), 3856–3865 (2006). https://doi.org/10.1016/j.actamat.2022.118654
G. Barkhordarian, T. Klassen, R. Bormann, Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents. J. Alloys Compd. 407(1), 249–255 (2006). https://doi.org/10.1016/j.jallcom.2005.05.037
P.S. Rudman, Hydriding and dehydriding kinetics. J. Less-Common Met. 89(1), 93–110 (1983). https://doi.org/10.1016/0022-5088(83)90253-9
Y. Pang, Q. Li, A review on kinetic models and corresponding analysis methods for hydrogen storage materials. Int. J. Hydrogen Energy 41(40), 18072–18087 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.018
M.H. Mintz, Y. Zeiri, Hydriding kinetics of powders. J. Alloys Compd. 216(2), 159–175 (1995). https://doi.org/10.1016/0925-8388(94)01269-N
L. Mooij, B. Dam, Nucleation and growth mechanisms of nano magnesium hydride from the hydrogen sorption kinetics. Phys. Chem. Chem. Phys. 15(27), 11501–11510 (2013). https://doi.org/10.1039/C3CP51735G
H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957). https://doi.org/10.1021/ac60131a045
T. Huang, H. Liu, C. Zhou, Effect of driving force on the activation energies for dehydrogenation and hydrogenation of catalyzed MgH2. Int. J. Hydrogen Energy 46(76), 37986–37994 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.044
R.W.P. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. van Dillen, K.P. de Jong, Hydrogen storage in magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 127(47), 16675–16680 (2005). https://doi.org/10.1021/ja054569h
C. Hu, Z. Zheng, T. Si, Q. Zhang, Enhanced hydrogen desorption kinetics and cycle durability of amorphous TiMgVNi3-doped MgH2. Int. J. Hydrogen Energy 47(6), 3918–3926 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.010
C. Peng, Y. Li, Q. Zhang, Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: the role of in-situ hydrogenolysis of nickelocene in ball milling process. J. Alloys Compd. 900, 163547 (2022). https://doi.org/10.1016/j.jallcom.2021.163547
Y. Fu, L. Zhang, Y. Li, S. Guo, Z. Yu et al., Catalytic effect of MOF-derived transition metal catalyst FeCoS@C on hydrogen storage of magnesium. J. Mater. Sci. Technol. 138, 59–69 (2023). https://doi.org/10.1016/j.jmst.2022.08.019
M. Felderhoff, B. Bogdanović, High temperature metal hydrides as heat storage materials for solar and related applications. Int. J. Hydrogen Energy 10(1), 325–344 (2009). https://doi.org/10.3390/ijms10010325
L.Z. Ouyang, S.Y. Ye, H.W. Dong, M. Zhu, Effect of interfacial free energy on hydriding reaction of Mg–Ni thin films. Appl. Phys. Lett. 90(2), 021917 (2007). https://doi.org/10.1063/1.2428877
Y. Jia, C. Sun, S. Shen, J. Zou, S.S. Mao et al., Combination of nanosizing and interfacial effect: future perspective for designing Mg-based nanomaterials for hydrogen storage. Renew. Sustain. Energy Rev. 44, 289–303 (2015). https://doi.org/10.1016/j.rser.2014.12.032
K.-F. Aguey-Zinsou, J.-R. Ares-Fernández, Synthesis of colloidal magnesium: a near room temperature store for hydrogen. Chem. Mater. 20, 376 (2008). https://doi.org/10.1021/cm702897f
W. Li, C. Li, C. Zhou, H. Ma, J. Chen, Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and Mg/Air battery applications. Angew. Chem. Int. Ed. 45(36), 6009–6012 (2006). https://doi.org/10.1002/anie.200600099
W.Y. Li, C.S. Li, H. Ma, J. Chen, Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J. Am. Chem. Soc. 129(21), 6710–6711 (2007). https://doi.org/10.1021/ja071323z
X. Zhang, Y. Liu, Z. Ren, X. Zhang, J. Hu et al., Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 14, 2302–2313 (2021). https://doi.org/10.1039/D0EE03160G
J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 293, 495–500 (1999). https://doi.org/10.1016/S0925-8388(99)00474-0
G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 292(1), 247–252 (1999). https://doi.org/10.1016/S0925-8388(99)00442-9
J.L. Bobet, E. Akiba, Y. Nakamura, B. Darriet, Study of Mg–M (M = Co, Ni and Fe) mixture elaborated by reactive mechanical alloying—hydrogen sorption properties. Int. J. Hydrog. Energy 25(10), 987–996 (2000). https://doi.org/10.1016/s0360-3199(00)00002-1
N. Hanada, T. Ichikawa, H. Fujii, Catalytic effect of nanop 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 109(15), 7188–7194 (2005). https://doi.org/10.1021/jp044576c
L. Dan, H. Wang, J. Liu, L. Ouyang, M. Zhu, H2 plasma reducing Ni nanops for superior catalysis on hydrogen sorption of MgH2. ACS Appl. Mater. Interfaces 5(4), 4976–4984 (2022). https://doi.org/10.1021/acsaem.2c00206
X. Lu, L. Zhang, H. Yu, Z. Lu, J. He et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes. Chem. Eng. J. 422, 130101 (2021). https://doi.org/10.1016/j.cej.2021.130101
K. Wang, X. Zhang, Y. Liu, Z. Ren, X. Zhang et al., Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chem. Eng. J. 406, 126831 (2021). https://doi.org/10.1016/j.cej.2020.126831
K.C. Tome, S. Xi, Y. Fu, C. Lu, N. Lu et al., Remarkable catalytic effect of Ni and ZrO2 nanops on the hydrogen sorption properties of MgH2. Int. J. Hydrogen Energy 47(7), 4716–4724 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.102
N.S. Mustafa, M. Ismail, Hydrogen sorption improvement of MgH2 catalyzed by CeO2 nanopowder. J. Alloys Compd. 695, 2532–2538 (2017). https://doi.org/10.1016/j.jallcom.2016.11.158
A. Bhatnagar, S.K. Pandey, A.K. Vishwakarma, S. Singh, V. Shukla et al., Fe3O4@graphene as a superior catalyst for hydrogen de/absorption from/in MgH2/Mg. J. Mater. Chem. A 4(38), 14761–14772 (2016). https://doi.org/10.1039/C6TA05998H
C. Peng, C. Yang, Q. Zhang, Few-layer MXene Ti3C2Tx supported Ni@C nanoflakes as a catalyst for hydrogen desorption of MgH2. J. Mater. Chem. A 10(23), 12409–12417 (2022). https://doi.org/10.1039/D2TA02958H
Z. Lan, H. Fu, R. Zhao, H. Liu, W. Zhou et al., Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem. Eng. J. 431, 133985 (2022). https://doi.org/10.1016/j.cej.2021.133985
H. Liu, C. Lu, X. Wang, L. Xu, X. Huang et al., Combinations of V2C and Ti3C2 MXenes for boosting the hydrogen storage performances of MgH2. ACS Appl. Mater. Interfaces 13(11), 13235–13247 (2021). https://doi.org/10.1021/acsami.0c23150
G. Haiguang, S. Rui, Z. Jinglian, L. Yana, S. Yuting et al., Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2. Appl. Surf. Sci. 564, 150302 (2021). https://doi.org/10.1016/j.apsusc.2021.150302
G. Haiguang, S. Yuting, S. Rui, L. Yana, Z. Jinglian et al., Effect of few-layer Ti3C2Tx supported nano-Ni via self-assembly reduction on hydrogen storage performance of MgH2. ACS Appl. Mater. Interfaces 564, 150302 (2021). https://doi.org/10.1021/acsami.0c15686
K. Wang, X. Zhang, Z. Ren, X. Zhang, J. Hu et al., Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Storage Mater. 23, 79–87 (2019). https://doi.org/10.1016/j.ensm.2019.05.029
W. Oelerich, T. Klassen, R. Bormann, Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg. J. Alloys Compd. 322(1–2), L5–L9 (2001). https://doi.org/10.1016/s0925-8388(01)01173-2
A.R. Yavari, A. LeMoulec, F.R. de Castro, S. Deledda, O. Friedrichs et al., Improvement in H-sorption kinetics of MgH2 powders by using Fe nanops generated by reactive FeF3 addition. Scr. Mater. 52(8), 719–724 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.020
M. Liu, X. Xiao, S. Zhao, M. Chen, J. Mao et al., Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride. J. Mater. Chem. A 7(10), 5277–5287 (2019). https://doi.org/10.1039/C8TA12431K
J. Zang, S. Wang, R. Hu, H. Man, J. Zhang et al., Ni, beyond thermodynamic tuning, maintains the catalytic activity of V species in Ni3(VO4)2 doped MgH2. J. Mater. Chem. A 9(13), 8341–8349 (2021). https://doi.org/10.1039/d0ta12079k
T. Huang, X. Huang, C. Hu, J. Wang, H. Liu et al., Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods. Mater. Today Energy 19, 100613 (2021). https://doi.org/10.1016/j.mtener.2020.100613
K. Xian, M. Wu, M. Gao, S. Wang, Z. Li et al., A unique nanoflake-shape bimetallic Ti–Nb oxide of superior catalytic effect for hydrogen storage of MgH2. Small 18(43), 2107013 (2022). https://doi.org/10.1002/smll.202107013
X. Wen, H. Liang, R. Zhao, F. Hong, W. Shi et al., Regulation of the integrated hydrogen storage properties of magnesium hydride using 3D self-assembled amorphous carbon-embedded porous niobium pentoxide. J. Mater. Chem. A 10(32), 16941–16951 (2022). https://doi.org/10.1039/D2TA04700D
W. Zhu, S. Panda, C. Lu, Z. Ma, D. Khan et al., Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2. ACS Appl. Mater. Interfaces 12(45), 50333–50343 (2020). https://doi.org/10.1021/acsami.0c12767
H. Tianping, H. Xu, H. Chuanzhu, W. Jie, L. Huabing et al., MOF-derived Ni nanops dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2. Chem. Eng. J. 421, 127851 (2021). https://doi.org/10.1016/j.cej.2020.127851
M. Liu, X. Xiao, S. Zhao, S. Saremi-Yarahmadi, M. Chen et al., ZIF-67 derived Co@CNTs nanops: remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism. Int. J. Hydrog. Energy 44(2), 1059–1069 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.078
L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu, Application of dielectric barrier discharge plasma-assisted milling in energy storage materials—a review. J. Alloys Compd. 691, 422–435 (2017). https://doi.org/10.1016/j.jallcom.2016.08.179
L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun et al., Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF2 composite directly synthesized by plasma milling. J. Alloys Compd. 586, 113–117 (2014). https://doi.org/10.1016/j.jallcom.2013.10.029
J. Cui, J. Liu, H. Wang, L. Ouyang, D. Sun et al., Mg–TM (TM: Ti, Nb, V Co, Mo or Ni) core–shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2(25), 9645–9655 (2014). https://doi.org/10.1039/c4ta00221k
C. Jie, W. Hui, L. Jiangwen, O. Liuzhang, Z. Qingan et al., Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 1(18), 5603–5611 (2013). https://doi.org/10.1039/c3ta01332d
C. Lu, J. Zou, X. Shi, X. Zeng, W. Ding, Synthesis and hydrogen storage properties of core–shell structured binary Mg@Ti and ternary Mg@Ti@Ni composites. Int. J. Hydrog. Energy 42(4), 2239–2247 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.088
C. Lu, Y. Ma, F. Li, H. Zhu, X. Zeng et al., Visualization of fast “hydrogen pump” in core–shell nanostructured Mg@Pt through hydrogen-stabilized Mg3Pt. J. Mater. Chem. A 7(24), 14629–14637 (2019). https://doi.org/10.1039/c9ta03038g
A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan et al., Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 118(22), 10775–10839 (2018). https://doi.org/10.1021/acs.chemrev.8b00313
A.G. Turnbull, Thermochemistry of biscyclopentadienyl metal compounds. Aust. J. Chem. 20(10), 2059–2067 (1967). https://doi.org/10.1071/CH9672059
J.-J. Liang, W.C.P. Kung, Confinement of Mg–MgH2 systems into carbon nanotubes changes hydrogen sorption energetics. J. Phys. Chem. B 109(38), 17837–17841 (2005). https://doi.org/10.1021/jp052134a
P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake et al., The preparation of carbon-supported magnesium nanops using melt infiltration. Chem. Mater. 19(24), 6052–6057 (2007). https://doi.org/10.1021/cm702205v
M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanops uniformly self-assembled on graphene. Adv. Mater. 27(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
W. Zhu, L. Ren, C. Lu, H. Xu, F. Sun et al., Nanoconfined and in situ catalyzed MgH2 self-assembled on 3D Ti3C2 MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano 15(11), 18494–18504 (2021). https://doi.org/10.1021/acsnano.1c08343
S. Liu, J. Liu, X. Liu, J. Shang, L. Xu et al., Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021). https://doi.org/10.1038/s41565-020-00818-8
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
P. Kumar, S. Singh, S.A.R. Hashmi, K.-H. Kim, MXenes: emerging 2D materials for hydrogen storage. Nano Energy 85, 105989 (2021). https://doi.org/10.1016/j.nanoen.2021.105989
D.W. Lim, J.W. Yoon, K.Y. Ryu, M.P. Suh, Magnesium nanocrystals embedded in a metal–organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption. Angew. Chem. Int. Ed. 51(39), 9814–9817 (2012). https://doi.org/10.1002/anie.201206055
S.S. Shinde, D.-H. Kim, J.-Y. Yu, J.-H. Lee, Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage. Nanoscale 9(21), 7094–7103 (2017). https://doi.org/10.1039/C7NR01699A
Z. Ma, S. Panda, Q. Zhang, F. Sun, D. Khan et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chem. Eng. J. 406, 126790 (2021). https://doi.org/10.1016/j.cej.2020.126790
L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Micro Lett. 14(1), 144 (2022). https://doi.org/10.1007/s40820-022-00891-9
Z. Ma, Q. Zhang, S. Panda, W. Zhu, F. Sun et al., In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni–MOF scaffold for hydrogen storage. Sustain. Energy Fuels 4(9), 4694–4703 (2020). https://doi.org/10.1039/D0SE00818D
T. Qiu, S. Gao, Z. Liang, D.G. Wang, H. Tabassum et al., Pristine hollow metal–organic frameworks: design, synthesis and application. Angew. Chem. Int. Ed. 60, 17314 (2021). https://doi.org/10.1002/anie.202012699
L. Ren, W. Zhu, Q. Zhang, C. Lu, F. Sun et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage. Chem. Eng. J. 434, 134701 (2022). https://doi.org/10.1016/j.cej.2022.134701
M. Huang, L. Ouyang, J. Ye, J. Liu, X. Yao et al., Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts. J. Mater. Chem. A 5(18), 8566–8575 (2017). https://doi.org/10.1039/C7TA02457F
Y. Zhao, T. Li, H. Huang, T. Xu, B. Liu et al., A highly efficient hydrolysis of MgH2 catalyzed by NiCo@C bimetallic synergistic effect. J. Mater. Sci. Technol. 137, 176–183 (2023). https://doi.org/10.1016/j.jmst.2022.08.005
M. Song, L. Zhang, F. Wu, H. Zhang, H. Zhao et al., Recent advances of magnesium hydride as an energy storage material. J. Mater. Sci. Technol. 149, 99–111 (2023). https://doi.org/10.1016/j.jmst.2022.11.032
L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang et al., Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv. Energy Mater. 7(19), 1700299 (2017). https://doi.org/10.1002/aenm.201700299
Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem. Int. Ed. 59(22), 8623–8629 (2020). https://doi.org/10.1002/anie.201915988
K. Chen, L. Ouyang, H. Zhong, J. Liu, H. Wang et al., Converting H+ from coordinated water into H− enables super facile synthesis of LiBH4. Green Chem. 21(16), 4380–4387 (2019). https://doi.org/10.1039/C9GC01897B
P. Gao, S. Ju, Z. Liu, G. Xia, D. Sun et al., Metal hydrides with in situ built electron/ion dual-conductive framework for stable all-solid-state Li-ion batteries. ACS Nano 16(5), 8040–8050 (2022). https://doi.org/10.1021/acsnano.2c01038
H. Zhang, Y. Wang, S. Ju, P. Gao, T. Zou et al., 3D artificial electron and ion conductive pathway enabled by MgH2 nanops supported on g-C3N4 towards dendrite-free Li metal anode. Energy Storage Mater. 52, 220–229 (2022). https://doi.org/10.1016/j.ensm.2022.08.001
S. Zhong, S. Ju, Y. Shao, W. Chen, T. Zhang et al., Magnesium hydride nanops anchored on MXene sheets as high capacity anode for lithium-ion batteries. J. Energy Chem. 62, 431–439 (2021). https://doi.org/10.1016/j.jechem.2021.03.049