Architecture Design and Interface Engineering of Self-assembly VS4/rGO Heterostructures for Ultrathin Absorbent
Corresponding Author: Yue Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 67
Abstract
The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution. Importantly, developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices, but there are remaining unprecedented challenges. Herein, the self-assembly VS4/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering. The microarchitecture and heterointerface of VS4/rGO heterostructure can be regulated by the generation of VS4 nanorods anchored on rGO, which can effectively modulate the impedance matching and attenuation constant. The maximum reflection loss of 2VS4/rGO40 heterostructure can reach − 43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187, respectively. The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm. The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations. Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization, interfacial polarization, and multiple reflections and scatterings of microwaves. Overall, the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.
Highlights:
1 The self-assembly VS4/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.
2 Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance microwave absorption performance.
3 The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- Q. Li, Z. Zhang, L.P. Qi, Q.L. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6(8), 1801057 (2019). https://doi.org/10.1002/advs.201801057
- H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
- Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen et al., Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10(16), 13860–13868 (2018). https://doi.org/10.1021/acsami.8b02137
- Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2015). https://doi.org/10.1002/adma.201503149
- P. He, M.S. Cao, W.Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021). https://doi.org/10.1007/s40820-021-00645-z
- L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- Q. Li, Z. Zhang, X.C. Xun, F.F. Gao, X. Zhao et al., Synergistic engineering of dielectric and magnetic losses in M-Co/RGO nanocomposites for use in high-performance microwave absorption. Mater. Chem. Front. 4(10), 3013–3021 (2020). https://doi.org/10.1039/D0QM00461H
- H.R. Yuan, F. Yan, C.Y. Li, C.L. Zhu, X.T. Zhang et al., Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10(1), 1399–1407 (2018). https://doi.org/10.1021/acsami.7b15559
- P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- J.H. Hou, O. Inganäs, R.H. Friend, F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018). https://doi.org/10.1038/nmat5063
- Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han et al., Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014). https://doi.org/10.1021/am502910d
- H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen et al., Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 1(30), 8547–8552 (2013). https://doi.org/10.1039/C3TA11278K
- S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang et al., MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 88, 56–65 (2021). https://doi.org/10.1016/j.jmst.2021.02.011
- F. Ye, Q. Song, Z.C. Zhang, W. Li, S.Y. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28(17), 1707205 (2018). https://doi.org/10.1002/adfm.201707205
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2018). https://doi.org/10.1002/adfm.201807624
- L.P. Wu, K.M, Zhang, J.Y. Shi, F. Wu, X.F. Zhu et al., Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption. Compos. Part B Eng.; 228:3 109424 (2022). https://doi.org/10.1016/j.compositesb.2021.109424
- C. Chen, J.B. Xi, E.Z. Zhou, L. Peng, Z.C. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
- H.L. Lv, Y.H. Guo, G. Wu, G.B. Ji, Y. Zhao et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9(6), 5660–5668 (2017). https://doi.org/10.1021/acsami.6b16223
- A.M. Xie, M.X. Sun, K. Zhang, W.C. Jiang, F. Wu et al., In situ growth of MoS2 nanosheets on reduced graphene oxide (RGO) surfaces: interfacial enhancement of absorbing performance against electromagnetic pollution. Phys. Chem. Chem. Phys. 18(36), 24931–24936 (2016). https://doi.org/10.1039/C6CP04600B
- C.S. Rout, B.H. Kim, X.D. Xu, J. Yang, H.Y. Jeong et al., Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J. Am. Chem. Soc. 135(23), 8720–8725 (2013). https://doi.org/10.1021/ja403232d
- X.G. Chen, F.C. Meng, Z.W. Zhou, X. Tian, L.M Shan et al., One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6(14), 8140–8148 (2014). https://doi.org/10.1039/C4NR01738B
- M.Q. Ning, B.Y. Kuang, L. Wang, J.B. Li, H.B. Jin, Correlating the gradient nitrogen doping and electromagnetic wave absorption of graphene at gigahertz. J. Alloys Compd. 854, 157113 (2021). https://doi.org/10.1016/j.jallcom.2020.157113
- X.D. Xu, S. Jeong, C.S. Rout, P. Oh, M. Ko et al., Lithium reaction mechanism and high-rate capability of VS4–graphene nanocomposite as an anode material for lithium batteries. J. Mater. Chem. A 2(28), 10847–10853 (2014). https://doi.org/10.1039/C4TA00371C
- L. Kong, X.W. Yin, X.Y. Yuan, Y.J. Zhang, X.M. Liu et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly (dimethyl siloxane) composites. Carbon 73, 185–193 (2014). https://doi.org/10.1016/j.carbon.2014.02.054
- S.Y. Cheng, A.M. Xie, X.H. Pan, K.X. Zhang, C. Zhang et al., Modulating surficial oxygen vacancy of the VO2 nanostructure to boost its electromagnetic absorption performance. J. Mater. Chem. C 9(29), 9158–9168 (2021). https://doi.org/10.1039/D1TC02136B
- H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- Q. Pang, Y.J. Wei, Y.H. Yu, X.F. Bian, X.D. Wang et al., VS4 nanoparticles anchored on graphene sheets as a high-rate and stable electrode material for sodium ion batteries. Chemsuschem 11(4), 735–742 (2018). https://doi.org/10.1002/cssc.201702031
- S.Z. Wang, F. Gong, S.Z. Yang, J.X. Liao, M.Q. Wu et al., Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv. Funct. Mater. 28(34), 1801806 (2018). https://doi.org/10.1002/adfm.201801806
- Y.L. Zhou, J. Tian, H.Y. Xu, J. Yang, Y.T. Qian, VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium-ion batteries. Energy Storage Mater. 6, 149–156 (2017). https://doi.org/10.1016/j.ensm.2016.10.010
- H.X. Pan, X.W. Yin, J.M. Xue, L.F. Cheng, L.T. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016). https://doi.org/10.1016/j.carbon.2016.05.045
- J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Yang et al., Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 345, 441–451 (2018). https://doi.org/10.1016/j.cej.2018.04.006
- M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan et al., Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. 2(39), 16403–16409 (2014). https://doi.org/10.1039/C4TA03033H
- F. Pan, Z.C. Liu, B.W. Deng, Y.Y. Dong, X.J. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
- Y. Zhao, L.L. Hao, X.D. Zhang, S.J. Tan, H.H. Li et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci. (2021). https://doi.org/10.1002/smsc.202100077
- X. Zhang, J. Qiao, Y.Y. Jiang, F.L. Wang, X.L. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
- X. Zhang, F. Yan, S. Zhang, H.R. Yuan, C.L. Zhu et al., Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10(29), 24920–24929 (2018). https://doi.org/10.1021/acsami.8b07107
- J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- X. Gao, Y. Wang, Q.G. Wang, X.M. Wu, W.Z. Zhang et al., Facile synthesis of a novel flower-like BiFeO3 microspheres/graphene with superior electromagnetic wave absorption performances. Ceram. Int. 45(3), 3325–3332 (2019). https://doi.org/10.1016/j.ceramint.2018.10.243
- S. Yu, S.J. Ran, H. Zhu, K. Eshun, C. Shi et al., Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations. Appl. Surf. Sci. 428, 593–597 (2018). https://doi.org/10.1016/j.apsusc.2017.09.203
- X.J. Liu, Y.J. Yin, Y. Ren, H. Wei, The investigation of the C-Si interface structure in diamond/Si nano-composite films with first principle method. Appl. Surf. Sci. 321, 245–251 (2014). https://doi.org/10.1016/j.apsusc.2014.10.010
- X.Y. Guo, Y. Zhang, Y.G. Jung, L. Li, J. Knapp et al., Ideal tensile strength and shear strength of ZrO2(111)/Ni (111) ceramic-metal Interface: a first principle study. Mater. Design 112, 254–262 (2016). https://doi.org/10.1016/j.matdes.2016.09.073
- F. Wang, W.H. Gu, J.B. Chen, Q.Q. Huang, M.Y. Han et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 105, 92–100 (2022). https://doi.org/10.1016/j.jmst.2021.06.058
- F. Wang, W.H. Gu, J.B. Chen, Y. Wu, M. Zhou et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3955-1
References
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
Q. Li, Z. Zhang, L.P. Qi, Q.L. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6(8), 1801057 (2019). https://doi.org/10.1002/advs.201801057
H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen et al., Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces 10(16), 13860–13868 (2018). https://doi.org/10.1021/acsami.8b02137
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2015). https://doi.org/10.1002/adma.201503149
P. He, M.S. Cao, W.Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021). https://doi.org/10.1007/s40820-021-00645-z
L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
Q. Li, Z. Zhang, X.C. Xun, F.F. Gao, X. Zhao et al., Synergistic engineering of dielectric and magnetic losses in M-Co/RGO nanocomposites for use in high-performance microwave absorption. Mater. Chem. Front. 4(10), 3013–3021 (2020). https://doi.org/10.1039/D0QM00461H
H.R. Yuan, F. Yan, C.Y. Li, C.L. Zhu, X.T. Zhang et al., Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10(1), 1399–1407 (2018). https://doi.org/10.1021/acsami.7b15559
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
J.H. Hou, O. Inganäs, R.H. Friend, F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018). https://doi.org/10.1038/nmat5063
Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han et al., Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014). https://doi.org/10.1021/am502910d
H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen et al., Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 1(30), 8547–8552 (2013). https://doi.org/10.1039/C3TA11278K
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang et al., MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 88, 56–65 (2021). https://doi.org/10.1016/j.jmst.2021.02.011
F. Ye, Q. Song, Z.C. Zhang, W. Li, S.Y. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28(17), 1707205 (2018). https://doi.org/10.1002/adfm.201707205
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2018). https://doi.org/10.1002/adfm.201807624
L.P. Wu, K.M, Zhang, J.Y. Shi, F. Wu, X.F. Zhu et al., Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption. Compos. Part B Eng.; 228:3 109424 (2022). https://doi.org/10.1016/j.compositesb.2021.109424
C. Chen, J.B. Xi, E.Z. Zhou, L. Peng, Z.C. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10, 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
H.L. Lv, Y.H. Guo, G. Wu, G.B. Ji, Y. Zhao et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9(6), 5660–5668 (2017). https://doi.org/10.1021/acsami.6b16223
A.M. Xie, M.X. Sun, K. Zhang, W.C. Jiang, F. Wu et al., In situ growth of MoS2 nanosheets on reduced graphene oxide (RGO) surfaces: interfacial enhancement of absorbing performance against electromagnetic pollution. Phys. Chem. Chem. Phys. 18(36), 24931–24936 (2016). https://doi.org/10.1039/C6CP04600B
C.S. Rout, B.H. Kim, X.D. Xu, J. Yang, H.Y. Jeong et al., Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J. Am. Chem. Soc. 135(23), 8720–8725 (2013). https://doi.org/10.1021/ja403232d
X.G. Chen, F.C. Meng, Z.W. Zhou, X. Tian, L.M Shan et al., One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6(14), 8140–8148 (2014). https://doi.org/10.1039/C4NR01738B
M.Q. Ning, B.Y. Kuang, L. Wang, J.B. Li, H.B. Jin, Correlating the gradient nitrogen doping and electromagnetic wave absorption of graphene at gigahertz. J. Alloys Compd. 854, 157113 (2021). https://doi.org/10.1016/j.jallcom.2020.157113
X.D. Xu, S. Jeong, C.S. Rout, P. Oh, M. Ko et al., Lithium reaction mechanism and high-rate capability of VS4–graphene nanocomposite as an anode material for lithium batteries. J. Mater. Chem. A 2(28), 10847–10853 (2014). https://doi.org/10.1039/C4TA00371C
L. Kong, X.W. Yin, X.Y. Yuan, Y.J. Zhang, X.M. Liu et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly (dimethyl siloxane) composites. Carbon 73, 185–193 (2014). https://doi.org/10.1016/j.carbon.2014.02.054
S.Y. Cheng, A.M. Xie, X.H. Pan, K.X. Zhang, C. Zhang et al., Modulating surficial oxygen vacancy of the VO2 nanostructure to boost its electromagnetic absorption performance. J. Mater. Chem. C 9(29), 9158–9168 (2021). https://doi.org/10.1039/D1TC02136B
H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26(48), 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
Q. Pang, Y.J. Wei, Y.H. Yu, X.F. Bian, X.D. Wang et al., VS4 nanoparticles anchored on graphene sheets as a high-rate and stable electrode material for sodium ion batteries. Chemsuschem 11(4), 735–742 (2018). https://doi.org/10.1002/cssc.201702031
S.Z. Wang, F. Gong, S.Z. Yang, J.X. Liao, M.Q. Wu et al., Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv. Funct. Mater. 28(34), 1801806 (2018). https://doi.org/10.1002/adfm.201801806
Y.L. Zhou, J. Tian, H.Y. Xu, J. Yang, Y.T. Qian, VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium-ion batteries. Energy Storage Mater. 6, 149–156 (2017). https://doi.org/10.1016/j.ensm.2016.10.010
H.X. Pan, X.W. Yin, J.M. Xue, L.F. Cheng, L.T. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016). https://doi.org/10.1016/j.carbon.2016.05.045
J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Yang et al., Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem. Eng. J. 345, 441–451 (2018). https://doi.org/10.1016/j.cej.2018.04.006
M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan et al., Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. 2(39), 16403–16409 (2014). https://doi.org/10.1039/C4TA03033H
F. Pan, Z.C. Liu, B.W. Deng, Y.Y. Dong, X.J. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
Y. Zhao, L.L. Hao, X.D. Zhang, S.J. Tan, H.H. Li et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci. (2021). https://doi.org/10.1002/smsc.202100077
X. Zhang, J. Qiao, Y.Y. Jiang, F.L. Wang, X.L. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
X. Zhang, F. Yan, S. Zhang, H.R. Yuan, C.L. Zhu et al., Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10(29), 24920–24929 (2018). https://doi.org/10.1021/acsami.8b07107
J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
X. Gao, Y. Wang, Q.G. Wang, X.M. Wu, W.Z. Zhang et al., Facile synthesis of a novel flower-like BiFeO3 microspheres/graphene with superior electromagnetic wave absorption performances. Ceram. Int. 45(3), 3325–3332 (2019). https://doi.org/10.1016/j.ceramint.2018.10.243
S. Yu, S.J. Ran, H. Zhu, K. Eshun, C. Shi et al., Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations. Appl. Surf. Sci. 428, 593–597 (2018). https://doi.org/10.1016/j.apsusc.2017.09.203
X.J. Liu, Y.J. Yin, Y. Ren, H. Wei, The investigation of the C-Si interface structure in diamond/Si nano-composite films with first principle method. Appl. Surf. Sci. 321, 245–251 (2014). https://doi.org/10.1016/j.apsusc.2014.10.010
X.Y. Guo, Y. Zhang, Y.G. Jung, L. Li, J. Knapp et al., Ideal tensile strength and shear strength of ZrO2(111)/Ni (111) ceramic-metal Interface: a first principle study. Mater. Design 112, 254–262 (2016). https://doi.org/10.1016/j.matdes.2016.09.073
F. Wang, W.H. Gu, J.B. Chen, Q.Q. Huang, M.Y. Han et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 105, 92–100 (2022). https://doi.org/10.1016/j.jmst.2021.06.058
F. Wang, W.H. Gu, J.B. Chen, Y. Wu, M. Zhou et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3955-1