Thermoelectric Modulation of Neat Ti3C2Tx MXenes by Finely Regulating the Stacking of Nanosheets
Corresponding Author: Ziqi Liang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 93
Abstract
Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility. Among them, the ultrahigh electrical conductivity (σ) and tunable band structures of benchmark Ti3C2Tx MXene demonstrate its good potential as thermoelectric (TE) materials. However, both the large variation of σ reported in the literature and the intrinsically low Seebeck coefficient (S) hinder the practical applications. Herein, this study has for the first time systematically investigated the TE properties of neat Ti3C2Tx films, which are finely modulated by exploiting different dispersing solvents, controlling nanosheet sizes and constructing composites. First, deionized water is found to be superior for obtaining closely packed MXene sheets relative to other polar solvents. Second, a simultaneous increase in both S and σ is realized via elevating centrifugal speed on MXene aqueous suspensions to obtain small-sized nanosheets, thus yielding an ultrahigh power factor up to ~ 156 μW m−1 K−2. Third, S is significantly enhanced yet accompanied by a reduction in σ when constructing MXene-based nanocomposites, the latter of which is originated from the damage to the intimate stackings of MXene nanosheets. Together, a correlation between the TE properties of neat Ti3C2Tx films and the stacking of nanosheets is elucidated, which would stimulate further exploration of MXene TEs.
Highlights:
1 Investigation of dispersing solvents on processing Ti3C2Tx thin films revealed that deionized water is superior to realize tight stacking and high orientation of MXene nanosheets.
2 A simultaneous elevation of Seebeck coefficient and electrical conductivity of neat Ti3C2Tx films is achieved by increasing the centrifugal speed of MXene aqueous suspensions due to the energy filtering effect.
3 Further construction of Ti3C2Tx nanocomposites significantly strengthens Seebeck coefficient yet disrupts the stacking of MXene nanosheets.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. MXenes (Jenny Stanford Publishing, 2023), pp.15–29. https://doi.org/10.1201/9781003306511-4
- Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- M. Downes, C.E. Shuck, B. McBride, J. Busa, Y. Gogotsi, Comprehensive synthesis of Ti3C2Tx from MAX phase to MXene. Nat. Protoc. 19, 1807–1834 (2024). https://doi.org/10.1038/s41596-024-00969-1
- Y. Sun, D. Chen, Z. Liang, Two-dimensional MXenes for energy storage and conversion applications. Mater. Today Energy 5, 22–36 (2017). https://doi.org/10.1016/j.mtener.2017.04.008
- X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137, 2715–2721 (2015). https://doi.org/10.1021/ja512820k
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). MXenes (Jenny Stanford Publishing, 2023), pp.415–449
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. ManHong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). J. Sci. 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
- Y. Wang, Y. Wang, M. Jian, Q. Jiang, X. Li, MXene key composites: a new arena for gas sensors. Nano-Micro Lett. 16, 209 (2024). https://doi.org/10.1007/s40820-024-01430-4
- A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022). https://doi.org/10.1007/s40820-022-00845-1
- K. Ba, D. Pu, X. Yang, T. Ye, J. Chen et al., Billiard catalysis at Ti3C2 MXene/MAX heterostructure for efficient nitrogen fixation. Appl. Catal. B Environ. 317, 121755 (2022). https://doi.org/10.1016/j.apcatb.2022.121755
- Z. Ding, G. Li, Y. Wang, C. Du, Z. Ye et al., Ultrafast response and threshold adjustable intelligent thermoelectric systems for next-generation self-powered remote IoT fire warning. Nano-Micro Lett. 16, 242 (2024). https://doi.org/10.1007/s40820-024-01453-x
- A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
- G. Li, B.C. Wyatt, F. Song, C. Yu, Z. Wu et al., 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv. Funct. Mater. 31, 2105043 (2021). https://doi.org/10.1002/adfm.202105043
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, e2001093 (2020). https://doi.org/10.1002/adma.202001093
- J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
- J. Tang, Y.-H. Pai, Z. Liang, Strategic insights into semiconducting polymer thermoelectrics by leveraging molecular structures and chemical doping. ACS Energy Lett. 7, 4299–4324 (2022). https://doi.org/10.1021/acsenergylett.2c02119
- S. Wang, G. Zuo, J. Kim, H. Sirringhaus, Progress of conjugated polymers as emerging thermoelectric materials. Prog. Polym. Sci. 129, 101548 (2022). https://doi.org/10.1016/j.progpolymsci.2022.101548
- W. Zhao, J. Ding, Y. Zou, C.-A. Di, D. Zhu, Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 49, 7210–7228 (2020). https://doi.org/10.1039/d0cs00204f
- M. Goel, M. Thelakkat, Polymer thermoelectrics: opportunities and challenges. Macromolecules 53, 3632–3642 (2020). https://doi.org/10.1021/acs.macromol.9b02453
- J. Tang, Y. Chen, S.R. McCuskey, L. Chen, G. Bazan et al., Nanocomposites: recent advances in n-type thermoelectric nanocomposites. Adv. Electron. Mater. 5, 1800943 (2019). https://doi.org/10.1002/aelm.201800943
- X. Li, T. Wang, F. Jiang, J. Liu, P. Liu et al., Optimizing thermoelectric performance of MoS2 films by spontaneous noble metal nanops decoration. J. Alloys Compd. 781, 744–750 (2019). https://doi.org/10.1016/j.jallcom.2018.11.338
- L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan et al., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014). https://doi.org/10.1038/nature13184
- Y. Zhang, J. Wang, Q. Liu, S. Gu, Z. Sun et al., The electrical, thermal, and thermoelectric properties of black phosphorus. APL Mater. 8, 120903 (2020). https://doi.org/10.1063/5.0027244
- D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan et al., Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12, 36 (2020). https://doi.org/10.1007/s40820-020-0374-x
- J. Wei, D. Wu, C. Liu, F. Zhong, G. Cao et al., Free-standing p-type SWCNT/MXene composite films with low thermal conductivity and enhanced thermoelectric performance. Chem. Eng. J. 439, 135706 (2022). https://doi.org/10.1016/j.cej.2022.135706
- W. Ding, P. Liu, Z. Bai, Y. Wang, G. Liu et al., Constructing layered MXene/CNTs composite film with 2D–3D sandwich structure for high thermoelectric performance. Adv. Mater. Interfaces 7, 2001340 (2020). https://doi.org/10.1002/admi.202001340
- X. Guan, W. Feng, X. Wang, R. Venkatesh, J. Ouyang, Significant enhancement in the seebeck coefficient and power factor of p-type poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) through the incorporation of n-type MXene. ACS Appl. Mater. Interfaces 12, 13013–13020 (2020). https://doi.org/10.1021/acsami.9b21185
- J. Li, B. Xia, X. Xiao, Z. Huang, J. Yin et al., Stretchable thermoelectric fibers with three-dimensional interconnected porous network for low-grade body heat energy harvesting. ACS Nano 17, 19232–19241 (2023). https://doi.org/10.1021/acsnano.3c05797
- D. Zhang, Y. Cao, Y. Hui, J. Cai, J. Ji et al., Enhancements of thermoelectric performance in n-type Bi2Te3-based nanocomposites through incorporating 2D Mxenes. J. Eur. Ceram. Soc. 42, 4587–4593 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.04.047
- J. Guo, B. Legum, B. Anasori, K. Wang, P. Lelyukh et al., Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv. Mater. 30, e1801846 (2018). https://doi.org/10.1002/adma.201801846
- X. Lu, Q. Zhang, J. Liao, H. Chen, Y. Fan et al., High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)2Te3 matrix. Adv. Energy Mater. 10, 1902986 (2020). https://doi.org/10.1002/aenm.201902986
- V. Karthikeyan, V.C.S. Theja, M.M. De Souza, V.A.L. Roy, Hierarchically interlaced 2D copper iodide/MXene composite for high thermoelectric performance. Phys. Status Solidi RRL 16, 2100419 (2022). https://doi.org/10.1002/pssr.202100419
- Y. Wei, Z. Zhou, J. Liu, B. Zhang, G. Wang et al., MXene as charge reservoir promotes the thermoelectric performance of layered metal selenide SnSe2. Acta Mater. 241, 118369 (2022). https://doi.org/10.1016/j.actamat.2022.118369
- P. Dixit, S.S. Jana, T. Maiti, Enhanced thermoelectric performance of rare-earth-free n-type oxide perovskite composite with graphene analogous 2D MXene. Small 19, e2206710 (2023). https://doi.org/10.1002/smll.202206710
- H. Zhang, Y. Chen, X. Liu, H. Wang, C. Niu et al., Enhancing the thermoelectric performance of solution-synthesized SnSe-based materials via incorporating Ti3C2Tx MXene. Mater. Today Energy 30, 101137 (2022). https://doi.org/10.1016/j.mtener.2022.101137
- X.-P. Jiang, B.-Z. Tian, Q. Sun, X.-L. Li, J. Chen et al., Enhanced thermoelectric performance in MXene/SnTe nanocomposites synthesized via a facile one-step solvothermal method. J. Solid State Chem. 304, 122605 (2021). https://doi.org/10.1016/j.jssc.2021.122605
- J. Diao, J. Yuan, Z. Cai, L. Xia, Z. Cheng et al., High-performance electromagnetic interference shielding and thermoelectric conversion derived from multifunctional Bi2Te2.7Se0.3/MXene composites. Carbon 196, 243–252 (2022). https://doi.org/10.1016/j.carbon.2022.04.078
- L. Yan, X. Luo, R. Yang, F. Dai, D. Zhu et al., Highly thermoelectric ZnO@MXene (Ti3C2Tx) composite films grown by atomic layer deposition. ACS Appl. Mater. Interfaces 14, 34562–34570 (2022). https://doi.org/10.1021/acsami.2c05003
- M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16, 7841–7849 (2014). https://doi.org/10.1039/c4cp00467a
- S. Kumar, U. Schwingenschlögl, Thermoelectric performance of functionalized Sc2CMXenes. Phys. Rev. B 94, 035405 (2016). https://doi.org/10.1103/physrevb.94.035405
- X.-H. Zha, Q. Huang, J. He, H. He, J. Zhai et al., The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 6, 27971 (2016). https://doi.org/10.1038/srep27971
- A.N. Gandi, H.N. Alshareef, U. Schwingenschlögl, Thermoelectric performance of the MXenes M2CO2 (M = Ti, Zr, or Hf). Chem. Mater. 28, 1647–1652 (2016). https://doi.org/10.1021/acs.chemmater.5b04257
- S. Sarikurt, D. Çakır, M. Keçeli, C. Sevik, The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale 10, 8859–8868 (2018). https://doi.org/10.1039/c7nr09144c
- E. Omugbe, O.E. Osafile, O.N. Nenuwe, E.A. Enaibe, Energy band gaps and novel thermoelectric properties of two-dimensional functionalized Yttrium carbides (MXenes). Phys. B Condens. Matter 639, 413922 (2022). https://doi.org/10.1016/j.physb.2022.413922
- Z. Jing, H. Wang, X. Feng, B. Xiao, Y. Ding et al., Superior thermoelectric performance of ordered double transition metal MXenes: Cr2TiC2T2 (T =–OH or–F). J. Phys. Chem. Lett. 10, 5721–5728 (2019). https://doi.org/10.1021/acs.jpclett.9b01827
- H. Kim, B. Anasori, Y. Gogotsi, H.N. Alshareef, Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 29, 6472–6479 (2017). https://doi.org/10.1021/acs.chemmater.7b02056
- D. Huang, H. Kim, G. Zou, X. Xu, Y. Zhu et al., All-MXene thermoelectric nanogenerator. Mater. Today Energy 29, 101129 (2022). https://doi.org/10.1016/j.mtener.2022.101129
- P. Liu, W. Ding, J. Liu, L. Shen, F. Jiang et al., Surface termination modification on high-conductivity MXene film for energy conversion. J. Alloys Compd. 829, 154634 (2020). https://doi.org/10.1016/j.jallcom.2020.154634
- Y. Xing, G. Akonkwa, Z. Liu, H. Ye, K. Han, Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Appl. Nano Mater. 3, 1526–1534 (2020). https://doi.org/10.1021/acsanm.9b02322
- S. Hideshima, Y. Ogata, D. Takimoto, Y. Gogotsi, W. Sugimoto, Vertically aligned MXene bioelectrode prepared by freeze-drying assisted electrophoretic deposition for sensitive electrochemical protein detection. Biosens. Bioelectron. 250, 116036 (2024). https://doi.org/10.1016/j.bios.2024.116036
- S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia et al., Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 15, 7821–7832 (2021). https://doi.org/10.1021/acsnano.1c02271
- Q. Zhang, H. Lai, R. Fan, P. Ji, X. Fu et al., High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15, 5249–5262 (2021). https://doi.org/10.1021/acsnano.0c10671
- M.V. Costache, G. Bridoux, I. Neumann, S.O. Valenzuela, Magnon-drag thermopile. Nat. Mater. 11, 199–202 (2012). https://doi.org/10.1038/nmat3201
- T.S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee et al., Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
- Y. Liu, H. Xiao, W.A. Goddard, 3rd Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138, 15853–15856 (2016). https://doi.org/10.1021/jacs.6b10834
- M. He, J. Ge, Z. Lin, X. Feng, X. Wang et al., Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ. Sci. 5, 8351–8358 (2012). https://doi.org/10.1039/C2EE21803H
- J. Tang, Z. Wu, W. Li, G. Zuo, Y. Zhao et al., Learning from polymeric π-backbone to film sequences unravels that a coexistence of bilayered and mixed morphologies optimally strengthens thermoelectrics. Adv. Energy Mater. 14, 2303494 (2024). https://doi.org/10.1002/aenm.202303494
- Y. Chen, Q. Yao, S. Qu, W. Shi, H. Li et al., Enhanced thermoelectric performance of phthalocyanine complexes/single-walled carbon nanotube hybrids by tuning the types of metal coordination ions. Compos. Commun. 27, 100891 (2021). https://doi.org/10.1016/j.coco.2021.100891
References
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. MXenes (Jenny Stanford Publishing, 2023), pp.15–29. https://doi.org/10.1201/9781003306511-4
Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
M. Downes, C.E. Shuck, B. McBride, J. Busa, Y. Gogotsi, Comprehensive synthesis of Ti3C2Tx from MAX phase to MXene. Nat. Protoc. 19, 1807–1834 (2024). https://doi.org/10.1038/s41596-024-00969-1
Y. Sun, D. Chen, Z. Liang, Two-dimensional MXenes for energy storage and conversion applications. Mater. Today Energy 5, 22–36 (2017). https://doi.org/10.1016/j.mtener.2017.04.008
X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137, 2715–2721 (2015). https://doi.org/10.1021/ja512820k
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). MXenes (Jenny Stanford Publishing, 2023), pp.415–449
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. ManHong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). J. Sci. 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
Y. Wang, Y. Wang, M. Jian, Q. Jiang, X. Li, MXene key composites: a new arena for gas sensors. Nano-Micro Lett. 16, 209 (2024). https://doi.org/10.1007/s40820-024-01430-4
A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022). https://doi.org/10.1007/s40820-022-00845-1
K. Ba, D. Pu, X. Yang, T. Ye, J. Chen et al., Billiard catalysis at Ti3C2 MXene/MAX heterostructure for efficient nitrogen fixation. Appl. Catal. B Environ. 317, 121755 (2022). https://doi.org/10.1016/j.apcatb.2022.121755
Z. Ding, G. Li, Y. Wang, C. Du, Z. Ye et al., Ultrafast response and threshold adjustable intelligent thermoelectric systems for next-generation self-powered remote IoT fire warning. Nano-Micro Lett. 16, 242 (2024). https://doi.org/10.1007/s40820-024-01453-x
A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
G. Li, B.C. Wyatt, F. Song, C. Yu, Z. Wu et al., 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv. Funct. Mater. 31, 2105043 (2021). https://doi.org/10.1002/adfm.202105043
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, e2001093 (2020). https://doi.org/10.1002/adma.202001093
J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
J. Tang, Y.-H. Pai, Z. Liang, Strategic insights into semiconducting polymer thermoelectrics by leveraging molecular structures and chemical doping. ACS Energy Lett. 7, 4299–4324 (2022). https://doi.org/10.1021/acsenergylett.2c02119
S. Wang, G. Zuo, J. Kim, H. Sirringhaus, Progress of conjugated polymers as emerging thermoelectric materials. Prog. Polym. Sci. 129, 101548 (2022). https://doi.org/10.1016/j.progpolymsci.2022.101548
W. Zhao, J. Ding, Y. Zou, C.-A. Di, D. Zhu, Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 49, 7210–7228 (2020). https://doi.org/10.1039/d0cs00204f
M. Goel, M. Thelakkat, Polymer thermoelectrics: opportunities and challenges. Macromolecules 53, 3632–3642 (2020). https://doi.org/10.1021/acs.macromol.9b02453
J. Tang, Y. Chen, S.R. McCuskey, L. Chen, G. Bazan et al., Nanocomposites: recent advances in n-type thermoelectric nanocomposites. Adv. Electron. Mater. 5, 1800943 (2019). https://doi.org/10.1002/aelm.201800943
X. Li, T. Wang, F. Jiang, J. Liu, P. Liu et al., Optimizing thermoelectric performance of MoS2 films by spontaneous noble metal nanops decoration. J. Alloys Compd. 781, 744–750 (2019). https://doi.org/10.1016/j.jallcom.2018.11.338
L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan et al., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014). https://doi.org/10.1038/nature13184
Y. Zhang, J. Wang, Q. Liu, S. Gu, Z. Sun et al., The electrical, thermal, and thermoelectric properties of black phosphorus. APL Mater. 8, 120903 (2020). https://doi.org/10.1063/5.0027244
D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan et al., Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12, 36 (2020). https://doi.org/10.1007/s40820-020-0374-x
J. Wei, D. Wu, C. Liu, F. Zhong, G. Cao et al., Free-standing p-type SWCNT/MXene composite films with low thermal conductivity and enhanced thermoelectric performance. Chem. Eng. J. 439, 135706 (2022). https://doi.org/10.1016/j.cej.2022.135706
W. Ding, P. Liu, Z. Bai, Y. Wang, G. Liu et al., Constructing layered MXene/CNTs composite film with 2D–3D sandwich structure for high thermoelectric performance. Adv. Mater. Interfaces 7, 2001340 (2020). https://doi.org/10.1002/admi.202001340
X. Guan, W. Feng, X. Wang, R. Venkatesh, J. Ouyang, Significant enhancement in the seebeck coefficient and power factor of p-type poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) through the incorporation of n-type MXene. ACS Appl. Mater. Interfaces 12, 13013–13020 (2020). https://doi.org/10.1021/acsami.9b21185
J. Li, B. Xia, X. Xiao, Z. Huang, J. Yin et al., Stretchable thermoelectric fibers with three-dimensional interconnected porous network for low-grade body heat energy harvesting. ACS Nano 17, 19232–19241 (2023). https://doi.org/10.1021/acsnano.3c05797
D. Zhang, Y. Cao, Y. Hui, J. Cai, J. Ji et al., Enhancements of thermoelectric performance in n-type Bi2Te3-based nanocomposites through incorporating 2D Mxenes. J. Eur. Ceram. Soc. 42, 4587–4593 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.04.047
J. Guo, B. Legum, B. Anasori, K. Wang, P. Lelyukh et al., Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv. Mater. 30, e1801846 (2018). https://doi.org/10.1002/adma.201801846
X. Lu, Q. Zhang, J. Liao, H. Chen, Y. Fan et al., High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)2Te3 matrix. Adv. Energy Mater. 10, 1902986 (2020). https://doi.org/10.1002/aenm.201902986
V. Karthikeyan, V.C.S. Theja, M.M. De Souza, V.A.L. Roy, Hierarchically interlaced 2D copper iodide/MXene composite for high thermoelectric performance. Phys. Status Solidi RRL 16, 2100419 (2022). https://doi.org/10.1002/pssr.202100419
Y. Wei, Z. Zhou, J. Liu, B. Zhang, G. Wang et al., MXene as charge reservoir promotes the thermoelectric performance of layered metal selenide SnSe2. Acta Mater. 241, 118369 (2022). https://doi.org/10.1016/j.actamat.2022.118369
P. Dixit, S.S. Jana, T. Maiti, Enhanced thermoelectric performance of rare-earth-free n-type oxide perovskite composite with graphene analogous 2D MXene. Small 19, e2206710 (2023). https://doi.org/10.1002/smll.202206710
H. Zhang, Y. Chen, X. Liu, H. Wang, C. Niu et al., Enhancing the thermoelectric performance of solution-synthesized SnSe-based materials via incorporating Ti3C2Tx MXene. Mater. Today Energy 30, 101137 (2022). https://doi.org/10.1016/j.mtener.2022.101137
X.-P. Jiang, B.-Z. Tian, Q. Sun, X.-L. Li, J. Chen et al., Enhanced thermoelectric performance in MXene/SnTe nanocomposites synthesized via a facile one-step solvothermal method. J. Solid State Chem. 304, 122605 (2021). https://doi.org/10.1016/j.jssc.2021.122605
J. Diao, J. Yuan, Z. Cai, L. Xia, Z. Cheng et al., High-performance electromagnetic interference shielding and thermoelectric conversion derived from multifunctional Bi2Te2.7Se0.3/MXene composites. Carbon 196, 243–252 (2022). https://doi.org/10.1016/j.carbon.2022.04.078
L. Yan, X. Luo, R. Yang, F. Dai, D. Zhu et al., Highly thermoelectric ZnO@MXene (Ti3C2Tx) composite films grown by atomic layer deposition. ACS Appl. Mater. Interfaces 14, 34562–34570 (2022). https://doi.org/10.1021/acsami.2c05003
M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16, 7841–7849 (2014). https://doi.org/10.1039/c4cp00467a
S. Kumar, U. Schwingenschlögl, Thermoelectric performance of functionalized Sc2CMXenes. Phys. Rev. B 94, 035405 (2016). https://doi.org/10.1103/physrevb.94.035405
X.-H. Zha, Q. Huang, J. He, H. He, J. Zhai et al., The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 6, 27971 (2016). https://doi.org/10.1038/srep27971
A.N. Gandi, H.N. Alshareef, U. Schwingenschlögl, Thermoelectric performance of the MXenes M2CO2 (M = Ti, Zr, or Hf). Chem. Mater. 28, 1647–1652 (2016). https://doi.org/10.1021/acs.chemmater.5b04257
S. Sarikurt, D. Çakır, M. Keçeli, C. Sevik, The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale 10, 8859–8868 (2018). https://doi.org/10.1039/c7nr09144c
E. Omugbe, O.E. Osafile, O.N. Nenuwe, E.A. Enaibe, Energy band gaps and novel thermoelectric properties of two-dimensional functionalized Yttrium carbides (MXenes). Phys. B Condens. Matter 639, 413922 (2022). https://doi.org/10.1016/j.physb.2022.413922
Z. Jing, H. Wang, X. Feng, B. Xiao, Y. Ding et al., Superior thermoelectric performance of ordered double transition metal MXenes: Cr2TiC2T2 (T =–OH or–F). J. Phys. Chem. Lett. 10, 5721–5728 (2019). https://doi.org/10.1021/acs.jpclett.9b01827
H. Kim, B. Anasori, Y. Gogotsi, H.N. Alshareef, Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 29, 6472–6479 (2017). https://doi.org/10.1021/acs.chemmater.7b02056
D. Huang, H. Kim, G. Zou, X. Xu, Y. Zhu et al., All-MXene thermoelectric nanogenerator. Mater. Today Energy 29, 101129 (2022). https://doi.org/10.1016/j.mtener.2022.101129
P. Liu, W. Ding, J. Liu, L. Shen, F. Jiang et al., Surface termination modification on high-conductivity MXene film for energy conversion. J. Alloys Compd. 829, 154634 (2020). https://doi.org/10.1016/j.jallcom.2020.154634
Y. Xing, G. Akonkwa, Z. Liu, H. Ye, K. Han, Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Appl. Nano Mater. 3, 1526–1534 (2020). https://doi.org/10.1021/acsanm.9b02322
S. Hideshima, Y. Ogata, D. Takimoto, Y. Gogotsi, W. Sugimoto, Vertically aligned MXene bioelectrode prepared by freeze-drying assisted electrophoretic deposition for sensitive electrochemical protein detection. Biosens. Bioelectron. 250, 116036 (2024). https://doi.org/10.1016/j.bios.2024.116036
S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia et al., Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS Nano 15, 7821–7832 (2021). https://doi.org/10.1021/acsnano.1c02271
Q. Zhang, H. Lai, R. Fan, P. Ji, X. Fu et al., High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15, 5249–5262 (2021). https://doi.org/10.1021/acsnano.0c10671
M.V. Costache, G. Bridoux, I. Neumann, S.O. Valenzuela, Magnon-drag thermopile. Nat. Mater. 11, 199–202 (2012). https://doi.org/10.1038/nmat3201
T.S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee et al., Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
Y. Liu, H. Xiao, W.A. Goddard, 3rd Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138, 15853–15856 (2016). https://doi.org/10.1021/jacs.6b10834
M. He, J. Ge, Z. Lin, X. Feng, X. Wang et al., Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ. Sci. 5, 8351–8358 (2012). https://doi.org/10.1039/C2EE21803H
J. Tang, Z. Wu, W. Li, G. Zuo, Y. Zhao et al., Learning from polymeric π-backbone to film sequences unravels that a coexistence of bilayered and mixed morphologies optimally strengthens thermoelectrics. Adv. Energy Mater. 14, 2303494 (2024). https://doi.org/10.1002/aenm.202303494
Y. Chen, Q. Yao, S. Qu, W. Shi, H. Li et al., Enhanced thermoelectric performance of phthalocyanine complexes/single-walled carbon nanotube hybrids by tuning the types of metal coordination ions. Compos. Commun. 27, 100891 (2021). https://doi.org/10.1016/j.coco.2021.100891