Core–Shell IrPt Nanoalloy on La/Ni–Co3O4 for High-Performance Bifunctional PEM Electrolysis with Ultralow Noble Metal Loading
Corresponding Author: Lina Chong
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 329
Abstract
The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis (PEMWE). We present an iridium–platinum nanoalloy (IrPt) supported on lanthanum and nickel co-doped cobalt oxide, featuring a core–shell architecture with an amorphous IrPtOx shell and an IrPt core. This catalyst exhibits exceptional bifunctional activity for oxygen and hydrogen evolution reactions in acidic media, achieving 2 A cm−2 at 1.72 V in a PEMWE device with ultralow loadings of 0.075 mgIr cm−2 and 0.075 mgPt cm−2 at anode and cathode, respectively. It demonstrates outstanding durability, sustaining water splitting for over 646 h with a degradation rate of only 5 μV h−1, outperforming state-of-the-art Ir-based catalysts. In situ X-ray absorption spectroscopy and density functional theory simulations reveal that the optimized charge redistribution between Ir and Pt, along with the IrPt core–IrPtOx shell structure, enhances performance. The Ir–O–Pt active sites enable a bi-nuclear mechanism for oxygen evolution reaction and a Volmer–Tafel mechanism for hydrogen evolution reaction, reducing kinetic barriers. Hierarchical porosity, abundant oxygen vacancies, and a high electrochemical surface area further improve electron and mass transfer. This work offers a cost-effective solution for green hydrogen production and advances the design of high-performance bifunctional catalysts for PEMWE.
Highlights:
1 Core–shell IrPt nanoalloy on La/Ni–Co₃O₄ achieves unprecedented bifunctional activity (2 A cm−2 at 1.72 V) in proton exchange membrane water electrolysis (PEMWE) with ultralow loadings (0.075 mg cm−2 Ir/Pt at both electrodes).
2 646-h durability in PEMWE cell (5 μV h−1 decay) via IrPt-core@IrPtOx-shell synergy, hierarchical pores, and oxygen vacancies for robust electron/mass transfer and active-site stability.
3 In situ X-ray absorption spectroscopy combined with density functional theory unveils Ir–O–Pt sites enabling bi-nuclear oxygen evolution reaction and Volmer–Tafel hydrogen evolution reaction mechanisms through optimized Ir/Pt charge redistribution, breaking kinetic limitations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.R. Wang, J.M. Stansberry, R. Mukundan, H.J. Chang, D. Kulkarni et al., Proton exchange membrane (PEM) water electrolysis: cell-level considerations for gigawatt-scale deployment. Chem. Rev. 125(3), 1257–1302 (2025). https://doi.org/10.1021/acs.chemrev.3c00904
- A. Odenweller, F. Ueckerdt, The green hydrogen ambition and implementation gap. Nat. Energy 10(1), 110–123 (2025). https://doi.org/10.1038/s41560-024-01684-7
- S.J. Davis, N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent et al., Net-zero emissions energy systems. Science 360(6396), eaas9793 (2018). https://doi.org/10.1126/science.aas9793
- P. Wolfram, P. Kyle, J. Fuhrman, P. O’Rourke, H. McJeon, The hydrogen economy can reduce costs of climate change mitigation by up to 22%. One Earth 7(5), 885–895 (2024). https://doi.org/10.1016/j.oneear.2024.04.012
- Hydrogen Council, McKinsey & Company, Hydrogen Insights 2023 (2023). https://hydrogencouncil.com/en/hydrogen-insights-2023-december-update/
- DECHEMA, acatech, Comparative Analysis of International Hydrogen Strategies (2024). https://www.wasserstoff-kompass.de/fileadmin/user_upload/img/news-und-media/dokumente/2023_e_H2_Laenderanalyse.pdf
- C. Minke, M. Suermann, B. Bensmann, R. Hanke-Rauschenbach, Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? Int. J. Hydrog. Energy 46(46), 23581–23590 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.174
- F. Zeng, C. Mebrahtu, L. Liao, A.K. Beine, R. Palkovits, Stability and deactivation of OER electrocatalysts: a review. J. Energy Chem. 69, 301–329 (2022). https://doi.org/10.1016/j.jechem.2022.01.025
- Y. Wang, Y. Pang, H. Xu, A. Martinez, K.S. Chen, PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development–a review. Energy Environ. Sci. 15(6), 2288–2328 (2022). https://doi.org/10.1039/D2EE00790H
- U.S. Department of Energy. Technical targets for proton exchange membrane electrolysis (2024). https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- X. Shang, J.-H. Tang, B. Dong, Y. Sun, Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting. Sustain. Energy Fuels 4(7), 3211–3228 (2020). https://doi.org/10.1039/D0SE00466A
- M. Ali Raza Anjum, M.S. Okyay, M. Kim, M.H. Lee, N. Park et al., Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy 53, 286–295 (2018). https://doi.org/10.1016/j.nanoen.2018.08.064
- H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu et al., Bifunctional non-noble metal oxide nanop electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015). https://doi.org/10.1038/ncomms8261
- J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204), 1593–1596 (2014). https://doi.org/10.1126/science.1258307
- F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5(7), 1704–1731 (2021). https://doi.org/10.1016/j.joule.2021.05.005
- L. She, G. Zhao, T. Ma, J. Chen, W. Sun et al., On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 32(5), 2108465 (2022). https://doi.org/10.1002/adfm.202108465
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- C. Liu, I. Roh, H.S. Park, B.J. Park, T. Yu, IrPt alloy nanops with controllable compositions as catalysts for electrochemical oxygen and hydrogen evolution. ACS Appl. Nano Mater. 5(11), 17152–17158 (2022). https://doi.org/10.1021/acsanm.2c04069
- F. Andolfatto, R. Durand, A. Michas, P. Millet, P. Stevens, Solid polymer electrolyte water electrolysis: electrocatalysis and long-term stability. Int. J. Hydrog. Energy 19(5), 421–427 (1994). https://doi.org/10.1016/0360-3199(94)90018-3
- D.B. Rogers, R.D. Shannon, A.W. Sleight, J.L. Gillson, Crystal chemistry of metal dioxides with rutile-related structures. Inorg. Chem. 8(4), 841–849 (1969). https://doi.org/10.1021/ic50074a029
- T. Ioroi, N. Kitazawa, K. Yasuda et al., IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J. Appl. Electrochem. 31, 1179–1183 (2001). https://doi.org/10.1023/A:1012755809488
- F.-D. Kong, S. Zhang, G.-P. Yin, N. Zhang, Z.-B. Wang et al., Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell. Electrochem. Commun. 14(1), 63–66 (2012). https://doi.org/10.1016/j.elecom.2011.11.002
- W. Yao, J. Yang, J. Wang, Y. Nuli, Chemical deposition of platinum nanops on iridium oxide for oxygen electrode of unitized regenerative fuel cell. Electrochem. Commun. 9(5), 1029–1034 (2007). https://doi.org/10.1016/j.elecom.2006.12.017
- R.E. Fuentes, H.R. Colón-Mercado, M.J. Martínez-Rodríguez, Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process. J. Electrochem. Soc. 161(1), F77–F82 (2014). https://doi.org/10.1149/2.050401jes
- S.-D. Yim, G.-G. Park, Y.-J. Sohn, W.-Y. Lee, Y.-G. Yoon et al., Optimization of PtIr electrocatalyst for PEM URFC. Int. J. Hydrog. Energy 30(12), 1345–1350 (2005). https://doi.org/10.1016/j.ijhydene.2005.04.013
- M.K. Debe, S.M. Hendricks, G.D. Vernstrom, M. Meyers, M. Brostrom et al., Initial performance and durability of ultra-low loaded NSTF electrodes for PEM electrolyzers. J. Electrochem. Soc. 159(6), K165–K176 (2012). https://doi.org/10.1149/2.065206jes
- H.S. Oh, H.N. Nong, T. Reier, A. Bergmann, M. Gliech et al., Electrochemical catalyst-support effects and their stabilizing role for IrOx nanop catalysts during the oxygen evolution reaction. J. Am. Chem. Soc. 138(38), 12552–12563 (2016). https://doi.org/10.1021/jacs.6b07199
- L. Chong, J. Wen, E. Song, Z. Yang, I.D. Bloom et al., Synergistic Co─Ir/Ru composite electrocatalysts impart efficient and durable oxygen evolution catalysis in acid. Adv. Energy Mater. 13(37), 2302306 (2023). https://doi.org/10.1002/aenm.202302306
- P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A.N. Singh et al., Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ. Sci. 13(10), 3447–3458 (2020). https://doi.org/10.1039/D0EE00877J
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
- Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2017). https://doi.org/10.1002/anie.201610413
- A.V. Avani, E.I. Anila, Recent advances of MoO3 based materials in energy catalysis: applications in hydrogen evolution and oxygen evolution reactions. Int. J. Hydrog. Energy 47(47), 20475–20493 (2022). https://doi.org/10.1016/j.ijhydene.2022.04.252
- A. Meena, P. Thangavel, A.S. Nissimagoudar, A. Narayan Singh, A. Jana et al., Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer. Chem. Eng. J. 430, 132623 (2022). https://doi.org/10.1016/j.cej.2021.132623
- A. Meena, P. Thangavel, D.S. Jeong, A.N. Singh, A. Jana et al., Crystalline-amorphous interface of mesoporous Ni2P @ FePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Appl. Catal. B Environ. 306, 121127 (2022). https://doi.org/10.1016/j.apcatb.2022.121127
- A. Meena, G. Shin, S. Cho, A.N. Singh, A.T. Aqueel Ahmed et al., Engineering a synergistic CoMn-LDH/Fe2O3@NF heterostructure for highly efficient oxygen evolution reaction. Ceram. Int. 49(23), 37929–37935 (2023). https://doi.org/10.1016/j.ceramint.2023.09.122
- A. Meena, A. Jana, G. Shin, A.N. Singh, J.-W. Jang et al., Ultra-durable high-performance CoMo-MCA/Fe-NWs/NF heterostructures for industrial-grade current density seawater splitting. J. Mater. Chem. A 12(43), 30022–30031 (2024). https://doi.org/10.1039/D4TA05175K
- I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7), 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
- L. Chong, G. Gao, J. Wen, H. Li, H. Xu et al., La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380(6645), 609–616 (2023). https://doi.org/10.1126/science.ade1499
- Y. Zhao, P.V. Kumar, X. Tan, X. Lu, X. Zhu et al., Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 13(1), 2430 (2022). https://doi.org/10.1038/s41467-022-30155-4
- R.G. González-Huerta, G. Ramos-Sánchez, P.B. Balbuena, Oxygen evolution in Co-doped RuO2 and IrO2: experimental and theoretical insights to diminish electrolysis overpotential. J. Power. Sources 268, 69–76 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.029
- M. Busch, Water oxidation: from mechanisms to limitations. Curr. Opin. Electrochem. 9, 278–284 (2018). https://doi.org/10.1016/j.coelec.2018.06.007
- Y. Nosaka, Molecular mechanisms of oxygen evolution reactions for artificial photosynthesis. Oxygen 3(4), 407–451 (2023). https://doi.org/10.3390/oxygen3040027
- Z.-H. Yin, H. Liu, J.-S. Hu, J.-J. Wang, The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl. Sci. Rev. 11(11), nwae362 (2024). https://doi.org/10.1093/nsr/nwae362
- J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
- S. Zhao, H. Yu, R. Maric, N. Danilovic, C.B. Capuano et al., Calculating the electrochemically active surface area of iridium oxide in operating proton exchange membrane electrolyzers. J. Electrochem. Soc. 162(12), F1292–F1298 (2015). https://doi.org/10.1149/2.0211512jes
- S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A.M. Mingers et al., The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1(7), 508–515 (2018). https://doi.org/10.1038/s41929-018-0085-6
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- J. Carrasco, J. Klimeš, A. Michaelides, The role of van der Waals forces in water adsorption on metals. J. Chem. Phys. 138(2), 024708 (2013). https://doi.org/10.1063/1.4773901
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
- H. Xu, D. Cheng, D. Cao, X.C. Zeng, Revisiting the universal principle for the rational design of single-atom electrocatalysts. Nat. Catal. 7(2), 207–218 (2024). https://doi.org/10.1038/s41929-023-01106-z
- P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More et al., Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2(6), 454–460 (2010). https://doi.org/10.1038/nchem.623
- D. Chandra, D. Takama, T. Masaki, T. Sato, N. Abe et al., Highly efficient electrocatalysis and mechanistic investigation of intermediate IrOx(OH)y nanop films for water oxidation. ACS Catal. 6(6), 3946–3954 (2016). https://doi.org/10.1021/acscatal.6b00621
- S.J. Pennycook, Scanning transmission electron microscopy: Z-contrast imaging. Microsc. Microanal. 18, 652–664 (2012). https://doi.org/10.1002/0471266965.com083.pub2
- Y. Liu, X. Liu, A.R. Jadhav, T. Yang, Y. Hwang et al., Unraveling the function of metal–amorphous support interactions in single-atom electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 61(9), e202114160 (2022). https://doi.org/10.1002/anie.202114160
- S. Butcha, S. Assavapanumat, S. Ittisanronnachai, V. Lapeyre, C. Wattanakit et al., Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. Nat. Commun. 12(1), 1314 (2021). https://doi.org/10.1038/s41467-021-21603-8
- H. Wang, D. Wang, C. Sun, X. Zhao, C. Xu et al., Oriented generation of 1O2 from peroxymonosulfate via Co3O4 facet engineering. Appl. Catal. B Environ. Energy 364, 124854 (2025). https://doi.org/10.1016/j.apcatb.2024.124854
- J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Mater. Chem. Phys. 103(1), 41–46 (2007). https://doi.org/10.1016/j.matchemphys.2007.01.003
- J.J. Velasco-Vélez, E.A. Carbonio, C.H. Chuang, C.J. Hsu, J.F. Lee et al., Surface electron-hole rich species active in the electrocatalytic water oxidation. J. Am. Chem. Soc. 143(32), 12524–12534 (2021). https://doi.org/10.1021/jacs.1c01655
- A.S. Aricò, A.K. Shukla, H. Kim, S. Park, M. Min et al., An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl. Surf. Sci. 172(1–2), 33–40 (2001). https://doi.org/10.1016/S0169-4332(00)00831-X
- L. Zhang, H. Jang, H. Liu, M.G. Kim, D. Yang et al., Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew. Chem. Int. Ed. 60(34), 18821–18829 (2021). https://doi.org/10.1002/anie.202106631
- I. Ardelean, M. Peteanu, R. Ciceo-Lucacel et al., Structural investigation of CuO containing strontium-borate glasses by means of EPR and IR spectrometry. J. Mater. Sci. Mater. Electron. 11, 11–16 (2000). https://doi.org/10.1023/A:1008943901463
- A. Martınez-Arias, M. Fernández-Garcıa, O. Gálvez, J.M. Coronado, J.A. Anderson et al., Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts. J. Catal. 195(1), 207–216 (2000). https://doi.org/10.1006/jcat.2000.2981
- Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng et al., Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 4(16), 1400696 (2014). https://doi.org/10.1002/aenm.201400696
- M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051
- W. Moschkowitsch, O. Lori, L. Elbaz, Recent progress and viability of PGM-free catalysts for hydrogen evolution reaction and hydrogen oxidation reaction. ACS Catal. 12(2), 1082–1089 (2022). https://doi.org/10.1021/acscatal.1c04948
- Y. Wang, H. Yan, H. Fu, Recent advances and modulation tactics in Ru- and Ir-based electrocatalysts for PEMWE anodes at large current densities. eScience 5(3), 100323 (2025). https://doi.org/10.1016/j.esci.2024.100323
- H.N. Nong, T. Reier, H.-S. Oh, M. Gliech, P. Paciok et al., A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1(11), 841–851 (2018). https://doi.org/10.1038/s41929-018-0153-y
- S. Geiger, O. Kasian, B.R. Shrestha, A.M. Mingers, K.J.J. Mayrhofer et al., Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction. J. Electrochem. Soc. 163(11), F3132–F3138 (2016). https://doi.org/10.1149/2.0181611jes
- A. Gorczyca, V. Moizan, C. Chizallet, O. Proux, W. Del Net et al., Monitoring morphology and hydrogen coverage of nanometric Pt/γ-Al2O3 ps by In Situ HERFD–XANES and quantum simulations. Angew. Chem. Int. Ed. 53(46), 12426–12429 (2014). https://doi.org/10.1002/anie.201403585
- F.-Y. Yu, Z.-L. Lang, L.-Y. Yin, K. Feng, Y.-J. Xia et al., Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat. Commun. 11(1), 490 (2020). https://doi.org/10.1038/s41467-019-14274-z
- A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9(5), 457–465 (2017). https://doi.org/10.1038/nchem.2695
- T. Kim, S.B. Roy, S. Moon, S. Yoo, H. Choi et al., Highly dispersed Pt clusters on F-doped tin(IV) oxide aerogel matrix: an ultra-robust hybrid catalyst for enhanced hydrogen evolution. ACS Nano 16(1), 1625–1638 (2022). https://doi.org/10.1021/acsnano.1c10504
- J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5(11), 909–913 (2006). https://doi.org/10.1038/nmat1752
References
C.R. Wang, J.M. Stansberry, R. Mukundan, H.J. Chang, D. Kulkarni et al., Proton exchange membrane (PEM) water electrolysis: cell-level considerations for gigawatt-scale deployment. Chem. Rev. 125(3), 1257–1302 (2025). https://doi.org/10.1021/acs.chemrev.3c00904
A. Odenweller, F. Ueckerdt, The green hydrogen ambition and implementation gap. Nat. Energy 10(1), 110–123 (2025). https://doi.org/10.1038/s41560-024-01684-7
S.J. Davis, N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent et al., Net-zero emissions energy systems. Science 360(6396), eaas9793 (2018). https://doi.org/10.1126/science.aas9793
P. Wolfram, P. Kyle, J. Fuhrman, P. O’Rourke, H. McJeon, The hydrogen economy can reduce costs of climate change mitigation by up to 22%. One Earth 7(5), 885–895 (2024). https://doi.org/10.1016/j.oneear.2024.04.012
Hydrogen Council, McKinsey & Company, Hydrogen Insights 2023 (2023). https://hydrogencouncil.com/en/hydrogen-insights-2023-december-update/
DECHEMA, acatech, Comparative Analysis of International Hydrogen Strategies (2024). https://www.wasserstoff-kompass.de/fileadmin/user_upload/img/news-und-media/dokumente/2023_e_H2_Laenderanalyse.pdf
C. Minke, M. Suermann, B. Bensmann, R. Hanke-Rauschenbach, Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? Int. J. Hydrog. Energy 46(46), 23581–23590 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.174
F. Zeng, C. Mebrahtu, L. Liao, A.K. Beine, R. Palkovits, Stability and deactivation of OER electrocatalysts: a review. J. Energy Chem. 69, 301–329 (2022). https://doi.org/10.1016/j.jechem.2022.01.025
Y. Wang, Y. Pang, H. Xu, A. Martinez, K.S. Chen, PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development–a review. Energy Environ. Sci. 15(6), 2288–2328 (2022). https://doi.org/10.1039/D2EE00790H
U.S. Department of Energy. Technical targets for proton exchange membrane electrolysis (2024). https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
X. Shang, J.-H. Tang, B. Dong, Y. Sun, Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting. Sustain. Energy Fuels 4(7), 3211–3228 (2020). https://doi.org/10.1039/D0SE00466A
M. Ali Raza Anjum, M.S. Okyay, M. Kim, M.H. Lee, N. Park et al., Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy 53, 286–295 (2018). https://doi.org/10.1016/j.nanoen.2018.08.064
H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu et al., Bifunctional non-noble metal oxide nanop electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015). https://doi.org/10.1038/ncomms8261
J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204), 1593–1596 (2014). https://doi.org/10.1126/science.1258307
F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5(7), 1704–1731 (2021). https://doi.org/10.1016/j.joule.2021.05.005
L. She, G. Zhao, T. Ma, J. Chen, W. Sun et al., On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 32(5), 2108465 (2022). https://doi.org/10.1002/adfm.202108465
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
C. Liu, I. Roh, H.S. Park, B.J. Park, T. Yu, IrPt alloy nanops with controllable compositions as catalysts for electrochemical oxygen and hydrogen evolution. ACS Appl. Nano Mater. 5(11), 17152–17158 (2022). https://doi.org/10.1021/acsanm.2c04069
F. Andolfatto, R. Durand, A. Michas, P. Millet, P. Stevens, Solid polymer electrolyte water electrolysis: electrocatalysis and long-term stability. Int. J. Hydrog. Energy 19(5), 421–427 (1994). https://doi.org/10.1016/0360-3199(94)90018-3
D.B. Rogers, R.D. Shannon, A.W. Sleight, J.L. Gillson, Crystal chemistry of metal dioxides with rutile-related structures. Inorg. Chem. 8(4), 841–849 (1969). https://doi.org/10.1021/ic50074a029
T. Ioroi, N. Kitazawa, K. Yasuda et al., IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J. Appl. Electrochem. 31, 1179–1183 (2001). https://doi.org/10.1023/A:1012755809488
F.-D. Kong, S. Zhang, G.-P. Yin, N. Zhang, Z.-B. Wang et al., Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell. Electrochem. Commun. 14(1), 63–66 (2012). https://doi.org/10.1016/j.elecom.2011.11.002
W. Yao, J. Yang, J. Wang, Y. Nuli, Chemical deposition of platinum nanops on iridium oxide for oxygen electrode of unitized regenerative fuel cell. Electrochem. Commun. 9(5), 1029–1034 (2007). https://doi.org/10.1016/j.elecom.2006.12.017
R.E. Fuentes, H.R. Colón-Mercado, M.J. Martínez-Rodríguez, Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process. J. Electrochem. Soc. 161(1), F77–F82 (2014). https://doi.org/10.1149/2.050401jes
S.-D. Yim, G.-G. Park, Y.-J. Sohn, W.-Y. Lee, Y.-G. Yoon et al., Optimization of PtIr electrocatalyst for PEM URFC. Int. J. Hydrog. Energy 30(12), 1345–1350 (2005). https://doi.org/10.1016/j.ijhydene.2005.04.013
M.K. Debe, S.M. Hendricks, G.D. Vernstrom, M. Meyers, M. Brostrom et al., Initial performance and durability of ultra-low loaded NSTF electrodes for PEM electrolyzers. J. Electrochem. Soc. 159(6), K165–K176 (2012). https://doi.org/10.1149/2.065206jes
H.S. Oh, H.N. Nong, T. Reier, A. Bergmann, M. Gliech et al., Electrochemical catalyst-support effects and their stabilizing role for IrOx nanop catalysts during the oxygen evolution reaction. J. Am. Chem. Soc. 138(38), 12552–12563 (2016). https://doi.org/10.1021/jacs.6b07199
L. Chong, J. Wen, E. Song, Z. Yang, I.D. Bloom et al., Synergistic Co─Ir/Ru composite electrocatalysts impart efficient and durable oxygen evolution catalysis in acid. Adv. Energy Mater. 13(37), 2302306 (2023). https://doi.org/10.1002/aenm.202302306
P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A.N. Singh et al., Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ. Sci. 13(10), 3447–3458 (2020). https://doi.org/10.1039/D0EE00877J
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2017). https://doi.org/10.1002/anie.201610413
A.V. Avani, E.I. Anila, Recent advances of MoO3 based materials in energy catalysis: applications in hydrogen evolution and oxygen evolution reactions. Int. J. Hydrog. Energy 47(47), 20475–20493 (2022). https://doi.org/10.1016/j.ijhydene.2022.04.252
A. Meena, P. Thangavel, A.S. Nissimagoudar, A. Narayan Singh, A. Jana et al., Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer. Chem. Eng. J. 430, 132623 (2022). https://doi.org/10.1016/j.cej.2021.132623
A. Meena, P. Thangavel, D.S. Jeong, A.N. Singh, A. Jana et al., Crystalline-amorphous interface of mesoporous Ni2P @ FePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Appl. Catal. B Environ. 306, 121127 (2022). https://doi.org/10.1016/j.apcatb.2022.121127
A. Meena, G. Shin, S. Cho, A.N. Singh, A.T. Aqueel Ahmed et al., Engineering a synergistic CoMn-LDH/Fe2O3@NF heterostructure for highly efficient oxygen evolution reaction. Ceram. Int. 49(23), 37929–37935 (2023). https://doi.org/10.1016/j.ceramint.2023.09.122
A. Meena, A. Jana, G. Shin, A.N. Singh, J.-W. Jang et al., Ultra-durable high-performance CoMo-MCA/Fe-NWs/NF heterostructures for industrial-grade current density seawater splitting. J. Mater. Chem. A 12(43), 30022–30031 (2024). https://doi.org/10.1039/D4TA05175K
I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7), 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
L. Chong, G. Gao, J. Wen, H. Li, H. Xu et al., La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380(6645), 609–616 (2023). https://doi.org/10.1126/science.ade1499
Y. Zhao, P.V. Kumar, X. Tan, X. Lu, X. Zhu et al., Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 13(1), 2430 (2022). https://doi.org/10.1038/s41467-022-30155-4
R.G. González-Huerta, G. Ramos-Sánchez, P.B. Balbuena, Oxygen evolution in Co-doped RuO2 and IrO2: experimental and theoretical insights to diminish electrolysis overpotential. J. Power. Sources 268, 69–76 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.029
M. Busch, Water oxidation: from mechanisms to limitations. Curr. Opin. Electrochem. 9, 278–284 (2018). https://doi.org/10.1016/j.coelec.2018.06.007
Y. Nosaka, Molecular mechanisms of oxygen evolution reactions for artificial photosynthesis. Oxygen 3(4), 407–451 (2023). https://doi.org/10.3390/oxygen3040027
Z.-H. Yin, H. Liu, J.-S. Hu, J.-J. Wang, The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl. Sci. Rev. 11(11), nwae362 (2024). https://doi.org/10.1093/nsr/nwae362
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
S. Zhao, H. Yu, R. Maric, N. Danilovic, C.B. Capuano et al., Calculating the electrochemically active surface area of iridium oxide in operating proton exchange membrane electrolyzers. J. Electrochem. Soc. 162(12), F1292–F1298 (2015). https://doi.org/10.1149/2.0211512jes
S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A.M. Mingers et al., The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1(7), 508–515 (2018). https://doi.org/10.1038/s41929-018-0085-6
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
J. Carrasco, J. Klimeš, A. Michaelides, The role of van der Waals forces in water adsorption on metals. J. Chem. Phys. 138(2), 024708 (2013). https://doi.org/10.1063/1.4773901
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
H. Xu, D. Cheng, D. Cao, X.C. Zeng, Revisiting the universal principle for the rational design of single-atom electrocatalysts. Nat. Catal. 7(2), 207–218 (2024). https://doi.org/10.1038/s41929-023-01106-z
P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More et al., Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2(6), 454–460 (2010). https://doi.org/10.1038/nchem.623
D. Chandra, D. Takama, T. Masaki, T. Sato, N. Abe et al., Highly efficient electrocatalysis and mechanistic investigation of intermediate IrOx(OH)y nanop films for water oxidation. ACS Catal. 6(6), 3946–3954 (2016). https://doi.org/10.1021/acscatal.6b00621
S.J. Pennycook, Scanning transmission electron microscopy: Z-contrast imaging. Microsc. Microanal. 18, 652–664 (2012). https://doi.org/10.1002/0471266965.com083.pub2
Y. Liu, X. Liu, A.R. Jadhav, T. Yang, Y. Hwang et al., Unraveling the function of metal–amorphous support interactions in single-atom electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 61(9), e202114160 (2022). https://doi.org/10.1002/anie.202114160
S. Butcha, S. Assavapanumat, S. Ittisanronnachai, V. Lapeyre, C. Wattanakit et al., Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. Nat. Commun. 12(1), 1314 (2021). https://doi.org/10.1038/s41467-021-21603-8
H. Wang, D. Wang, C. Sun, X. Zhao, C. Xu et al., Oriented generation of 1O2 from peroxymonosulfate via Co3O4 facet engineering. Appl. Catal. B Environ. Energy 364, 124854 (2025). https://doi.org/10.1016/j.apcatb.2024.124854
J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Mater. Chem. Phys. 103(1), 41–46 (2007). https://doi.org/10.1016/j.matchemphys.2007.01.003
J.J. Velasco-Vélez, E.A. Carbonio, C.H. Chuang, C.J. Hsu, J.F. Lee et al., Surface electron-hole rich species active in the electrocatalytic water oxidation. J. Am. Chem. Soc. 143(32), 12524–12534 (2021). https://doi.org/10.1021/jacs.1c01655
A.S. Aricò, A.K. Shukla, H. Kim, S. Park, M. Min et al., An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl. Surf. Sci. 172(1–2), 33–40 (2001). https://doi.org/10.1016/S0169-4332(00)00831-X
L. Zhang, H. Jang, H. Liu, M.G. Kim, D. Yang et al., Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew. Chem. Int. Ed. 60(34), 18821–18829 (2021). https://doi.org/10.1002/anie.202106631
I. Ardelean, M. Peteanu, R. Ciceo-Lucacel et al., Structural investigation of CuO containing strontium-borate glasses by means of EPR and IR spectrometry. J. Mater. Sci. Mater. Electron. 11, 11–16 (2000). https://doi.org/10.1023/A:1008943901463
A. Martınez-Arias, M. Fernández-Garcıa, O. Gálvez, J.M. Coronado, J.A. Anderson et al., Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts. J. Catal. 195(1), 207–216 (2000). https://doi.org/10.1006/jcat.2000.2981
Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng et al., Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 4(16), 1400696 (2014). https://doi.org/10.1002/aenm.201400696
M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051
W. Moschkowitsch, O. Lori, L. Elbaz, Recent progress and viability of PGM-free catalysts for hydrogen evolution reaction and hydrogen oxidation reaction. ACS Catal. 12(2), 1082–1089 (2022). https://doi.org/10.1021/acscatal.1c04948
Y. Wang, H. Yan, H. Fu, Recent advances and modulation tactics in Ru- and Ir-based electrocatalysts for PEMWE anodes at large current densities. eScience 5(3), 100323 (2025). https://doi.org/10.1016/j.esci.2024.100323
H.N. Nong, T. Reier, H.-S. Oh, M. Gliech, P. Paciok et al., A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1(11), 841–851 (2018). https://doi.org/10.1038/s41929-018-0153-y
S. Geiger, O. Kasian, B.R. Shrestha, A.M. Mingers, K.J.J. Mayrhofer et al., Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction. J. Electrochem. Soc. 163(11), F3132–F3138 (2016). https://doi.org/10.1149/2.0181611jes
A. Gorczyca, V. Moizan, C. Chizallet, O. Proux, W. Del Net et al., Monitoring morphology and hydrogen coverage of nanometric Pt/γ-Al2O3 ps by In Situ HERFD–XANES and quantum simulations. Angew. Chem. Int. Ed. 53(46), 12426–12429 (2014). https://doi.org/10.1002/anie.201403585
F.-Y. Yu, Z.-L. Lang, L.-Y. Yin, K. Feng, Y.-J. Xia et al., Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat. Commun. 11(1), 490 (2020). https://doi.org/10.1038/s41467-019-14274-z
A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9(5), 457–465 (2017). https://doi.org/10.1038/nchem.2695
T. Kim, S.B. Roy, S. Moon, S. Yoo, H. Choi et al., Highly dispersed Pt clusters on F-doped tin(IV) oxide aerogel matrix: an ultra-robust hybrid catalyst for enhanced hydrogen evolution. ACS Nano 16(1), 1625–1638 (2022). https://doi.org/10.1021/acsnano.1c10504
J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5(11), 909–913 (2006). https://doi.org/10.1038/nmat1752