Enhancing Thermal Protection in Lithium Batteries with Power Bank-Inspired Multi-Network Aerogel and Thermally Induced Flexible Composite Phase Change Material
Corresponding Author: Bingtao Tang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 166
Abstract
Thermal runaway (TR) is considered a significant safety hazard for lithium batteries, and thermal protection materials are crucial in mitigating this risk. However, current thermal protection materials generally suffer from poor mechanical properties, flammability, leakage, and rigid crystallization, and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs. This study proposes a novel type of thermal protection material: an aerogel coupled composite phase change material (CPCM). The composite material consists of gelatin/sodium alginate (Ge/SA) composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component. Inspired by power bank, we coupled the aerogel with CPCM through the binder, so that CPCM can continue to ‘charge and store energy’ for the aerogel, effectively absorbing heat, delaying the heat saturation phenomenon, and maximizing the duration of thermal insulation. The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation (with a temperature difference of approximately 120 °C across a 1 cm thickness) and flame retardancy (achieving a V-0 flame retardant rating). The CPCM exhibits high heat storage density (811.9 J g−1), good thermally induced flexibility (bendable above 40 °C), and thermal stability. Furthermore, the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance, with the top surface temperature remaining at 89 °C after 100 min of exposure to a high temperature of 230 °C. This study provides a new direction for the development of TR protection materials for lithium batteries.
Highlights:
1 The prepared Ge/SA biomass aerogel with multiple crosslinked networks have excellent flame retardancy and thermal insulation properties.
2 The prepared SAT/TPEE/EG composite phase change material (CPCM) has a thermal storage density as high as 811.9 J g–1 and good flame retardancy.
3 In the composite material of CPCM coupled with aerogel, the CPCM continuously absorbs heat for the aerogel, thus maximizing heat transfer and spreading.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Chen, P. Kollmeyer, S. Panchal, Y. Masoudi, O. Gross et al., Experimental results of battery power capability measurement on cells with different state of health levels. 2024 IEEE Transportation Electrification Conference and Expo (ITEC). June 19-21, 2024, Chicago, IL, USA. IEEE, (2024). 1–6
- D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. (2023). https://doi.org/10.1007/s40820-023-01220-4
- M.-K. Tran, A. DaCosta, A. Mevawalla, S. Panchal, M. Fowler, Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO. NCA. Batteries 7, 51 (2021). https://doi.org/10.3390/batteries7030051
- W. Yang, C. Li, X. Li, H. Wang, J. Deng, Fu. Tieqiang, Y. Luo, Y. Wang, K. Xue, G. Zhang, D. Zhou, Du. Yaoxiang, X. Li, High flame retardant composite phase change materials with triphenyl phosphate for thermal safety system of power battery module. eTransportation 20, 100325 (2024). https://doi.org/10.1016/j.etran.2024.100325
- M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16, 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
- R. Zalosh, P. Gandhi, A. Barowy, Lithium-ion energy storage battery explosion incidents. J. Loss Prev. Process Ind. 72, 104560 (2021). https://doi.org/10.1016/j.jlp.2021.104560
- M.-K. Tran, A. Mevawalla, A. Aziz, S. Panchal, Y. Xie et al., A review of lithium-ion battery thermal runaway modeling and diagnosis approaches. Processes 10, 1192 (2022). https://doi.org/10.3390/pr10061192
- Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun et al., Thermal runaway caused fire and explosion of lithium ion battery. J. Power. Sources 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
- S. Gao, L. Lu, M. Ouyang, Y. Duan, X. Zhu et al., Experimental study on module-to-module thermal runaway-propagation in a battery pack. J. Electrochem. Soc. 166, A2065–A2073 (2019). https://doi.org/10.1149/2.1011910jes
- Z. Zhou, X. Zhou, M. Li, B. Cao, K.M. Liew et al., Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module. Appl. Energy 327, 120119 (2022). https://doi.org/10.1016/j.apenergy.2022.120119
- J. Wu, J. Zhang, M. Sang, Z. Li, J. Zhou et al., Acid-assisted toughening aramid aerogel monoliths with ultralow thermal conductivity and superior tensile toughness. Adv. Funct. Mater. 34, 2307072 (2024). https://doi.org/10.1002/adfm.202307072
- Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16, 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
- Y. Wang, F. Wang, L. Zhao, Z. Mao, X. Feng et al., Shape-stable and fire-resistant hybrid phase change materials with enhanced thermoconductivity for battery cooling. Chem. Eng. J. 431, 133983 (2022). https://doi.org/10.1016/j.cej.2021.133983
- H.N. Khaboshan, F. Jaliliantabar, A.A. Abdullah, S. Panchal, A. Azarinia, Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models. Appl. Therm. Eng. 247, 123080 (2024). https://doi.org/10.1016/j.applthermaleng.2024.123080
- X.-C. Lin, S.-L. Li, W.-X. Li, Z.-H. Wang, J.-Y. Zhang et al., Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater. 33, 2214913 (2023). https://doi.org/10.1002/adfm.202214913
- Z. Zhao, Y. Cui, Y. Kong, J. Ren, X. Jiang et al., Thermal and mechanical performances of the superflexible, hydrophobic, silica-based aerogel for thermal insulation at ultralow temperature. ACS Appl. Mater. Interfaces 13, 21286–21298 (2021). https://doi.org/10.1021/acsami.1c02910
- G. Hayase, Fabrication of boehmite nanofiber internally-reinforced resorcinol-formaldehyde macroporous monoliths for heat/flame protection. ACS Appl. Nano Mater. 1, 5989–5993 (2018). https://doi.org/10.1021/acsanm.8b01518
- H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
- X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16, 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
- J. Zhu, R. Xiong, F. Zhao, T. Peng, J. Hu et al., Lightweight, high-strength, and anisotropic structure composite aerogel based on hydroxyapatite nanocrystal and chitosan with thermal insulation and flame retardant properties. ACS Sustainable Chem. Eng. 8, 71–83 (2020). https://doi.org/10.1021/acssuschemeng.9b03953
- J. Zhu, X. Li, D. Li, C. Jiang, Thermal insulation and flame retardancy of the hydroxyapatite nanorods/sodium alginate composite aerogel with a double-crosslinked structure. ACS Appl. Mater. Interfaces 14, 45822–45831 (2022). https://doi.org/10.1021/acsami.2c12254
- S. Cai, Z. Sun, H. Wang, X. Yao, H. Ma et al., Ultralong organic phosphorescent foams with high mechanical strength. J. Am. Chem. Soc. 143, 16256–16263 (2021). https://doi.org/10.1021/jacs.1c07674
- J. Niu, S. Deng, X. Gao, H. Niu, Y. Fang et al., Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation. J. Energy Storage 47, 103557 (2022). https://doi.org/10.1016/j.est.2021.103557
- Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- J. Weng, D. Ouyang, X. Yang, M. Chen, G. Zhang et al., Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers. Manag. 200, 112071 (2019). https://doi.org/10.1016/j.enconman.2019.112071
- S.A. Mohamed, F.A. Al-Sulaiman, N.I. Ibrahim, M.H. Zahir, A. Al-Ahmed et al., A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 70, 1072–1089 (2017). https://doi.org/10.1016/j.rser.2016.12.012
- W. Lee, J. Kim, Fabrication of porous boron nitride and thermally conductive inorganic phase change material composites for efficient thermal management. Ceram. Int. 49, 18363–18370 (2023). https://doi.org/10.1016/j.ceramint.2023.02.208
- H. Luo, W. Wang, G. Wu, M. Wang, Magnetically triggered heat release from hydrate salt composite microchannels for low-temperature battery thermal management. J. Clean. Prod. 446, 141462 (2024). https://doi.org/10.1016/j.jclepro.2024.141462
- Z. Wang, Y. He, G. Cheng, T. Tang, Thermal characteristics of a flame-retardant composite phase change material for battery thermal management. Appl. Therm. Eng. 243, 122659 (2024). https://doi.org/10.1016/j.applthermaleng.2024.122659
- Y. Li, X. Wu, L. Tang, L. Xie, X. Zeng et al., Composite material with excellent thermal management and self-healing performance for battery temperature control and human thermal therapy. ACS Appl. Polym. Mater. 6, 1460–1469 (2024). https://doi.org/10.1021/acsapm.3c02638
- J. Cao, Z. Ling, S. Lin, Y. He, X. Fang et al., Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite. Chem. Eng. J. 433, 133536 (2022). https://doi.org/10.1016/j.cej.2021.133536
- S. Lin, Z. Ling, S. Li, C. Cai, Z. Zhang et al., Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage. Energy 266, 126481 (2023). https://doi.org/10.1016/j.energy.2022.126481
- J. Mei, G. Shi, H. Liu, Z. Wang, M. Chen, Experimental study on the effect of passive retardation method for thermal runaway mitigation of lithium-ion battery. Appl. Therm. Eng. 230, 120861 (2023). https://doi.org/10.1016/j.applthermaleng.2023.120861
- Q. Liu, J. Zhang, J. Liu, W. Sun, H. Xu et al., Self-healed inorganic phase change materials for thermal energy harvesting and management. Appl. Therm. Eng. 219, 119423 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119423
- W. Wu, G. Ye, G. Zhang, X. Yang, Composite phase change material with room-temperature-flexibility for battery thermal management. Chem. Eng. J. 428, 131116 (2022). https://doi.org/10.1016/j.cej.2021.131116
- X. Wu, Y. Liu, X. Li, P. Wen, Y. Zhang et al., Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater. 6, 1167–1177 (2010). https://doi.org/10.1016/j.actbio.2009.08.041
- C. Liu, P. Hu, Z. Xu, X. Ma, Z. Rao, Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage. Thermochim. Acta 674, 28–35 (2019). https://doi.org/10.1016/j.tca.2019.02.002
- G. Fang, W. Zhang, M. Yu, K. Meng, X. Tan, Experimental investigation of high performance composite phase change materials based on sodium acetate trihydrate for solar thermal energy storage. Sol. Energy Mater. Sol. Cells 234, 111418 (2022). https://doi.org/10.1016/j.solmat.2021.111418
- W. Sun, G. Liang, F. Feng, H. He, Z. Gao, Study on sodium acetate trihydrate-expand graphite-carbon nanotubes composite phase change materials with enhanced thermal conductivity for waste heat recovery. J. Energy Storage 55, 105857 (2022). https://doi.org/10.1016/j.est.2022.105857
- Q. Huang, X. Li, G. Zhang, Y. Wang, J. Deng et al., Pouch lithium battery with a passive thermal management system using form-stable and flexible composite phase change materials. ACS Appl. Energy Mater. 4, 1978–1992 (2021). https://doi.org/10.1021/acsaem.0c03116
- H. Lei, X. Wang, Y. Li, H. Xie, W. Yu, Organic-inorganic hybrid phase change materials with high energy storage density based on porous shaped paraffin/hydrated salt/expanded graphite composites. Energy 304, 132169 (2024). https://doi.org/10.1016/j.energy.2024.132169
- X. Man, H. Lu, Q. Xu, C. Wang, Z. Ling, Preparation and thermal property enhancement of sodium acetate trihydrate-lithium chloride-potassium chloride expanded graphite composite phase change materials. Sol. Energy Mater. Sol. Cells 266, 112695 (2024). https://doi.org/10.1016/j.solmat.2024.112695
- Y. Liu, J.-C. Zhao, C.-J. Zhang, L. Cui, Y. Guo et al., Flame retardancy and thermal degradation properties of cotton/alginate fabric. J. Therm. Anal. Calorim. 127, 1543–1551 (2017). https://doi.org/10.1007/s10973-016-5418-6
- S. Rajesham, K. Chandra Sekhar, Md. Shareefuddin, J. Siva Kumar, Synthesis, physical, optical and structural studies of B2O3-CdO-Al2O3-PbF2 glasses modified with MoO3 ions. Opt. Quantum Electron. (2022). https://doi.org/10.1007/s11082-022-03874-7
References
Chen, P. Kollmeyer, S. Panchal, Y. Masoudi, O. Gross et al., Experimental results of battery power capability measurement on cells with different state of health levels. 2024 IEEE Transportation Electrification Conference and Expo (ITEC). June 19-21, 2024, Chicago, IL, USA. IEEE, (2024). 1–6
D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. (2023). https://doi.org/10.1007/s40820-023-01220-4
M.-K. Tran, A. DaCosta, A. Mevawalla, S. Panchal, M. Fowler, Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO. NCA. Batteries 7, 51 (2021). https://doi.org/10.3390/batteries7030051
W. Yang, C. Li, X. Li, H. Wang, J. Deng, Fu. Tieqiang, Y. Luo, Y. Wang, K. Xue, G. Zhang, D. Zhou, Du. Yaoxiang, X. Li, High flame retardant composite phase change materials with triphenyl phosphate for thermal safety system of power battery module. eTransportation 20, 100325 (2024). https://doi.org/10.1016/j.etran.2024.100325
M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16, 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
R. Zalosh, P. Gandhi, A. Barowy, Lithium-ion energy storage battery explosion incidents. J. Loss Prev. Process Ind. 72, 104560 (2021). https://doi.org/10.1016/j.jlp.2021.104560
M.-K. Tran, A. Mevawalla, A. Aziz, S. Panchal, Y. Xie et al., A review of lithium-ion battery thermal runaway modeling and diagnosis approaches. Processes 10, 1192 (2022). https://doi.org/10.3390/pr10061192
Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun et al., Thermal runaway caused fire and explosion of lithium ion battery. J. Power. Sources 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
S. Gao, L. Lu, M. Ouyang, Y. Duan, X. Zhu et al., Experimental study on module-to-module thermal runaway-propagation in a battery pack. J. Electrochem. Soc. 166, A2065–A2073 (2019). https://doi.org/10.1149/2.1011910jes
Z. Zhou, X. Zhou, M. Li, B. Cao, K.M. Liew et al., Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module. Appl. Energy 327, 120119 (2022). https://doi.org/10.1016/j.apenergy.2022.120119
J. Wu, J. Zhang, M. Sang, Z. Li, J. Zhou et al., Acid-assisted toughening aramid aerogel monoliths with ultralow thermal conductivity and superior tensile toughness. Adv. Funct. Mater. 34, 2307072 (2024). https://doi.org/10.1002/adfm.202307072
Z. Niu, F. Qu, F. Chen, X. Ma, B. Chen et al., Multifunctional integrated organic-inorganic-metal hybrid aerogel for excellent thermal insulation and electromagnetic shielding performance. Nano-Micro Lett. 16, 200 (2024). https://doi.org/10.1007/s40820-024-01409-1
Y. Wang, F. Wang, L. Zhao, Z. Mao, X. Feng et al., Shape-stable and fire-resistant hybrid phase change materials with enhanced thermoconductivity for battery cooling. Chem. Eng. J. 431, 133983 (2022). https://doi.org/10.1016/j.cej.2021.133983
H.N. Khaboshan, F. Jaliliantabar, A.A. Abdullah, S. Panchal, A. Azarinia, Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models. Appl. Therm. Eng. 247, 123080 (2024). https://doi.org/10.1016/j.applthermaleng.2024.123080
X.-C. Lin, S.-L. Li, W.-X. Li, Z.-H. Wang, J.-Y. Zhang et al., Thermo-responsive self-ceramifiable robust aerogel with exceptional strengthening and thermal insulating performance at ultrahigh temperatures. Adv. Funct. Mater. 33, 2214913 (2023). https://doi.org/10.1002/adfm.202214913
Z. Zhao, Y. Cui, Y. Kong, J. Ren, X. Jiang et al., Thermal and mechanical performances of the superflexible, hydrophobic, silica-based aerogel for thermal insulation at ultralow temperature. ACS Appl. Mater. Interfaces 13, 21286–21298 (2021). https://doi.org/10.1021/acsami.1c02910
G. Hayase, Fabrication of boehmite nanofiber internally-reinforced resorcinol-formaldehyde macroporous monoliths for heat/flame protection. ACS Appl. Nano Mater. 1, 5989–5993 (2018). https://doi.org/10.1021/acsanm.8b01518
H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
X. Li, R. Hu, Z. Xiong, D. Wang, Z. Zhang et al., Metal-organic gel leading to customized magnetic-coupling engineering in carbon aerogels for excellent radar stealth and thermal insulation performances. Nano-Micro Lett. 16, 42 (2023). https://doi.org/10.1007/s40820-023-01255-7
J. Zhu, R. Xiong, F. Zhao, T. Peng, J. Hu et al., Lightweight, high-strength, and anisotropic structure composite aerogel based on hydroxyapatite nanocrystal and chitosan with thermal insulation and flame retardant properties. ACS Sustainable Chem. Eng. 8, 71–83 (2020). https://doi.org/10.1021/acssuschemeng.9b03953
J. Zhu, X. Li, D. Li, C. Jiang, Thermal insulation and flame retardancy of the hydroxyapatite nanorods/sodium alginate composite aerogel with a double-crosslinked structure. ACS Appl. Mater. Interfaces 14, 45822–45831 (2022). https://doi.org/10.1021/acsami.2c12254
S. Cai, Z. Sun, H. Wang, X. Yao, H. Ma et al., Ultralong organic phosphorescent foams with high mechanical strength. J. Am. Chem. Soc. 143, 16256–16263 (2021). https://doi.org/10.1021/jacs.1c07674
J. Niu, S. Deng, X. Gao, H. Niu, Y. Fang et al., Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation. J. Energy Storage 47, 103557 (2022). https://doi.org/10.1016/j.est.2021.103557
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
J. Weng, D. Ouyang, X. Yang, M. Chen, G. Zhang et al., Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers. Manag. 200, 112071 (2019). https://doi.org/10.1016/j.enconman.2019.112071
S.A. Mohamed, F.A. Al-Sulaiman, N.I. Ibrahim, M.H. Zahir, A. Al-Ahmed et al., A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 70, 1072–1089 (2017). https://doi.org/10.1016/j.rser.2016.12.012
W. Lee, J. Kim, Fabrication of porous boron nitride and thermally conductive inorganic phase change material composites for efficient thermal management. Ceram. Int. 49, 18363–18370 (2023). https://doi.org/10.1016/j.ceramint.2023.02.208
H. Luo, W. Wang, G. Wu, M. Wang, Magnetically triggered heat release from hydrate salt composite microchannels for low-temperature battery thermal management. J. Clean. Prod. 446, 141462 (2024). https://doi.org/10.1016/j.jclepro.2024.141462
Z. Wang, Y. He, G. Cheng, T. Tang, Thermal characteristics of a flame-retardant composite phase change material for battery thermal management. Appl. Therm. Eng. 243, 122659 (2024). https://doi.org/10.1016/j.applthermaleng.2024.122659
Y. Li, X. Wu, L. Tang, L. Xie, X. Zeng et al., Composite material with excellent thermal management and self-healing performance for battery temperature control and human thermal therapy. ACS Appl. Polym. Mater. 6, 1460–1469 (2024). https://doi.org/10.1021/acsapm.3c02638
J. Cao, Z. Ling, S. Lin, Y. He, X. Fang et al., Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite. Chem. Eng. J. 433, 133536 (2022). https://doi.org/10.1016/j.cej.2021.133536
S. Lin, Z. Ling, S. Li, C. Cai, Z. Zhang et al., Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage. Energy 266, 126481 (2023). https://doi.org/10.1016/j.energy.2022.126481
J. Mei, G. Shi, H. Liu, Z. Wang, M. Chen, Experimental study on the effect of passive retardation method for thermal runaway mitigation of lithium-ion battery. Appl. Therm. Eng. 230, 120861 (2023). https://doi.org/10.1016/j.applthermaleng.2023.120861
Q. Liu, J. Zhang, J. Liu, W. Sun, H. Xu et al., Self-healed inorganic phase change materials for thermal energy harvesting and management. Appl. Therm. Eng. 219, 119423 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119423
W. Wu, G. Ye, G. Zhang, X. Yang, Composite phase change material with room-temperature-flexibility for battery thermal management. Chem. Eng. J. 428, 131116 (2022). https://doi.org/10.1016/j.cej.2021.131116
X. Wu, Y. Liu, X. Li, P. Wen, Y. Zhang et al., Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater. 6, 1167–1177 (2010). https://doi.org/10.1016/j.actbio.2009.08.041
C. Liu, P. Hu, Z. Xu, X. Ma, Z. Rao, Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage. Thermochim. Acta 674, 28–35 (2019). https://doi.org/10.1016/j.tca.2019.02.002
G. Fang, W. Zhang, M. Yu, K. Meng, X. Tan, Experimental investigation of high performance composite phase change materials based on sodium acetate trihydrate for solar thermal energy storage. Sol. Energy Mater. Sol. Cells 234, 111418 (2022). https://doi.org/10.1016/j.solmat.2021.111418
W. Sun, G. Liang, F. Feng, H. He, Z. Gao, Study on sodium acetate trihydrate-expand graphite-carbon nanotubes composite phase change materials with enhanced thermal conductivity for waste heat recovery. J. Energy Storage 55, 105857 (2022). https://doi.org/10.1016/j.est.2022.105857
Q. Huang, X. Li, G. Zhang, Y. Wang, J. Deng et al., Pouch lithium battery with a passive thermal management system using form-stable and flexible composite phase change materials. ACS Appl. Energy Mater. 4, 1978–1992 (2021). https://doi.org/10.1021/acsaem.0c03116
H. Lei, X. Wang, Y. Li, H. Xie, W. Yu, Organic-inorganic hybrid phase change materials with high energy storage density based on porous shaped paraffin/hydrated salt/expanded graphite composites. Energy 304, 132169 (2024). https://doi.org/10.1016/j.energy.2024.132169
X. Man, H. Lu, Q. Xu, C. Wang, Z. Ling, Preparation and thermal property enhancement of sodium acetate trihydrate-lithium chloride-potassium chloride expanded graphite composite phase change materials. Sol. Energy Mater. Sol. Cells 266, 112695 (2024). https://doi.org/10.1016/j.solmat.2024.112695
Y. Liu, J.-C. Zhao, C.-J. Zhang, L. Cui, Y. Guo et al., Flame retardancy and thermal degradation properties of cotton/alginate fabric. J. Therm. Anal. Calorim. 127, 1543–1551 (2017). https://doi.org/10.1007/s10973-016-5418-6
S. Rajesham, K. Chandra Sekhar, Md. Shareefuddin, J. Siva Kumar, Synthesis, physical, optical and structural studies of B2O3-CdO-Al2O3-PbF2 glasses modified with MoO3 ions. Opt. Quantum Electron. (2022). https://doi.org/10.1007/s11082-022-03874-7