Cryogenic Exfoliation of 2D Stanene Nanosheets for Cancer Theranostics
Corresponding Author: Wei Tao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 90
Abstract
Stanene (Sn)-based materials have been extensively applied in industrial production and daily life, but their potential biomedical application remains largely unexplored, which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials. Herein, we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional (2D) Sn nanosheets (SnNSs). The obtained SnNSs exhibited a typical sheet-like structure with an average size of ~ 100 nm and a thickness of ~ 5.1 nm. After PEGylation, the resulting PEGylated SnNSs (SnNSs@PEG) exhibited good stability, superior biocompatibility, and excellent photothermal performance, which could serve as robust photothermal agents for multi-modal imaging (fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer. Furthermore, we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs, revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal. This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics. This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.
Highlights:
1 2D Sn nanosheets (SnNSs) were prepared through the combination of cryogenic exfoliation and liquid-phase exfoliation.
2 The functionalized 2D SnNSs have good stability, superior biocompatibility, high photothermal conversion efficiency, and multimode imaging capability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.H. Nielsen, H.H. Sandstead, Are nickel, vanadium, silicon, fluorine, and tin essential for man? A Rev. Am. J. Clin. Nutr. 27, 515–520 (1974). https://doi.org/10.1093/ajcn/27.5.515
- S.A. Sadeek, M.S. Refat, H.A. Hashem, Complexation and thermogravimetric investigation on tin (ii) and tin (iv) with norfloxacin as antibacterial agent. J. Coord. Chem. 59, 759–775 (2006). https://doi.org/10.1080/00958970500404534
- B.S. Rathore, G. Sharma, D. Pathania, V.K. Gupta, Synthesis, characterization and antibacterial activity of cellulose acetate–tin (IV) phosphate nanocomposite. Carbohydr. Polym. 103, 221–227 (2014). https://doi.org/10.1016/j.carbpol.2013.12.011
- A.K. Gain, L. Zhang, M.Z. Quadir, Thermal aging effects on microstructures and mechanical properties of an environmentally friendly eutectic tin-copper solder alloy. Mater. Des. 110, 275–283 (2016). https://doi.org/10.1016/j.matdes.2016.08.007
- M. Ozaki, Y. Katsuki, J. Liu, T. Handa, R. Nishikubo et al., Solvent-coordinated tin halide complexes as purified precursors for tin-based perovskites. ACS Omega 2, 7016–7021 (2017). https://doi.org/10.1021/acsomega.7b01292
- S.J. Risch, Food packaging history and innovations. J. Agric. Food. Chem. 57, 8089–8092 (2009). https://doi.org/10.1021/jf900040r
- A. McSweeney, The Tin trade and medieval ceramics: tracing the sources of tin and its influence on mediterranean ceramics production. Al-Masaq 23, 155–169 (2011). https://doi.org/10.1080/09503110.2011.617061
- W. Mertz, The newer essential trace elements, chromium, tin, vanadium, nickel and silicon. Proc. Nutr. Soc. 33, 307–313 (1974). https://doi.org/10.1079/PNS19740054
- M. Kanisawa, H.A. Schroeder, Life term studies on the effects of arsenic, germanium, tin, and vanadium on spontaneous tumors in mice. Cancer Res. 27, 1192–1195 (1967)
- A.J. Crowe, Antitumour Activity of Tin Compounds (Springer, NewYork, 1994), pp. 147–179
- H.A. Schroeder, J.J. Balassa, Arsenic, germanium, tin and vanadium in mice: effects on growth, survival and tissue levels. J. Nutr. 92, 245–252 (1967). https://doi.org/10.1093/jn/92.2.245
- R.K. Bhavadharani, V. Nagarajan, R. Chandiramouli, Density functional study on the binding properties of nucleobases to stanane nanosheet. Appl. Surf. Sci. 462, 831–839 (2018). https://doi.org/10.1016/j.apsusc.2018.08.066
- S. Schäfer, U. Femfert, Tin—a toxic heavy metal? A review of the literature. Regul. Toxicol. Pharmacol. 4, 57–69 (1984). https://doi.org/10.1016/0273-2300(84)90006-0
- K. Narasimhan, L.B. Wingard, Site-specific immobilization of flavin adenine dinucleotide on indium/tin oxide electrodes through flavin adenine amino group. Appl. Biochem. Biotech. 11, 221–232 (1985). https://doi.org/10.1007/bf02798478
- Z. Tang, N. Kong, J. Ouyang, C. Feng, N.Y. Kim et al., Phosphorus science-oriented design and synthesis of multifunctional nanomaterials for biomedical applications. Matter 2, 297–322 (2020). https://doi.org/10.1016/j.matt.2019.12.007
- X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27, 8035–8041 (2015). https://doi.org/10.1002/adma.201503873
- J.S. Liu, X.H. Li, Y.X. Guo, A. Qyyum, Z.J. Shi et al., SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small 15, 1902811 (2019). https://doi.org/10.1002/smll.201902811
- M. Gao, Z. Wang, H. Zheng, L. Wang, S. Xu et al., Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism. Angew. Chem. Int. Ed. 132, 3647–3652 (2020). https://doi.org/10.1002/ange.201913035
- K. Patel, G. Solanki, K. Patel, V. Pathak, P. Chauhan, Investigation of optical, electrical and optoelectronic properties of SnSe crystals. Eur. Phys. J. B 92, 1–11 (2019). https://doi.org/10.1140/epjb/e2019-100306-8
- Z. Tang, P. Zhao, D. Ni, Y. Liu, M. Zhang et al., Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Mater. Horiz. 5, 946–952 (2018). https://doi.org/10.1039/C8MH00627J
- A.S. Pawbake, S.R. Jadkar, D.J. Late, High performance humidity sensor and photodetector based on SnSe nanorods. Mater. Res. Express 3, 105038 (2016). https://doi.org/10.1088/2053-1591/3/10/105038
- S.K. Sahoo, K.-H. Wei, A perspective on recent advances in 2D stanene nanosheets. Adv. Mater. Interfaces 6, 1900752 (2019). https://doi.org/10.1002/admi.201900752
- F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan et al., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015). https://doi.org/10.1038/nmat4384
- C.-Z. Xu, Y.-H. Chan, P. Chen, X. Wang, D. Flötotto et al., Gapped electronic structure of epitaxial stanene on InSb (111). Phys. Rev. B 97, 035122 (2018). https://doi.org/10.1103/PhysRevB.97.035122
- M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong et al., Superconductivity in few-layer stanene. Nat. Phys. 14, 344–348 (2018). https://doi.org/10.1038/s41567-017-0031-6
- J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, K. Wu et al., Strain-induced band engineering in monolayer stanene on Sb (111). Phy. Rev. Mater. 1, 054004 (2017). https://doi.org/10.1103/PhysRevMaterials.1.054004
- H. Lin, W. Qiu, J. Liu, L. Yu, S. Gao et al., Silicene: wet-chemical exfoliation synthesis and biodegradable tumor nanomedicine. Adv. Mater. 31, 1903013 (2019). https://doi.org/10.1002/adma.201903013
- S. Saxena, R.P. Chaudhary, S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin. Sci. Rep. 6, 31073 (2016). https://doi.org/10.1038/srep31073
- J. Ma, J. Gu, B. Li, S. Yang, Facile fabrication of 2D stanene nanosheets via a dealloying strategy for potassium storage. Chem. Commun. 55, 3983–3986 (2019). https://doi.org/10.1039/C9CC00332K
- J.K. Lyu, S.F. Zhang, C.W. Zhang, P.J. Wang, Stanene: a promising material for new electronic and spintronic applications. Ann. Phys. Berl. 531, 1900017 (2019). https://doi.org/10.1002/andp.201900017
- B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang et al., Low lattice thermal conductivity of stanene. Sci. Rep. 6, 20225 (2016). https://doi.org/10.1038/srep20225
- M.A. Tarselli, Tin can. Nat. Chem. 9, 500–500 (2017)
- B. Cornelius, S. Treivish, Y. Rosenthal, M. Pecht, The phenomenon of tin pest: a review. Microelectron. Reliab. 7, 175–192 (2017). https://doi.org/10.1016/j.microrel.2017.10.030
- M. Gilberg, History of tin pest: the museum disease. AICCM Bull. 17, 3–20 (1991). https://doi.org/10.1179/bac.1991.17.1-2.001
- W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma et al., Emerging two-dimensional monoelemental materials (xenes) for biomedical applications. Chem. Soc. Rev. 48, 2891–2912 (2019). https://doi.org/10.1039/C8CS00823J
- W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29, 1603864 (2017). https://doi.org/10.1002/adma.201603864
- W. Chen, C. Liu, X. Ji, J. Joseph, Z. Tang et al., Stanene-based nanosheets for β-elemene delivery and ultrasound-mediated combination cancer therapy. Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202016330
- X. Ji, Y. Kang, J. Ouyang, Y. Chen, D. Artzi et al., Synthesis of ultrathin biotite nanosheets as an intelligent theranostic platform for combination cancer therapy. Adv. Sci. 6, 1901211 (2019). https://doi.org/10.1002/advs.201901211
- C. Liu, J. Shin, S. Son, Y. Choe, N. Farokhzad et al., Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chem. Soc. Rev. (2021). https://doi.org/10.1039/D0CS01175D
- J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. PNAS 117, 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
- K. Hu, L. Xie, Y. Zhang, M. Hanyu, Z. Yang et al., Marriage of black phosphorus and Cu2+ as effective photothermal agents for pet-guided combination cancer therapy. Nat. Commun. 11, 2778 (2020). https://doi.org/10.1038/s41467-020-16513-0
- J. Ouyang, L. Deng, W. Chen, J. Sheng, Z. Liu et al., Two dimensional semiconductors for ultrasound-mediated cancer therapy: the case of black phosphorus nanosheets. Chem. Commun. 54, 2874–2877 (2018). https://doi.org/10.1039/C8CC00392K
- W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao et al., Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 29, 1603276 (2017). https://doi.org/10.1002/adma.201603276
- N. Kong, X. Ji, J. Wang, X. Sun, G. Chen et al., ROS-mediated selective killing effect of black phosphorus: mechanistic understanding and its guidance for safe biomedical applications. Nano Lett. 20, 3943–3955 (2020). https://doi.org/10.1021/acs.nanolett.0c01098
- W. Tao, X. Ji, X. Xu, M.A. Islam, Z. Li et al., Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. 56, 11896–11900 (2017). https://doi.org/10.1002/anie.201703657
- W. Tao, X. Ji, X. Zhu, L. Li, J. Wang et al., Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 30, 1802061 (2018). https://doi.org/10.1002/adma.201802061
- J. Ouyang, C. Feng, X. Ji, L. Li, H.K. Gutti et al., 2D monoelemental germanene quantum dots: synthesis as robust photothermal agents for photonic cancer nanomedicine. Angew. Chem. Int. Ed. 131, 13539–13544 (2019). https://doi.org/10.1002/ange.201908377
- C. Feng, J. Ouyang, Z. Tang, N. Kong, Y. Liu et al., Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter 3, 127–144 (2020)
- S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640–652 (2015). https://doi.org/10.1002/smll.201402041
- T. Hartman, Z. Sofer, Beyond graphene: chemistry of group 14 graphene analogues: Silicene, germanene, and stanene. ACS Nano 13, 8566–8576 (2019). https://doi.org/10.1021/acsnano.9b04466
- Z. Gu, P.B. Balbuena, Atomic oxygen absorption into pt-based alloy subsurfaces. J. Phy. Chem. C 112, 5057–5065 (2008). https://doi.org/10.1021/jp711875e
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phy. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue et al., Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011). https://doi.org/10.1021/ja2010175
- J. Zeng, D. Goldfeld, Y. Xia, A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem. Int. Ed. 125, 4263–4267 (2013). https://doi.org/10.1002/ange.201210359
- Y. Liu, K. Ai, J. Liu, M. Deng, Y. He et al., Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353–1359 (2013). https://doi.org/10.1002/adma.201204683
- B. Li, Q. Wang, R. Zou, X. Liu, K. Xu et al., Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 6, 3274–3282 (2014)
- H. Shirai, M.T. Nguyen, Y. Ishida, T. Yonezawa, A new approach for additive-free room temperature sintering of conductive patterns using polymer-stabilized Sn nanoparticles. J. Mater. Chem. C 4, 2228–2234 (2016). https://doi.org/10.1039/C6TC00161K
- Z. Wen, S. Cui, H. Kim, S. Mao, K. Yu et al., Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. J. Mater. Chem. 22, 3300–3306 (2012). https://doi.org/10.1039/C2JM14999K
- J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng et al., High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017). https://doi.org/10.1002/adma.201603730
- Q. Zhu, K. Ye, W. Zhu, W. Xu, C. Zou et al., A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation. J. Phys. Chem. Lett. 11, 2502–2509 (2020). https://doi.org/10.1021/acs.jpclett.0c00592
- X. Zhang, H. Xie, Z. Liu, C. Tan, Z. Luo et al., Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54, 3653–3657 (2015). https://doi.org/10.1002/anie.201409400
- J. Xiaoyuan, K. Na, W. Junqing, L. Wenliang, X. Yuling et al., A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 30, 1803031 (2018). https://doi.org/10.1002/adma.201803031
- Z. Miao, D. Hu, D. Gao, L. Fan, Y. Ma et al., Tiny 2D silicon quantum sheets: a brain photonic nanoagent for orthotopic glioma theranostics. Sci. Bull. 66(2), 147–157 (2021). https://doi.org/10.1016/j.scib.2020.09.027
- Y. Du, Z. Chen, J.Y. Lee, P. Lin, F. Xia et al., Designed fabrication of mesoporous silica-templated self-assembled theranostic nanomedicines. Sci. China Chem. 64, 204–217 (2021). https://doi.org/10.1007/s11426-020-9869-4
- H. Liao, Z. Liang, N. Wang, M. Wei, Y. Chen et al., Dynamic supraparticles for the treatment of age-related diseases. Sci. Bull. 64, 1850–1874 (2019). https://doi.org/10.1016/j.scib.2019.08.003
- P. Lin, J. Lee, Y. Chen, F. Li, D. Ling, Nanotechnology enabled metal-ion-based disease diagnostics. Sci. Bull. 65, 1587–1589 (2020). https://doi.org/10.1016/j.scib.2020.06.006
- J. Ouyang, Y. Deng, W. Chen, Q. Xu, L. Wang et al., Marriage of artificial catalase and black phosphorus nanosheets for reinforced photodynamic antitumor therapy. J. Mater. Chem. B 6, 2057–2064 (2018). https://doi.org/10.1039/C8TB00371H
References
F.H. Nielsen, H.H. Sandstead, Are nickel, vanadium, silicon, fluorine, and tin essential for man? A Rev. Am. J. Clin. Nutr. 27, 515–520 (1974). https://doi.org/10.1093/ajcn/27.5.515
S.A. Sadeek, M.S. Refat, H.A. Hashem, Complexation and thermogravimetric investigation on tin (ii) and tin (iv) with norfloxacin as antibacterial agent. J. Coord. Chem. 59, 759–775 (2006). https://doi.org/10.1080/00958970500404534
B.S. Rathore, G. Sharma, D. Pathania, V.K. Gupta, Synthesis, characterization and antibacterial activity of cellulose acetate–tin (IV) phosphate nanocomposite. Carbohydr. Polym. 103, 221–227 (2014). https://doi.org/10.1016/j.carbpol.2013.12.011
A.K. Gain, L. Zhang, M.Z. Quadir, Thermal aging effects on microstructures and mechanical properties of an environmentally friendly eutectic tin-copper solder alloy. Mater. Des. 110, 275–283 (2016). https://doi.org/10.1016/j.matdes.2016.08.007
M. Ozaki, Y. Katsuki, J. Liu, T. Handa, R. Nishikubo et al., Solvent-coordinated tin halide complexes as purified precursors for tin-based perovskites. ACS Omega 2, 7016–7021 (2017). https://doi.org/10.1021/acsomega.7b01292
S.J. Risch, Food packaging history and innovations. J. Agric. Food. Chem. 57, 8089–8092 (2009). https://doi.org/10.1021/jf900040r
A. McSweeney, The Tin trade and medieval ceramics: tracing the sources of tin and its influence on mediterranean ceramics production. Al-Masaq 23, 155–169 (2011). https://doi.org/10.1080/09503110.2011.617061
W. Mertz, The newer essential trace elements, chromium, tin, vanadium, nickel and silicon. Proc. Nutr. Soc. 33, 307–313 (1974). https://doi.org/10.1079/PNS19740054
M. Kanisawa, H.A. Schroeder, Life term studies on the effects of arsenic, germanium, tin, and vanadium on spontaneous tumors in mice. Cancer Res. 27, 1192–1195 (1967)
A.J. Crowe, Antitumour Activity of Tin Compounds (Springer, NewYork, 1994), pp. 147–179
H.A. Schroeder, J.J. Balassa, Arsenic, germanium, tin and vanadium in mice: effects on growth, survival and tissue levels. J. Nutr. 92, 245–252 (1967). https://doi.org/10.1093/jn/92.2.245
R.K. Bhavadharani, V. Nagarajan, R. Chandiramouli, Density functional study on the binding properties of nucleobases to stanane nanosheet. Appl. Surf. Sci. 462, 831–839 (2018). https://doi.org/10.1016/j.apsusc.2018.08.066
S. Schäfer, U. Femfert, Tin—a toxic heavy metal? A review of the literature. Regul. Toxicol. Pharmacol. 4, 57–69 (1984). https://doi.org/10.1016/0273-2300(84)90006-0
K. Narasimhan, L.B. Wingard, Site-specific immobilization of flavin adenine dinucleotide on indium/tin oxide electrodes through flavin adenine amino group. Appl. Biochem. Biotech. 11, 221–232 (1985). https://doi.org/10.1007/bf02798478
Z. Tang, N. Kong, J. Ouyang, C. Feng, N.Y. Kim et al., Phosphorus science-oriented design and synthesis of multifunctional nanomaterials for biomedical applications. Matter 2, 297–322 (2020). https://doi.org/10.1016/j.matt.2019.12.007
X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin et al., Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27, 8035–8041 (2015). https://doi.org/10.1002/adma.201503873
J.S. Liu, X.H. Li, Y.X. Guo, A. Qyyum, Z.J. Shi et al., SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small 15, 1902811 (2019). https://doi.org/10.1002/smll.201902811
M. Gao, Z. Wang, H. Zheng, L. Wang, S. Xu et al., Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism. Angew. Chem. Int. Ed. 132, 3647–3652 (2020). https://doi.org/10.1002/ange.201913035
K. Patel, G. Solanki, K. Patel, V. Pathak, P. Chauhan, Investigation of optical, electrical and optoelectronic properties of SnSe crystals. Eur. Phys. J. B 92, 1–11 (2019). https://doi.org/10.1140/epjb/e2019-100306-8
Z. Tang, P. Zhao, D. Ni, Y. Liu, M. Zhang et al., Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Mater. Horiz. 5, 946–952 (2018). https://doi.org/10.1039/C8MH00627J
A.S. Pawbake, S.R. Jadkar, D.J. Late, High performance humidity sensor and photodetector based on SnSe nanorods. Mater. Res. Express 3, 105038 (2016). https://doi.org/10.1088/2053-1591/3/10/105038
S.K. Sahoo, K.-H. Wei, A perspective on recent advances in 2D stanene nanosheets. Adv. Mater. Interfaces 6, 1900752 (2019). https://doi.org/10.1002/admi.201900752
F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan et al., Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015). https://doi.org/10.1038/nmat4384
C.-Z. Xu, Y.-H. Chan, P. Chen, X. Wang, D. Flötotto et al., Gapped electronic structure of epitaxial stanene on InSb (111). Phys. Rev. B 97, 035122 (2018). https://doi.org/10.1103/PhysRevB.97.035122
M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong et al., Superconductivity in few-layer stanene. Nat. Phys. 14, 344–348 (2018). https://doi.org/10.1038/s41567-017-0031-6
J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, K. Wu et al., Strain-induced band engineering in monolayer stanene on Sb (111). Phy. Rev. Mater. 1, 054004 (2017). https://doi.org/10.1103/PhysRevMaterials.1.054004
H. Lin, W. Qiu, J. Liu, L. Yu, S. Gao et al., Silicene: wet-chemical exfoliation synthesis and biodegradable tumor nanomedicine. Adv. Mater. 31, 1903013 (2019). https://doi.org/10.1002/adma.201903013
S. Saxena, R.P. Chaudhary, S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin. Sci. Rep. 6, 31073 (2016). https://doi.org/10.1038/srep31073
J. Ma, J. Gu, B. Li, S. Yang, Facile fabrication of 2D stanene nanosheets via a dealloying strategy for potassium storage. Chem. Commun. 55, 3983–3986 (2019). https://doi.org/10.1039/C9CC00332K
J.K. Lyu, S.F. Zhang, C.W. Zhang, P.J. Wang, Stanene: a promising material for new electronic and spintronic applications. Ann. Phys. Berl. 531, 1900017 (2019). https://doi.org/10.1002/andp.201900017
B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang et al., Low lattice thermal conductivity of stanene. Sci. Rep. 6, 20225 (2016). https://doi.org/10.1038/srep20225
M.A. Tarselli, Tin can. Nat. Chem. 9, 500–500 (2017)
B. Cornelius, S. Treivish, Y. Rosenthal, M. Pecht, The phenomenon of tin pest: a review. Microelectron. Reliab. 7, 175–192 (2017). https://doi.org/10.1016/j.microrel.2017.10.030
M. Gilberg, History of tin pest: the museum disease. AICCM Bull. 17, 3–20 (1991). https://doi.org/10.1179/bac.1991.17.1-2.001
W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma et al., Emerging two-dimensional monoelemental materials (xenes) for biomedical applications. Chem. Soc. Rev. 48, 2891–2912 (2019). https://doi.org/10.1039/C8CS00823J
W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29, 1603864 (2017). https://doi.org/10.1002/adma.201603864
W. Chen, C. Liu, X. Ji, J. Joseph, Z. Tang et al., Stanene-based nanosheets for β-elemene delivery and ultrasound-mediated combination cancer therapy. Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202016330
X. Ji, Y. Kang, J. Ouyang, Y. Chen, D. Artzi et al., Synthesis of ultrathin biotite nanosheets as an intelligent theranostic platform for combination cancer therapy. Adv. Sci. 6, 1901211 (2019). https://doi.org/10.1002/advs.201901211
C. Liu, J. Shin, S. Son, Y. Choe, N. Farokhzad et al., Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chem. Soc. Rev. (2021). https://doi.org/10.1039/D0CS01175D
J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. PNAS 117, 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
K. Hu, L. Xie, Y. Zhang, M. Hanyu, Z. Yang et al., Marriage of black phosphorus and Cu2+ as effective photothermal agents for pet-guided combination cancer therapy. Nat. Commun. 11, 2778 (2020). https://doi.org/10.1038/s41467-020-16513-0
J. Ouyang, L. Deng, W. Chen, J. Sheng, Z. Liu et al., Two dimensional semiconductors for ultrasound-mediated cancer therapy: the case of black phosphorus nanosheets. Chem. Commun. 54, 2874–2877 (2018). https://doi.org/10.1039/C8CC00392K
W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao et al., Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 29, 1603276 (2017). https://doi.org/10.1002/adma.201603276
N. Kong, X. Ji, J. Wang, X. Sun, G. Chen et al., ROS-mediated selective killing effect of black phosphorus: mechanistic understanding and its guidance for safe biomedical applications. Nano Lett. 20, 3943–3955 (2020). https://doi.org/10.1021/acs.nanolett.0c01098
W. Tao, X. Ji, X. Xu, M.A. Islam, Z. Li et al., Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. 56, 11896–11900 (2017). https://doi.org/10.1002/anie.201703657
W. Tao, X. Ji, X. Zhu, L. Li, J. Wang et al., Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 30, 1802061 (2018). https://doi.org/10.1002/adma.201802061
J. Ouyang, C. Feng, X. Ji, L. Li, H.K. Gutti et al., 2D monoelemental germanene quantum dots: synthesis as robust photothermal agents for photonic cancer nanomedicine. Angew. Chem. Int. Ed. 131, 13539–13544 (2019). https://doi.org/10.1002/ange.201908377
C. Feng, J. Ouyang, Z. Tang, N. Kong, Y. Liu et al., Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter 3, 127–144 (2020)
S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640–652 (2015). https://doi.org/10.1002/smll.201402041
T. Hartman, Z. Sofer, Beyond graphene: chemistry of group 14 graphene analogues: Silicene, germanene, and stanene. ACS Nano 13, 8566–8576 (2019). https://doi.org/10.1021/acsnano.9b04466
Z. Gu, P.B. Balbuena, Atomic oxygen absorption into pt-based alloy subsurfaces. J. Phy. Chem. C 112, 5057–5065 (2008). https://doi.org/10.1021/jp711875e
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phy. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue et al., Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011). https://doi.org/10.1021/ja2010175
J. Zeng, D. Goldfeld, Y. Xia, A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem. Int. Ed. 125, 4263–4267 (2013). https://doi.org/10.1002/ange.201210359
Y. Liu, K. Ai, J. Liu, M. Deng, Y. He et al., Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353–1359 (2013). https://doi.org/10.1002/adma.201204683
B. Li, Q. Wang, R. Zou, X. Liu, K. Xu et al., Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 6, 3274–3282 (2014)
H. Shirai, M.T. Nguyen, Y. Ishida, T. Yonezawa, A new approach for additive-free room temperature sintering of conductive patterns using polymer-stabilized Sn nanoparticles. J. Mater. Chem. C 4, 2228–2234 (2016). https://doi.org/10.1039/C6TC00161K
Z. Wen, S. Cui, H. Kim, S. Mao, K. Yu et al., Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. J. Mater. Chem. 22, 3300–3306 (2012). https://doi.org/10.1039/C2JM14999K
J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng et al., High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017). https://doi.org/10.1002/adma.201603730
Q. Zhu, K. Ye, W. Zhu, W. Xu, C. Zou et al., A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation. J. Phys. Chem. Lett. 11, 2502–2509 (2020). https://doi.org/10.1021/acs.jpclett.0c00592
X. Zhang, H. Xie, Z. Liu, C. Tan, Z. Luo et al., Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54, 3653–3657 (2015). https://doi.org/10.1002/anie.201409400
J. Xiaoyuan, K. Na, W. Junqing, L. Wenliang, X. Yuling et al., A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 30, 1803031 (2018). https://doi.org/10.1002/adma.201803031
Z. Miao, D. Hu, D. Gao, L. Fan, Y. Ma et al., Tiny 2D silicon quantum sheets: a brain photonic nanoagent for orthotopic glioma theranostics. Sci. Bull. 66(2), 147–157 (2021). https://doi.org/10.1016/j.scib.2020.09.027
Y. Du, Z. Chen, J.Y. Lee, P. Lin, F. Xia et al., Designed fabrication of mesoporous silica-templated self-assembled theranostic nanomedicines. Sci. China Chem. 64, 204–217 (2021). https://doi.org/10.1007/s11426-020-9869-4
H. Liao, Z. Liang, N. Wang, M. Wei, Y. Chen et al., Dynamic supraparticles for the treatment of age-related diseases. Sci. Bull. 64, 1850–1874 (2019). https://doi.org/10.1016/j.scib.2019.08.003
P. Lin, J. Lee, Y. Chen, F. Li, D. Ling, Nanotechnology enabled metal-ion-based disease diagnostics. Sci. Bull. 65, 1587–1589 (2020). https://doi.org/10.1016/j.scib.2020.06.006
J. Ouyang, Y. Deng, W. Chen, Q. Xu, L. Wang et al., Marriage of artificial catalase and black phosphorus nanosheets for reinforced photodynamic antitumor therapy. J. Mater. Chem. B 6, 2057–2064 (2018). https://doi.org/10.1039/C8TB00371H