Template-Free Synthesis of Sb2S3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries
Corresponding Author: Li Liu
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 12
Abstract
Hierarchical Sb2S3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb2S3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 mAh g−1 at a current density of 200 mA g−1 after 50 cycles. Even at a high current density of 5000 mA g−1, a discharge capacity of 541 mAh g−1 is achieved. Sb2S3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 mAh g−1 at a current density of 200 mA g−1 after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space, which can buffer the volume expansion.
Highlights:
1 Sb2S3 hollow microspheres have been successfully synthesized by a simple hydrothermal reaction using SbCl3 and l-cysteine as raw materials without adding any surfactants.
2 The novel architecture combines the merits of nanometer size, hollow interior, and 3D hierarchical structure.
3 The material presents remarkable cycling performance and outstanding rate capability in lithium-ion batteries and also exhibits superior sodium-storage capabilities in sodium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Obrovac, V. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014). doi:10.1021/cr500207g
- H. Wang, Y. Wang, Y. Li, Y. Wan, Q. Duan, Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82, 116–123 (2015). doi:10.1016/j.carbon.2014.10.041
- K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). doi:10.1021/cr500003w
- J.B. Goodenough, K.-S. Park, J. Am, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). doi:10.1016/j.bcdf.2016.09.001
- H. Wang, Y. Zhou, Y. Shen, Y. Li, Q. Zuo, Q. Duan, Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning. Electrochim. Acta 158(21), 105–112 (2015). doi:10.1016/j.electacta.2015.01.149
- D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54(11), 3431–3448 (2015). doi:10.1002/anie.201410376
- Y. Kim, K.H. Ha, S.M. Oh, K.T. Lee, High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 20(38), 11980–11992 (2014). doi:10.1002/chem.201402511
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). doi:10.1021/cr500192f
- L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52(7), 1964–1967 (2013). doi:10.1002/anie.201206854
- Y. Zhao, A. Manthiram, Bi0.94Sb1.06S3 nanorod cluster anodes for sodium-ion batteries: enhanced reversibility by the synergistic effect of the Bi2S3-Sb2S3 solid solution. Chem. Mater. 27(17), 6139–6145 (2015). doi:10.1021/acs.chemmater.5b02833
- Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 9(4), 1430–1438 (2016). doi:10.1039/c5ee03262h
- Z. Yi, Q. Han, X. Li, Y. Wu, Y. Cheng, L. Wang, Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries. Chem. Eng. J. 315, 101–107 (2017). doi:10.1016/j.cej.2017.01.020
- A.L. Hameed, M. Reddy, J. Cheng, B. Chowdari, J.J. Vittal, RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries. ACS Sustainable Chem. Eng. 4(5), 2479–2486 (2016). doi:10.1021/acssuschemeng.5b01211
- Y. Zhu, P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo, X. Zhang, High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. Nanoscale 7(7), 3309–3315 (2015). doi:10.1039/C4NR05242K
- Y. Liu, L.-Z. Fan, L. Jiao, Graphene highly scattered in porous carbon nanofibers: a binder-free and high-performance anode for sodium-ion batteries. J. Mater. Chem. A 5(4), 1698–1705 (2017). doi:10.1039/C6TA09961K
- C. Yan, G. Chen, D. Chen, J. Pei, J. Sun, H. Xu, Y. Zhang, Z. Qiu, Double surfactant-directed controllable synthesis of Sb2S3 crystals with comparable electrochemical performances. CrystEngComm 16(33), 7753–7760 (2014). doi:10.1039/c4ce00871e
- X. Zhou, S. Hua, L. Bai, D. Yu, Synthesis and electrochemical performance of hierarchical Sb2S3 nanorod-bundles for lithium-ion batteries. J. Electrochem. Sci. Eng. 4(2), 45–53 (2014). doi:10.5599/jese.2014.0045
- Z. Yi, Q.G. Han, Y. Cheng, Y.M. Wu, L.M. Wang, Facile synthesis of symmetric bundle-like Sb2S3 micron-structures and their application in lithium-ion battery anodes. Chem. Commun. 52(49), 7691–7694 (2016). doi:10.1039/c6cc03176e
- Y. Denis, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4(4), 2922 (2013). doi:10.1038/ncomms3922
- J. Pan, Z.-L. Zuo, J.-Q. Deng, J. Wang, C.-C. Fang, Q.-R. Yao, Template-free synthesis of Sb2S3 micro tubes as the anode materials for sodium-ion batteries. Int Conf Adv Mater Energy Sust (2017). doi:10.1142/9789813220393_0010
- Z. Zhang, L. Li, Q. Xu, B. Cao, 3D hierarchical Co3O4 microspheres with enhanced lithium-ion battery performance. RSC Adv. 5(76), 61631–61638 (2015). doi:10.1039/c5ra11472a
- L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W.D. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015). doi:10.1002/ange.201409776
- H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5(7), 4526 (2014). doi:10.1038/ncomms5526
- J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 125(25), 6545–6548 (2013). doi:10.1002/ange.201301622
- S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, D. Wang, α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 7(2), 632–637 (2014). doi:10.1039/c3ee43319f
- X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen, T.H. Wang, One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 114(17), 8084–8088 (2010). doi:10.1021/jp100224x
- D. Ma, Z. Cao, A. Hu, Si-Based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014). doi:10.1007/s40820-014-0008-2
- G. Zhang, X.W.D. Lou, General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew. Chem. Int. Ed. 126(34), 9187–9190 (2014). doi:10.1002/ange.201404604
- Q. Wang, L. Zhu, L. Sun, Y. Liu, L. Jiao, Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J. Mater. Chem. 3(3), 982–985 (2015). doi:10.1039/c4ta05279j
- L. Cao, D. Chen, R.A. Caruso, Surface-metastable phase-initiated seeding and Ostwald ripening: a facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. Angew. Chem. Int. Ed. 52(42), 10986–10991 (2013). doi:10.1002/ange.201305819
- A. Pan, H. Wu, L. Yu, X. Lou, Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. Int. Ed. 125(8), 2282–2286 (2013). doi:10.1002/ange.201209535
- H. Xia, J. Zhang, Z. Yang, S.Y. Guo, S.H. Guo, Q. Xu, 2D MOF Nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9, 43 (2017). doi:10.1007/s40820-017-0144-6
- S. Wang, S. Yuan, Y.B. Yin, Y.H. Zhu, X.B. Zhang, J.M. Yan, Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Charact. 33(8), 493–499 (2016). doi:10.1002/ppsc.201500227
- P.V. Prikhodchenko, J. Gun, S. Sladkevich, A.A. Mikhaylov, O. Lev, Y.Y. Tay, S.K. Batabyal, D.Y. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@graphene for a superior lithium battery anode. Chem. Mater. 24(24), 4750–4757 (2012). doi:10.1021/cm3031818
- J. Pan, N. Wang, Y. Zhou, X. Yang, W. Zhou, Y. Qian, J. Yang, Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Res. 10(5), 1794–1803 (2017). doi:10.1007/s12274-017-1501-y
- C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, L. Mai, VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14(5), 2873–2878 (2014). doi:10.1021/nl500915b
- Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng et al., Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12(12), 1130–1136 (2013). doi:10.1038/NMAT3784
- Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26(42), 7590–7598 (2016). doi:10.1002/adfm.201603659
- Y.-Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng et al., Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12(12), 1130–1136 (2013). doi:10.1038/NMAT3784
- C. Jiang, C. Yuan, P. Li, H.-G. Wang, Y. Li, Q. Duan, Nitrogen-doped porous graphene with MnO2 nanowires as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 4(19), 7251–7256 (2016). doi:10.1039/C5TA10711C
- Y. Xu, J. Guo, C. Wang, Sponge-like porous carbon/tin composite anode materials for lithium ion batteries. J. Mater. Chem. 22(19), 9562–9567 (2012). doi:10.1039/c2jm30448a
- B. Wang, H.B. Wu, L. Zhang, X.W.D. Lou, Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem. Int. Ed. 52(15), 4165–4168 (2013). doi:10.1002/ange.201300190
- K. Zhu, H. Gao, G. Hu, M. Liu, H. Wang, Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries. J. Power Sources 340, 263–272 (2017). doi:10.1016/j.jpowsour.2016.11.074
- X. Zhang, J.-G. Wang, H. Liu, H. Liu, B. Wei, Facile synthesis of V2O5 hollow spheres as advanced cathodes for high-performance lithium-ion batteries. Materials 10(1), 77 (2017). doi:10.3390/ma10010077
- R. Liu, W. Su, C. Shen, J. Iocozzia, S. Zhao, K. Yuan, N. Zhang, C.-A. Wang, Z. Lin, Hydrothermal synthesis of hollow SnO2 spheres with excellent electrochemical performance for anodes in lithium ion batteries. Mater. Res. Bull. (2017). doi:10.1016/j.materresbull.2017.03.004. (In press)
- D. Wang, Y. Yu, H. He, J. Wang, W. Zhou, H.D. Abruna, Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2), 1775–1781 (2015). doi:10.1021/nn506624g
- F. Wu, X. Guo, M. Li, H. Xu, One-step hydrothermal synthesis of Sb2S3/reduced graphene oxide nanocomposites for high-performance sodium ion batteries anode materials. Ceram. Int. 43(8), 6019–6023 (2017). doi:10.1016/j.ceramint.2017.01.141
- Z. Yan, L. Liu, J. Tan, Q. Zhou, Z. Huang, D. Xia, H. Shu, X. Yang, X. Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core-shell structure as anode materials for lithium and sodium ion batteries. J. Power Sources 269, 37–45 (2014). doi:10.1016/j.jpowsour.2014.06.150
- J. Tan, L. Liu, S. Guo, H. Hu, Z. Yan et al., The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries. Electrochim. Acta 168, 225–233 (2015). doi:10.1016/j.electacta.2015.04.029
- K. Xiao, Q. Xu, K. Ye, Z. Liu, L. Fu, N. Li, Y. Chen, Y. Su, Facile hydrothermal synthesis of Sb2S3 nanorods and their magnetic and electrochemical properties. ECS Solid State Lett. 2(6), 51–54 (2013). doi:10.1149/2.007306ssl
- J. Ma, X. Duan, J. Lian, T. Kim, P. Peng, X. Liu, Z. Liu, H. Li, W. Zheng, Sb2S3 with various nanostructures: controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage. Chem. Eur. J. 16(44), 13210–13217 (2010). doi:10.1002/chem.201000962
- X. Zhou, L. Bai, J. Yan, S. He, Z. Lei, Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance. Electrochim. Acta 108(10), 17–21 (2013). doi:10.1016/j.electacta.2013.06.049
- C.-M. Park, Y. Hwa, N.-E. Sung, H.-J. Sohn, Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries. J. Mater. Chem. 20(6), 1097–1102 (2010). doi:10.1039/b918220a
- Y. Zhao, A. Manthiram, Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 51(67), 13205–13208 (2015). doi:10.1039/C5CC03825A
- X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J.-H. Wang, M. Liu, Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12), 10953–10959 (2016). doi:10.1021/acsnano.6b05653
- J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin et al., New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 17(3), 2034–2042 (2017). doi:10.1021/acs.nanolett.7b00083
- S. Hwang, J. Kim, Y. Kim, Y. Kim, Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries. J. Mater. Chem. A 4(46), 17946–17951 (2016). doi:10.1039/C6TA07838A
- S. Yao, J. Cui, Z. Lu, Z.-L. Xu, L. Qin, J. Huang, Z. Sadighi, F. Ciucci, J.-K. Kim, Unveiling the Unique phase transformation behavior and sodiation kinetics of 1D van der waals Sb2S3 anodes for sodium ion batteries. Adv. Energy Mater. 7(8), 1602149 (2017). doi:10.1002/aenm.201602149
- J.H. Choi, C.-W. Ha, H.-Y. Choi, H.-C. Shin, C.-M. Park, Y.-N. Jo, S.-M. Lee, Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries. Electrochim. Acta 210, 588–595 (2016). doi:10.1016/j.electacta.2016.05.190
- H. Hou, M. Jing, Z. Huang, Y. Yang, Y. Zhang, J. Chen, Z. Wu, X. Ji, One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 7(34), 19362–19369 (2015). doi:10.1021/acsami.5b05509
- S. Wang, S. Yuan, Y. Yin, Y. Zhu, X. Zhang, J. Yan, Green and facile fabrication of MWNTs@ Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Charact. 33(8), 493–499 (2016). doi:10.1002/ppsc.201500227
- S. Dong, C. Li, X. Ge, Z. Li, X. Miao, L. Yin, ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6), 6474–6482 (2017). doi:10.1021/acsnano.7b03321
- Y. Zhao, A. Manthiram, High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 27(8), 3096–3101 (2015). doi:10.1021/acs.chemmater.5b00616
References
M. Obrovac, V. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014). doi:10.1021/cr500207g
H. Wang, Y. Wang, Y. Li, Y. Wan, Q. Duan, Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82, 116–123 (2015). doi:10.1016/j.carbon.2014.10.041
K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). doi:10.1021/cr500003w
J.B. Goodenough, K.-S. Park, J. Am, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). doi:10.1016/j.bcdf.2016.09.001
H. Wang, Y. Zhou, Y. Shen, Y. Li, Q. Zuo, Q. Duan, Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning. Electrochim. Acta 158(21), 105–112 (2015). doi:10.1016/j.electacta.2015.01.149
D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54(11), 3431–3448 (2015). doi:10.1002/anie.201410376
Y. Kim, K.H. Ha, S.M. Oh, K.T. Lee, High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 20(38), 11980–11992 (2014). doi:10.1002/chem.201402511
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). doi:10.1021/cr500192f
L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J.B. Goodenough, A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52(7), 1964–1967 (2013). doi:10.1002/anie.201206854
Y. Zhao, A. Manthiram, Bi0.94Sb1.06S3 nanorod cluster anodes for sodium-ion batteries: enhanced reversibility by the synergistic effect of the Bi2S3-Sb2S3 solid solution. Chem. Mater. 27(17), 6139–6145 (2015). doi:10.1021/acs.chemmater.5b02833
Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 9(4), 1430–1438 (2016). doi:10.1039/c5ee03262h
Z. Yi, Q. Han, X. Li, Y. Wu, Y. Cheng, L. Wang, Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries. Chem. Eng. J. 315, 101–107 (2017). doi:10.1016/j.cej.2017.01.020
A.L. Hameed, M. Reddy, J. Cheng, B. Chowdari, J.J. Vittal, RGO/stibnite nanocomposite as a dual anode for lithium and sodium ion batteries. ACS Sustainable Chem. Eng. 4(5), 2479–2486 (2016). doi:10.1021/acssuschemeng.5b01211
Y. Zhu, P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo, X. Zhang, High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. Nanoscale 7(7), 3309–3315 (2015). doi:10.1039/C4NR05242K
Y. Liu, L.-Z. Fan, L. Jiao, Graphene highly scattered in porous carbon nanofibers: a binder-free and high-performance anode for sodium-ion batteries. J. Mater. Chem. A 5(4), 1698–1705 (2017). doi:10.1039/C6TA09961K
C. Yan, G. Chen, D. Chen, J. Pei, J. Sun, H. Xu, Y. Zhang, Z. Qiu, Double surfactant-directed controllable synthesis of Sb2S3 crystals with comparable electrochemical performances. CrystEngComm 16(33), 7753–7760 (2014). doi:10.1039/c4ce00871e
X. Zhou, S. Hua, L. Bai, D. Yu, Synthesis and electrochemical performance of hierarchical Sb2S3 nanorod-bundles for lithium-ion batteries. J. Electrochem. Sci. Eng. 4(2), 45–53 (2014). doi:10.5599/jese.2014.0045
Z. Yi, Q.G. Han, Y. Cheng, Y.M. Wu, L.M. Wang, Facile synthesis of symmetric bundle-like Sb2S3 micron-structures and their application in lithium-ion battery anodes. Chem. Commun. 52(49), 7691–7694 (2016). doi:10.1039/c6cc03176e
Y. Denis, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4(4), 2922 (2013). doi:10.1038/ncomms3922
J. Pan, Z.-L. Zuo, J.-Q. Deng, J. Wang, C.-C. Fang, Q.-R. Yao, Template-free synthesis of Sb2S3 micro tubes as the anode materials for sodium-ion batteries. Int Conf Adv Mater Energy Sust (2017). doi:10.1142/9789813220393_0010
Z. Zhang, L. Li, Q. Xu, B. Cao, 3D hierarchical Co3O4 microspheres with enhanced lithium-ion battery performance. RSC Adv. 5(76), 61631–61638 (2015). doi:10.1039/c5ra11472a
L. Shen, L. Yu, X.Y. Yu, X. Zhang, X.W.D. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015). doi:10.1002/ange.201409776
H. Sun, G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian, High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5(7), 4526 (2014). doi:10.1038/ncomms5526
J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 125(25), 6545–6548 (2013). doi:10.1002/ange.201301622
S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, D. Wang, α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 7(2), 632–637 (2014). doi:10.1039/c3ee43319f
X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen, T.H. Wang, One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 114(17), 8084–8088 (2010). doi:10.1021/jp100224x
D. Ma, Z. Cao, A. Hu, Si-Based anode materials for Li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014). doi:10.1007/s40820-014-0008-2
G. Zhang, X.W.D. Lou, General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew. Chem. Int. Ed. 126(34), 9187–9190 (2014). doi:10.1002/ange.201404604
Q. Wang, L. Zhu, L. Sun, Y. Liu, L. Jiao, Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J. Mater. Chem. 3(3), 982–985 (2015). doi:10.1039/c4ta05279j
L. Cao, D. Chen, R.A. Caruso, Surface-metastable phase-initiated seeding and Ostwald ripening: a facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. Angew. Chem. Int. Ed. 52(42), 10986–10991 (2013). doi:10.1002/ange.201305819
A. Pan, H. Wu, L. Yu, X. Lou, Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. Int. Ed. 125(8), 2282–2286 (2013). doi:10.1002/ange.201209535
H. Xia, J. Zhang, Z. Yang, S.Y. Guo, S.H. Guo, Q. Xu, 2D MOF Nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9, 43 (2017). doi:10.1007/s40820-017-0144-6
S. Wang, S. Yuan, Y.B. Yin, Y.H. Zhu, X.B. Zhang, J.M. Yan, Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Charact. 33(8), 493–499 (2016). doi:10.1002/ppsc.201500227
P.V. Prikhodchenko, J. Gun, S. Sladkevich, A.A. Mikhaylov, O. Lev, Y.Y. Tay, S.K. Batabyal, D.Y. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@graphene for a superior lithium battery anode. Chem. Mater. 24(24), 4750–4757 (2012). doi:10.1021/cm3031818
J. Pan, N. Wang, Y. Zhou, X. Yang, W. Zhou, Y. Qian, J. Yang, Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Res. 10(5), 1794–1803 (2017). doi:10.1007/s12274-017-1501-y
C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, L. Mai, VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14(5), 2873–2878 (2014). doi:10.1021/nl500915b
Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng et al., Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12(12), 1130–1136 (2013). doi:10.1038/NMAT3784
Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26(42), 7590–7598 (2016). doi:10.1002/adfm.201603659
Y.-Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng et al., Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12(12), 1130–1136 (2013). doi:10.1038/NMAT3784
C. Jiang, C. Yuan, P. Li, H.-G. Wang, Y. Li, Q. Duan, Nitrogen-doped porous graphene with MnO2 nanowires as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 4(19), 7251–7256 (2016). doi:10.1039/C5TA10711C
Y. Xu, J. Guo, C. Wang, Sponge-like porous carbon/tin composite anode materials for lithium ion batteries. J. Mater. Chem. 22(19), 9562–9567 (2012). doi:10.1039/c2jm30448a
B. Wang, H.B. Wu, L. Zhang, X.W.D. Lou, Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks. Angew. Chem. Int. Ed. 52(15), 4165–4168 (2013). doi:10.1002/ange.201300190
K. Zhu, H. Gao, G. Hu, M. Liu, H. Wang, Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries. J. Power Sources 340, 263–272 (2017). doi:10.1016/j.jpowsour.2016.11.074
X. Zhang, J.-G. Wang, H. Liu, H. Liu, B. Wei, Facile synthesis of V2O5 hollow spheres as advanced cathodes for high-performance lithium-ion batteries. Materials 10(1), 77 (2017). doi:10.3390/ma10010077
R. Liu, W. Su, C. Shen, J. Iocozzia, S. Zhao, K. Yuan, N. Zhang, C.-A. Wang, Z. Lin, Hydrothermal synthesis of hollow SnO2 spheres with excellent electrochemical performance for anodes in lithium ion batteries. Mater. Res. Bull. (2017). doi:10.1016/j.materresbull.2017.03.004. (In press)
D. Wang, Y. Yu, H. He, J. Wang, W. Zhou, H.D. Abruna, Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2), 1775–1781 (2015). doi:10.1021/nn506624g
F. Wu, X. Guo, M. Li, H. Xu, One-step hydrothermal synthesis of Sb2S3/reduced graphene oxide nanocomposites for high-performance sodium ion batteries anode materials. Ceram. Int. 43(8), 6019–6023 (2017). doi:10.1016/j.ceramint.2017.01.141
Z. Yan, L. Liu, J. Tan, Q. Zhou, Z. Huang, D. Xia, H. Shu, X. Yang, X. Wang, One-pot synthesis of bicrystalline titanium dioxide spheres with a core-shell structure as anode materials for lithium and sodium ion batteries. J. Power Sources 269, 37–45 (2014). doi:10.1016/j.jpowsour.2014.06.150
J. Tan, L. Liu, S. Guo, H. Hu, Z. Yan et al., The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries. Electrochim. Acta 168, 225–233 (2015). doi:10.1016/j.electacta.2015.04.029
K. Xiao, Q. Xu, K. Ye, Z. Liu, L. Fu, N. Li, Y. Chen, Y. Su, Facile hydrothermal synthesis of Sb2S3 nanorods and their magnetic and electrochemical properties. ECS Solid State Lett. 2(6), 51–54 (2013). doi:10.1149/2.007306ssl
J. Ma, X. Duan, J. Lian, T. Kim, P. Peng, X. Liu, Z. Liu, H. Li, W. Zheng, Sb2S3 with various nanostructures: controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage. Chem. Eur. J. 16(44), 13210–13217 (2010). doi:10.1002/chem.201000962
X. Zhou, L. Bai, J. Yan, S. He, Z. Lei, Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance. Electrochim. Acta 108(10), 17–21 (2013). doi:10.1016/j.electacta.2013.06.049
C.-M. Park, Y. Hwa, N.-E. Sung, H.-J. Sohn, Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries. J. Mater. Chem. 20(6), 1097–1102 (2010). doi:10.1039/b918220a
Y. Zhao, A. Manthiram, Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 51(67), 13205–13208 (2015). doi:10.1039/C5CC03825A
X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J.-H. Wang, M. Liu, Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12), 10953–10959 (2016). doi:10.1021/acsnano.6b05653
J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin et al., New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 17(3), 2034–2042 (2017). doi:10.1021/acs.nanolett.7b00083
S. Hwang, J. Kim, Y. Kim, Y. Kim, Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries. J. Mater. Chem. A 4(46), 17946–17951 (2016). doi:10.1039/C6TA07838A
S. Yao, J. Cui, Z. Lu, Z.-L. Xu, L. Qin, J. Huang, Z. Sadighi, F. Ciucci, J.-K. Kim, Unveiling the Unique phase transformation behavior and sodiation kinetics of 1D van der waals Sb2S3 anodes for sodium ion batteries. Adv. Energy Mater. 7(8), 1602149 (2017). doi:10.1002/aenm.201602149
J.H. Choi, C.-W. Ha, H.-Y. Choi, H.-C. Shin, C.-M. Park, Y.-N. Jo, S.-M. Lee, Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries. Electrochim. Acta 210, 588–595 (2016). doi:10.1016/j.electacta.2016.05.190
H. Hou, M. Jing, Z. Huang, Y. Yang, Y. Zhang, J. Chen, Z. Wu, X. Ji, One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 7(34), 19362–19369 (2015). doi:10.1021/acsami.5b05509
S. Wang, S. Yuan, Y. Yin, Y. Zhu, X. Zhang, J. Yan, Green and facile fabrication of MWNTs@ Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Charact. 33(8), 493–499 (2016). doi:10.1002/ppsc.201500227
S. Dong, C. Li, X. Ge, Z. Li, X. Miao, L. Yin, ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6), 6474–6482 (2017). doi:10.1021/acsnano.7b03321
Y. Zhao, A. Manthiram, High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 27(8), 3096–3101 (2015). doi:10.1021/acs.chemmater.5b00616