High-Entropy Layered Oxide Cathode Enabling High-Rate for Solid-State Sodium-Ion Batteries
Corresponding Author: Fuqiang Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 10
Abstract
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost. Nevertheless, such cathodes usually suffer from phase transitions, sluggish kinetics and air instability, making it difficult to achieve high performance solid-state sodium-ion batteries. Herein, the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity, achieving high-rate performance, air stability and electrochemically thermal stability for Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2. This cathode delivers a high reversible capacity (141 mAh g−1 at 0.2C), excellent rate capability (111 mAh g−1 at 8C, 85 mAh g−1 even at 20C), and long-term stability (over 85% capacity retention after 1000 cycles), which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition. Moreover, the compound remains unchanged over seven days and keeps thermal stability until 279 ℃. Remarkably, the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g−1 at 5C and keeps retention of 96% after 400 cycles. This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.
Highlights:
1 High-entropy oxides O3-Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2 cathode constructed by compatible radius and different Fermi level ions was designed for solid-state Na-ion batteries.
2 Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2 cathode exhibits high-rate performance, air stability and electrochemically thermal stability.
3 A series of characterizations were performed to explore energy storage mechanism of Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.L. Deng, K.Y. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66(18), 1858–1868 (2021). https://doi.org/10.1016/j.scib.2021.04.042
- R. Usiskin, Y.X. Lu, J. Popovic, M. Law, P. Balaya et al., Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6(11), 1020–1035 (2021). https://doi.org/10.1038/s41578-021-00324-w
- Z. Guo, G. Qian, C. Wang, G. Zhang, R. Yin et al., Progress in electrode materials for the industrialization of sodium-ion batteries. Prog. Nat. Sci. Mater. 33, 1 (2022). https://doi.org/10.1016/j.pnsc.2022.12.003
- P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8(8), 23 (2018). https://doi.org/10.1002/aenm.201701912
- K. Kubota, S. Kumakura, Y. Yoda, K. Kuroki, S. Komaba, Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals). Adv. Energy Mater. 8(17), 40 (2018). https://doi.org/10.1002/aenm.201703415
- W. Zhu, J.C. Zhang, J.W. Luo, C.H. Zeng, H. Su et al., Ultrafast non-equilibrium synthesis of cathode materials for li-ion batteries. Adv. Mater. 35(2), 9 (2023). https://doi.org/10.1002/adma.202208974
- X.G. Yuan, Y.J. Guo, L. Gan, X.A. Yang, W.H. He et al., A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for na-ion batteries. Adv. Funct. Mater. 32(17), 11 (2022). https://doi.org/10.1002/adfm.202111466
- M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015). https://doi.org/10.1039/c4ee03192j
- X.W. Li, X. Shen, J.M. Zhao, Y. Yang, Q.Q. Zhang et al., O3-NaFe((1/3−x))Ni(1/3)Mn(1/3)AlxO(2) cathodes with improved air stability for na-ion batteries. ACS Appl. Mater. Interfaces 13(28), 33015–33023 (2021). https://doi.org/10.1021/acsami.1c07554
- F.X. Ding, Q.S. Meng, P.F. Yu, H.B. Wang, Y.S. Niu et al., Additive-free self-presodiation strategy for high-performance na-ion batteries. Adv. Funct. Mater. 31(26), 9 (2021). https://doi.org/10.1002/adfm.202101475
- Y.M. Li, Z.Z. Yang, S.Y. Xu, L.Q. Mu, L. Gu et al., Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv. Sci. 2(6), 7 (2015). https://doi.org/10.1002/advs.201500031
- P.F. Wang, H.R. Yao, X.Y. Liu, J.N. Zhang, L. Gu et al., Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3–P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 29(19), 7 (2017). https://doi.org/10.1002/adma.201700210
- X.Q. Huang, D.L. Li, H.J. Huang, X. Jiang, Z.H. Yang et al., Fast and highly reversible na+ intercalation/extraction in zn/mg dual-doped P2-Na0.67MnO2 cathode material for high-performance na-ion batteries. Nano Res. 14(10), 3531–3537 (2021). https://doi.org/10.1007/s12274-021-3715-2
- Y.X. Wang, L.G. Wang, H. Zhu, J. Chu, Y.J. Fang et al., Ultralow-strain zn-substituted layered oxide cathode with suppressed P2–O2 transition for stable sodium ion storage. Adv. Funct. Mater. 30(13), 9 (2020). https://doi.org/10.1002/adfm.201910327
- H.R. Yao, P.F. Wang, Y. Gong, J.N. Zhang, X.Q. Yu et al., Designing air-stable O3-type cathode materials by combined structure modulation for na-ion batteries. J. Am. Chem. Soc. 139(25), 8440–8443 (2017). https://doi.org/10.1021/jacs.7b05176
- X.Y. Du, Y. Meng, H.Y. Yuan, D. Xiao, High-entropy substitution: a strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties. Energy Storage Mater. 56, 132–140 (2023). https://doi.org/10.1016/j.ensm.2023.01.010
- F. Fu, X. Liu, X.G. Fu, H.W. Chen, L. Huang et al., Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun. 13(1), 12 (2022). https://doi.org/10.1038/s41467-022-30113-0
- L.B. Yao, P.C. Zou, C.Y. Wang, J.H. Jiang, L. Ma et al., High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv. Energy Mater. 12(41), 9 (2022). https://doi.org/10.1002/aenm.202201989
- F.X. Ding, C.L. Zhao, D.D. Xiao, X.H. Rong, H.B. Wang et al., Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144(18), 8286–8295 (2022). https://doi.org/10.1021/jacs.2c02353
- C.L. Zhao, F.X. Ding, Y.X. Lu, L.Q. Chen, Y.S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020). https://doi.org/10.1002/anie.201912171
- C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8 (2015). https://doi.org/10.1038/ncomms9485
- A. Sarkar, L. Velasco, D. Wang, Q.S. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9, 9 (2018). https://doi.org/10.1038/s41467-018-05774-5
- M. Botros, J. Janek, Embracing disorder in solid-state batteries. Science 378(6626), 1273–1274 (2022). https://doi.org/10.1126/science.adf3383
- H.J. Wang, X. Gao, S. Zhang, Y. Mei, L.S. Ni et al., High-entropy na-deficient layered oxides for sodium-ion batteries. ACS Nano 17, 12530 (2023). https://doi.org/10.1021/acsnano.3c02290
- S.Y. Zhang, Y.J. Guo, Y.N. Zhou, X.D. Zhang, Y.B. Niu et al., P3/O3 integrated layered oxide as high-power and long-life cathode toward na-ion batteries. Small 17(10), 7 (2021). https://doi.org/10.1002/smll.202007236
- J.Y. Hwang, S.M. Oh, S.T. Myung, K.Y. Chung, I. Belharouak et al., Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 9 (2015). https://doi.org/10.1038/ncomms7865
- P.F. Zhou, Z.N. Che, J. Liu, J.K. Zhou, X.Z. Wu et al., High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023). https://doi.org/10.1016/j.ensm.2023.03.007
- L.X. Shen, Y. Jiang, Y.F. Liu, J.L. Ma, T.R. Sun et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J. 388, 9 (2020). https://doi.org/10.1016/j.cej.2020.124228
- W.J. Dong, B. Ye, M.Z. Cai, Y.Z. Bai, M. Xie et al., Superwettable high-voltage LiCOO2 for low- temperature lithium ion batteries. ACS Energy Lett. 8(2), 881–888 (2023). https://doi.org/10.1021/acsenergylett.2c02434
- C. Zeng, C. Duan, Z. Guo, Z. Liu, S. Dou et al., Ultrafastly activated needle coke as electrode material for supercapacitors. Prog. Nat. Sci. Mater. Inter. 32(6), 786–792 (2022). https://doi.org/10.1016/j.pnsc.2022.10.008
- Y.Y. Xie, G.L. Xu, H.Y. Che, H. Wang, K. Yang et al., Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mat. 30(15), 4909–4918 (2018). https://doi.org/10.1021/acs.chemmater.8b00047
- H.R. Yao, X.G. Yuan, X.D. Zhang, Y.J. Guo, L.T. Zheng et al., Excellent air storage stability of na-based transition metal oxide cathodes benefiting from enhanced na-o binding energy. Energy Storage Mater. 54, 661–667 (2023). https://doi.org/10.1016/j.ensm.2022.11.005
- W.H. Zuo, J.M. Qiu, X.S. Liu, F.C. Ren, H.D. Liu et al., The stability of p2-layered sodium transition metal oxides in ambient atmospheres. Nat. Commun. 11(1), 12 (2020). https://doi.org/10.1038/s41467-020-17290-6
- Y.J. Guo, P.F. Wang, Y.B. Niu, X.D. Zhang, Q.H. Li et al., Boron-doped sodium layered oxide for reversible oxygen redox reaction in na-ion battery cathodes. Nat. Commun. 12(1), 11 (2021). https://doi.org/10.1038/s41467-021-25610-7
- F.X. Ding, C.L. Zhao, D. Zhou, Q.S. Meng, D.D. Xiao et al., A novel ni-rich O3-na Ni0.60Fe0.25M0.15 O-2 cathode for na-ion batteries. Energy Storage Mater. 30, 420–430 (2020). https://doi.org/10.1016/j.ensm.2020.05.013
- J. Pan, S.M. Xu, T.X. Cai, L.L. Hu, X.L. Che et al., Boosting cycling stability of polymer sodium battery by “rigid- flexible” coupled interfacial stress modulation. Nano Lett. 23(8), 3630–3636 (2023). https://doi.org/10.1021/acs.nanolett.2c04854
References
X.L. Deng, K.Y. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66(18), 1858–1868 (2021). https://doi.org/10.1016/j.scib.2021.04.042
R. Usiskin, Y.X. Lu, J. Popovic, M. Law, P. Balaya et al., Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6(11), 1020–1035 (2021). https://doi.org/10.1038/s41578-021-00324-w
Z. Guo, G. Qian, C. Wang, G. Zhang, R. Yin et al., Progress in electrode materials for the industrialization of sodium-ion batteries. Prog. Nat. Sci. Mater. 33, 1 (2022). https://doi.org/10.1016/j.pnsc.2022.12.003
P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8(8), 23 (2018). https://doi.org/10.1002/aenm.201701912
K. Kubota, S. Kumakura, Y. Yoda, K. Kuroki, S. Komaba, Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals). Adv. Energy Mater. 8(17), 40 (2018). https://doi.org/10.1002/aenm.201703415
W. Zhu, J.C. Zhang, J.W. Luo, C.H. Zeng, H. Su et al., Ultrafast non-equilibrium synthesis of cathode materials for li-ion batteries. Adv. Mater. 35(2), 9 (2023). https://doi.org/10.1002/adma.202208974
X.G. Yuan, Y.J. Guo, L. Gan, X.A. Yang, W.H. He et al., A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for na-ion batteries. Adv. Funct. Mater. 32(17), 11 (2022). https://doi.org/10.1002/adfm.202111466
M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015). https://doi.org/10.1039/c4ee03192j
X.W. Li, X. Shen, J.M. Zhao, Y. Yang, Q.Q. Zhang et al., O3-NaFe((1/3−x))Ni(1/3)Mn(1/3)AlxO(2) cathodes with improved air stability for na-ion batteries. ACS Appl. Mater. Interfaces 13(28), 33015–33023 (2021). https://doi.org/10.1021/acsami.1c07554
F.X. Ding, Q.S. Meng, P.F. Yu, H.B. Wang, Y.S. Niu et al., Additive-free self-presodiation strategy for high-performance na-ion batteries. Adv. Funct. Mater. 31(26), 9 (2021). https://doi.org/10.1002/adfm.202101475
Y.M. Li, Z.Z. Yang, S.Y. Xu, L.Q. Mu, L. Gu et al., Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv. Sci. 2(6), 7 (2015). https://doi.org/10.1002/advs.201500031
P.F. Wang, H.R. Yao, X.Y. Liu, J.N. Zhang, L. Gu et al., Ti-substituted NaNi0.5Mn0.5−xTixO2 cathodes with reversible O3–P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 29(19), 7 (2017). https://doi.org/10.1002/adma.201700210
X.Q. Huang, D.L. Li, H.J. Huang, X. Jiang, Z.H. Yang et al., Fast and highly reversible na+ intercalation/extraction in zn/mg dual-doped P2-Na0.67MnO2 cathode material for high-performance na-ion batteries. Nano Res. 14(10), 3531–3537 (2021). https://doi.org/10.1007/s12274-021-3715-2
Y.X. Wang, L.G. Wang, H. Zhu, J. Chu, Y.J. Fang et al., Ultralow-strain zn-substituted layered oxide cathode with suppressed P2–O2 transition for stable sodium ion storage. Adv. Funct. Mater. 30(13), 9 (2020). https://doi.org/10.1002/adfm.201910327
H.R. Yao, P.F. Wang, Y. Gong, J.N. Zhang, X.Q. Yu et al., Designing air-stable O3-type cathode materials by combined structure modulation for na-ion batteries. J. Am. Chem. Soc. 139(25), 8440–8443 (2017). https://doi.org/10.1021/jacs.7b05176
X.Y. Du, Y. Meng, H.Y. Yuan, D. Xiao, High-entropy substitution: a strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties. Energy Storage Mater. 56, 132–140 (2023). https://doi.org/10.1016/j.ensm.2023.01.010
F. Fu, X. Liu, X.G. Fu, H.W. Chen, L. Huang et al., Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun. 13(1), 12 (2022). https://doi.org/10.1038/s41467-022-30113-0
L.B. Yao, P.C. Zou, C.Y. Wang, J.H. Jiang, L. Ma et al., High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv. Energy Mater. 12(41), 9 (2022). https://doi.org/10.1002/aenm.202201989
F.X. Ding, C.L. Zhao, D.D. Xiao, X.H. Rong, H.B. Wang et al., Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144(18), 8286–8295 (2022). https://doi.org/10.1021/jacs.2c02353
C.L. Zhao, F.X. Ding, Y.X. Lu, L.Q. Chen, Y.S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020). https://doi.org/10.1002/anie.201912171
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8 (2015). https://doi.org/10.1038/ncomms9485
A. Sarkar, L. Velasco, D. Wang, Q.S. Wang, G. Talasila et al., High entropy oxides for reversible energy storage. Nat. Commun. 9, 9 (2018). https://doi.org/10.1038/s41467-018-05774-5
M. Botros, J. Janek, Embracing disorder in solid-state batteries. Science 378(6626), 1273–1274 (2022). https://doi.org/10.1126/science.adf3383
H.J. Wang, X. Gao, S. Zhang, Y. Mei, L.S. Ni et al., High-entropy na-deficient layered oxides for sodium-ion batteries. ACS Nano 17, 12530 (2023). https://doi.org/10.1021/acsnano.3c02290
S.Y. Zhang, Y.J. Guo, Y.N. Zhou, X.D. Zhang, Y.B. Niu et al., P3/O3 integrated layered oxide as high-power and long-life cathode toward na-ion batteries. Small 17(10), 7 (2021). https://doi.org/10.1002/smll.202007236
J.Y. Hwang, S.M. Oh, S.T. Myung, K.Y. Chung, I. Belharouak et al., Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 9 (2015). https://doi.org/10.1038/ncomms7865
P.F. Zhou, Z.N. Che, J. Liu, J.K. Zhou, X.Z. Wu et al., High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023). https://doi.org/10.1016/j.ensm.2023.03.007
L.X. Shen, Y. Jiang, Y.F. Liu, J.L. Ma, T.R. Sun et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J. 388, 9 (2020). https://doi.org/10.1016/j.cej.2020.124228
W.J. Dong, B. Ye, M.Z. Cai, Y.Z. Bai, M. Xie et al., Superwettable high-voltage LiCOO2 for low- temperature lithium ion batteries. ACS Energy Lett. 8(2), 881–888 (2023). https://doi.org/10.1021/acsenergylett.2c02434
C. Zeng, C. Duan, Z. Guo, Z. Liu, S. Dou et al., Ultrafastly activated needle coke as electrode material for supercapacitors. Prog. Nat. Sci. Mater. Inter. 32(6), 786–792 (2022). https://doi.org/10.1016/j.pnsc.2022.10.008
Y.Y. Xie, G.L. Xu, H.Y. Che, H. Wang, K. Yang et al., Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mat. 30(15), 4909–4918 (2018). https://doi.org/10.1021/acs.chemmater.8b00047
H.R. Yao, X.G. Yuan, X.D. Zhang, Y.J. Guo, L.T. Zheng et al., Excellent air storage stability of na-based transition metal oxide cathodes benefiting from enhanced na-o binding energy. Energy Storage Mater. 54, 661–667 (2023). https://doi.org/10.1016/j.ensm.2022.11.005
W.H. Zuo, J.M. Qiu, X.S. Liu, F.C. Ren, H.D. Liu et al., The stability of p2-layered sodium transition metal oxides in ambient atmospheres. Nat. Commun. 11(1), 12 (2020). https://doi.org/10.1038/s41467-020-17290-6
Y.J. Guo, P.F. Wang, Y.B. Niu, X.D. Zhang, Q.H. Li et al., Boron-doped sodium layered oxide for reversible oxygen redox reaction in na-ion battery cathodes. Nat. Commun. 12(1), 11 (2021). https://doi.org/10.1038/s41467-021-25610-7
F.X. Ding, C.L. Zhao, D. Zhou, Q.S. Meng, D.D. Xiao et al., A novel ni-rich O3-na Ni0.60Fe0.25M0.15 O-2 cathode for na-ion batteries. Energy Storage Mater. 30, 420–430 (2020). https://doi.org/10.1016/j.ensm.2020.05.013
J. Pan, S.M. Xu, T.X. Cai, L.L. Hu, X.L. Che et al., Boosting cycling stability of polymer sodium battery by “rigid- flexible” coupled interfacial stress modulation. Nano Lett. 23(8), 3630–3636 (2023). https://doi.org/10.1021/acs.nanolett.2c04854