Fe2O3-Modified Porous BiVO4 Nanoplates with Enhanced Photocatalytic Activity
Corresponding Author: Shao-Ming Huang
Nano-Micro Letters,
Vol. 7 No. 2 (2015), Article Number: 183-193
Abstract
As BiVO4 is one of the most popular visible-light-responding photocatalysts, it has been widely used for visible-light-driven water splitting and environmental purification. However, the typical photocatalytic activity of unmodified BiVO4 for the degradation of organic pollutants is still not impressive. To address this limitation, we studied Fe2O3-modified porous BiVO4 nanoplates. Compared with unmodified BiVO4, the Fe2O3-modified porous BiVO4 nanoplates showed significantly enhanced photocatalytic activities in decomposing both dye and colorless pollutant models, such as rhodamine B (RhB) and phenol, respectively. The pseudo-first-order reaction rate constants for the degradation of RhB and phenol on Fe2O3-modified BiVO4 porous nanoplates are 27 and 31 times larger than that of pristine BiVO4, respectively. We also found that the Fe2O3 may act as an efficient non-precious metal co-catalyst, which is responsible for the excellent photocatalytic activity of Fe2O3/BiVO4.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 53(3–4), 229–230 (1998). doi:10.1023/A:1019034728816
- Y.F. Sun, B.Y. Qu, Q. Liu, S. Gao, Z.X. Yan, W.S. Yan, B.C. Pan, S.Q. Wei, Y. Xie, Highly efficient visible-light-driven photocatalytic activities in synthetic ordered monoclinic BiVO4 quantum tubes-graphene nanocomposites. Nanoscale 4(12), 3761–3767 (2012). doi:10.1039/c2nr30371j
- X.F. Zhang, L.L. Du, H. Wang, X.L. Dong, X.X. Zhang, C. Ma, H.C. Ma, Highly ordered mesoporous BiVO4: controllable ordering degree and super photocatalytic ability under visible light. Microporous Mesoporous Mater. 173, 175–180 (2013). doi:10.1016/j.micromeso.2013.02.029
- G.C. Xi, J.H. Ye, Synthesis of bismuth vanadate nanoplates with exposed 001 facets and enhanced visible-light photocatalytic properties. Chem. Commun. 46(11), 1893–1895 (2010). doi:10.1039/b923435g
- M. Zhou, H.B. Wu, J. Bao, L. Liang, X.W. Lou, Y. Xie, Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. Angew. Chem. Int. Ed. 52(33), 8579–8583 (2013). doi:10.1002/anie.201302680
- D.N. Ke, T.Y. Peng, L. Ma, P. Cai, K. Dai, Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorg. Chem. 48(11), 4685–4691 (2009). doi:10.1021/ic900064m
- H.Y. Jiang, X. Meng, H.X. Dai, J.G. Deng, Y.X. Liu, L. Zhang, Z.X. Zhao, R.Z. Zhang, High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. J. Hazard. Mater. 217, 92–99 (2012). doi:10.1016/j.jhazmat.2012.02.073
- D.Q. Zhang, G.S. Li, H.X. Li, Y.F. Lu, The development of better photocatalysts through composition- and structure-engineering. Chem.-Asian J. 8(1), 26–40 (2013). doi:10.1002/asia.201200123
- X.H. Gao, H.B. Wu, L.X. Zheng, Y.J. Zhong, Y. Hu, X.W. Lou, Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity. Angew. Chem. Int. Ed. 53(23), 5917–5921 (2014). doi:10.1002/anie.201403611
- M.L. Guan, D.K. Ma, S.W. Hu, Y.J. Chen, S.M. Huang, From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties. Inorg. Chem. 50(3), 800–805 (2011). doi:10.1021/ic101961z
- D.K. Ma, M.L. Guan, S.S. Liu, Y.Q. Zhang, C.W. Zhang, Y.X. He, S.M. Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 41(18), 5581–5586 (2012). doi:10.1039/c2dt30099k
- S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 4(12), 5028–5034 (2011). doi:10.1039/c1ee02444b
- Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). doi:10.1039/c2cs35260e
- F. Lin, D.E. Wang, Z.X. Jiang, Y. Ma, J. Li, R.G. Li, C. Li, Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 5(4), 6400–6406 (2012). doi:10.1039/c1ee02880d
- J. Wang, X.K. Xin, Z.Q. Lin, Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics. Nanoscale 3(8), 3040–3048 (2011). doi:10.1039/c1nr10425j
- L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134(42), 17388–17391 (2012). doi:10.1021/ja307475c
- B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134(9), 4294–4302 (2012). doi:10.1021/ja210755h
- R.V. Jagadeesh, A.E. Surkus, H. Junge, M.M. Pohl, J. Radnik, J. Rabeah, H.M. Huan, V. Schuenemann, A. Brueckner, M. Beller, Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342(6162), 1073–1076 (2013). doi:10.1126/science.1242005
- X.L. Hu, J.C. Yu, J.M. Gong, Q. Li, G.S. Li, Alpha-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19(17), 2324–2329 (2007). doi:10.1002/adma.200602176
- P. Tartaj, M.P. Morales, T. Gonzalez-Carreno, S. Veintemillas-Verdaguer, C.J. Serna, The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv. Mater. 23(44), 5243–5249 (2011). doi:10.1002/adma.201101368
- F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). doi:10.1039/c2cs35266d
- R. Franking, L.S. Li, M.A. Lukowski, F. Meng, Y.Z. Tan, R.J. Hamers, S. Jin, Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ. Sci. 6(2), 500–512 (2013). doi:10.1039/c2ee23837c
- D.K. Zhong, J.W. Sun, H. Inumaru, D.R. Gamelin, Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J. Am. Chem. Soc. 131(17), 6086–6087 (2009). doi:10.1021/ja9016478
- L.P. Zhu, L.L. Wang, N.C. Bing, C. Huang, L.J. Wang, G.H. Liao, Porous fluorine-doped gamma-Fe2O3 hollow spheres: synthesis, growth mechanism, and their application in photocatalysis. ACS Appl. Mater. Interfaces 5(23), 12478–12487 (2013). doi:10.1021/am403720r
- D.L. Guo, H. Huang, J.Y. Xu, H.L. Jiang, H. Liu, Efficient iron-catalyzed N-arylation of aryl halides with amines. Org. Lett. 10(20), 4513–4516 (2008). doi:10.1021/ol801784a
- Y. Hou, Z.H. Wen, S.M. Cui, X.R. Guo, J.H. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). doi:10.1002/adma.201303116
- Q. Dong, S. Yin, C.S. Guo, X.Y. Wu, N. Kumada, T. Takei, A. Miura, Y. Yonesaki, T. Sato, Single-crystalline porous NiO nanosheets prepared from beta-Ni(OH)2 nanosheets: magnetic property and photocatalytic activity. Appl. Catal. B-Environ. 147, 741–747 (2014). doi:10.1016/j.apcatb.2013.10.007
- G. Rothenberger, J. Moser, M. Gratzël, N. Serpone, D.K. Sharma, Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 107(26), 8054–8059 (1985). doi:10.1021/ja00312a043
- J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li, J.R. Gong, Visible light photocatalytic H2 production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11(11), 4774–4779 (2011). doi:10.1021/nl202587b
- Y.F. Yu, J. Zhang, X. Wu, W.W. Zhao, B. Zhang, Nanoporous single-crystal-Like CdxZn1-xS nanosheets fabricated by the cation-exchange reaction of inorganic-organic hybrid ZnS-amine with cadmium ions. Angew. Chem. Int. Ed. 51(4), 897–900 (2011). doi:10.1002/anie.201105786
- Z.C. Wang, Z.Y. Li, C.J. Medforth, J.H. Shelnutt, Self-assembly and self-metallization of porphyrin nanosheets. J. Am. Chem. Soc. 129(9), 2440–2441 (2007). doi:10.1021/ja068250o
- Y. Chen, K. Li, W. Lu, S.S.Y. Chui, C.W. Ma, C.M. Che, Photoresponsive supramolecular organometallic nanosheets induced by Pt-II•••Pt-II and C-H•••π interactions. Angew. Chem. Int. Ed. 48(52), 9909–9913 (2009). doi:10.1002/anie.200905678
- T. Bauer, Z.K. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sakamoto, A.D. Schluter, Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem. Int. Ed. 50(34), 7879–7884 (2011). doi:10.1002/anie.201100669
- S.M. Zhou, D.K. Ma, P. Cai, W. Chen, S.M. Huang, TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity. Mater. Res. Bull. 60, 64–71 (2014). doi:10.1016/j.materresbull.2014.08.023
- N. Myung, S. Ham, S. Choi, W.G. Kim, Y.J. Jeon, K.J. Paeng, W. Chanmanee, N.R. Tacconi, K. Rajeshwar, Tailoring interfaces for electrochemical synthesis of semiconductor films: BiVO4, Bi2O3, or composites. J. Phys. Chem. C 115(15), 7793–7800 (2011). doi:10.1021/jp200632f
- A. Glisenti, Interaction of formic acid with Fe2O3 powders under different atmospheres: an XPS and FTIR study. J. Chem. Soc. Faraday Trans. 94(24), 3671–3676 (1998). doi:10.1039/a806080k
- K. Dai, Y. Yao, H. Liu, I. Mohamed, H. Chen, Q.Y. Huang, Enhancing the photocatalytic activity of lead molybdate by modifying with fullerene. J. Mol. Catal. A-Chem. 374, 111–117 (2013). doi:10.1016/j.molcata.2013.03.027
- Z.H. Xu, J.G. Yu, Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays. Nanoscale 3(8), 3138–3144 (2011). doi:10.1039/c1nr10282f
- M. Liu, X.Q. Qiu, M. Miyauchi, K. Hashimoto, Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J. Am. Chem. Soc. 135(27), 10064–10072 (2013). doi:10.1021/ja401541k
- Y. Shi, H.Y. Li, L. Wang, W. Shen, H.Z. Chen, Novel alpha-Fe2O3/CdS cornlike nanorods with enhanced photocatalytic performance. ACS Appl. Mater. Interfaces 4(9), 4800–4806 (2012). doi:10.1021/am3011516
- G.K. Pradhan, D.K. Padhi, K.M. Parida, Fabrication of alpha-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl. Mater. Interfaces 5(18), 9101–9110 (2013). doi:10.1021/am402487h
- N. Liang, J.T. Zai, M. Xu, Q. Zhu, X. Wei, X.F. Qian, Novel Bi2S3/Bi2O2CO3 heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment. J. Mater. Chem. A 2, 4208–4216 (2014). doi:10.1039/c3ta13931j
- H.F. Cheng, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem. Commun. 48, 97–99 (2012). doi:10.1039/c1cc15487g
- P. Madhusudan, J.R. Ran, J. Zhang, J.G. Yu, G. Liu, Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Appl. Catal. B 110, 286–295 (2011). doi:10.1016/j.apcatb.2011.09.014
- N. Liang, M. Wang, L. Jin, S.S. Huang, W.L. Chen, MXuQQ He, J.T. Zai, N.H. Fang, X.F. Qian, Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity. ACS Appl. Mater. Interfaces 6(14), 11698–11705 (2014). doi:10.1021/am502481z
- M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, Optical properties of iron oxide (alpha-Fe2O3) thin films deposited by the reactive evaporation of iron. J. Alloys Compd. 521, 178–182 (2012). doi:10.1016/j.jallcom.2012.01.115
- Q.J. Xiang, J.G. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012). doi:10.1021/ja302846n
- G.C. Xie, K. Zhang, B.D. Guo, Q. Liu, L. Fang, J.R. Gong, Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 25(28), 3820–3839 (2013). doi:10.1002/adma.201301207
- Y.B. Li, L. Zhang, A. Torres-Pardo, J.M. Gozalez-Calbet, Y.H. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima, D. Cha, L. Zhao, K. Takanabe, J. Kubota, K. Domen, Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 4, 2566 (2013). doi:10.1038/ncomms3566
- M.C. Long, W.M. Cai, J. Cai, B.X. Zhou, X.Y. Chai, Y.H. Wu, Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 110(41), 20211–20216 (2006). doi:10.1021/jp063441z
References
A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 53(3–4), 229–230 (1998). doi:10.1023/A:1019034728816
Y.F. Sun, B.Y. Qu, Q. Liu, S. Gao, Z.X. Yan, W.S. Yan, B.C. Pan, S.Q. Wei, Y. Xie, Highly efficient visible-light-driven photocatalytic activities in synthetic ordered monoclinic BiVO4 quantum tubes-graphene nanocomposites. Nanoscale 4(12), 3761–3767 (2012). doi:10.1039/c2nr30371j
X.F. Zhang, L.L. Du, H. Wang, X.L. Dong, X.X. Zhang, C. Ma, H.C. Ma, Highly ordered mesoporous BiVO4: controllable ordering degree and super photocatalytic ability under visible light. Microporous Mesoporous Mater. 173, 175–180 (2013). doi:10.1016/j.micromeso.2013.02.029
G.C. Xi, J.H. Ye, Synthesis of bismuth vanadate nanoplates with exposed 001 facets and enhanced visible-light photocatalytic properties. Chem. Commun. 46(11), 1893–1895 (2010). doi:10.1039/b923435g
M. Zhou, H.B. Wu, J. Bao, L. Liang, X.W. Lou, Y. Xie, Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. Angew. Chem. Int. Ed. 52(33), 8579–8583 (2013). doi:10.1002/anie.201302680
D.N. Ke, T.Y. Peng, L. Ma, P. Cai, K. Dai, Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorg. Chem. 48(11), 4685–4691 (2009). doi:10.1021/ic900064m
H.Y. Jiang, X. Meng, H.X. Dai, J.G. Deng, Y.X. Liu, L. Zhang, Z.X. Zhao, R.Z. Zhang, High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. J. Hazard. Mater. 217, 92–99 (2012). doi:10.1016/j.jhazmat.2012.02.073
D.Q. Zhang, G.S. Li, H.X. Li, Y.F. Lu, The development of better photocatalysts through composition- and structure-engineering. Chem.-Asian J. 8(1), 26–40 (2013). doi:10.1002/asia.201200123
X.H. Gao, H.B. Wu, L.X. Zheng, Y.J. Zhong, Y. Hu, X.W. Lou, Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity. Angew. Chem. Int. Ed. 53(23), 5917–5921 (2014). doi:10.1002/anie.201403611
M.L. Guan, D.K. Ma, S.W. Hu, Y.J. Chen, S.M. Huang, From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties. Inorg. Chem. 50(3), 800–805 (2011). doi:10.1021/ic101961z
D.K. Ma, M.L. Guan, S.S. Liu, Y.Q. Zhang, C.W. Zhang, Y.X. He, S.M. Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 41(18), 5581–5586 (2012). doi:10.1039/c2dt30099k
S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 4(12), 5028–5034 (2011). doi:10.1039/c1ee02444b
Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). doi:10.1039/c2cs35260e
F. Lin, D.E. Wang, Z.X. Jiang, Y. Ma, J. Li, R.G. Li, C. Li, Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 5(4), 6400–6406 (2012). doi:10.1039/c1ee02880d
J. Wang, X.K. Xin, Z.Q. Lin, Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics. Nanoscale 3(8), 3040–3048 (2011). doi:10.1039/c1nr10425j
L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134(42), 17388–17391 (2012). doi:10.1021/ja307475c
B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134(9), 4294–4302 (2012). doi:10.1021/ja210755h
R.V. Jagadeesh, A.E. Surkus, H. Junge, M.M. Pohl, J. Radnik, J. Rabeah, H.M. Huan, V. Schuenemann, A. Brueckner, M. Beller, Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342(6162), 1073–1076 (2013). doi:10.1126/science.1242005
X.L. Hu, J.C. Yu, J.M. Gong, Q. Li, G.S. Li, Alpha-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19(17), 2324–2329 (2007). doi:10.1002/adma.200602176
P. Tartaj, M.P. Morales, T. Gonzalez-Carreno, S. Veintemillas-Verdaguer, C.J. Serna, The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv. Mater. 23(44), 5243–5249 (2011). doi:10.1002/adma.201101368
F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). doi:10.1039/c2cs35266d
R. Franking, L.S. Li, M.A. Lukowski, F. Meng, Y.Z. Tan, R.J. Hamers, S. Jin, Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ. Sci. 6(2), 500–512 (2013). doi:10.1039/c2ee23837c
D.K. Zhong, J.W. Sun, H. Inumaru, D.R. Gamelin, Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J. Am. Chem. Soc. 131(17), 6086–6087 (2009). doi:10.1021/ja9016478
L.P. Zhu, L.L. Wang, N.C. Bing, C. Huang, L.J. Wang, G.H. Liao, Porous fluorine-doped gamma-Fe2O3 hollow spheres: synthesis, growth mechanism, and their application in photocatalysis. ACS Appl. Mater. Interfaces 5(23), 12478–12487 (2013). doi:10.1021/am403720r
D.L. Guo, H. Huang, J.Y. Xu, H.L. Jiang, H. Liu, Efficient iron-catalyzed N-arylation of aryl halides with amines. Org. Lett. 10(20), 4513–4516 (2008). doi:10.1021/ol801784a
Y. Hou, Z.H. Wen, S.M. Cui, X.R. Guo, J.H. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). doi:10.1002/adma.201303116
Q. Dong, S. Yin, C.S. Guo, X.Y. Wu, N. Kumada, T. Takei, A. Miura, Y. Yonesaki, T. Sato, Single-crystalline porous NiO nanosheets prepared from beta-Ni(OH)2 nanosheets: magnetic property and photocatalytic activity. Appl. Catal. B-Environ. 147, 741–747 (2014). doi:10.1016/j.apcatb.2013.10.007
G. Rothenberger, J. Moser, M. Gratzël, N. Serpone, D.K. Sharma, Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 107(26), 8054–8059 (1985). doi:10.1021/ja00312a043
J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li, J.R. Gong, Visible light photocatalytic H2 production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11(11), 4774–4779 (2011). doi:10.1021/nl202587b
Y.F. Yu, J. Zhang, X. Wu, W.W. Zhao, B. Zhang, Nanoporous single-crystal-Like CdxZn1-xS nanosheets fabricated by the cation-exchange reaction of inorganic-organic hybrid ZnS-amine with cadmium ions. Angew. Chem. Int. Ed. 51(4), 897–900 (2011). doi:10.1002/anie.201105786
Z.C. Wang, Z.Y. Li, C.J. Medforth, J.H. Shelnutt, Self-assembly and self-metallization of porphyrin nanosheets. J. Am. Chem. Soc. 129(9), 2440–2441 (2007). doi:10.1021/ja068250o
Y. Chen, K. Li, W. Lu, S.S.Y. Chui, C.W. Ma, C.M. Che, Photoresponsive supramolecular organometallic nanosheets induced by Pt-II•••Pt-II and C-H•••π interactions. Angew. Chem. Int. Ed. 48(52), 9909–9913 (2009). doi:10.1002/anie.200905678
T. Bauer, Z.K. Zheng, A. Renn, R. Enning, A. Stemmer, J. Sakamoto, A.D. Schluter, Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem. Int. Ed. 50(34), 7879–7884 (2011). doi:10.1002/anie.201100669
S.M. Zhou, D.K. Ma, P. Cai, W. Chen, S.M. Huang, TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity. Mater. Res. Bull. 60, 64–71 (2014). doi:10.1016/j.materresbull.2014.08.023
N. Myung, S. Ham, S. Choi, W.G. Kim, Y.J. Jeon, K.J. Paeng, W. Chanmanee, N.R. Tacconi, K. Rajeshwar, Tailoring interfaces for electrochemical synthesis of semiconductor films: BiVO4, Bi2O3, or composites. J. Phys. Chem. C 115(15), 7793–7800 (2011). doi:10.1021/jp200632f
A. Glisenti, Interaction of formic acid with Fe2O3 powders under different atmospheres: an XPS and FTIR study. J. Chem. Soc. Faraday Trans. 94(24), 3671–3676 (1998). doi:10.1039/a806080k
K. Dai, Y. Yao, H. Liu, I. Mohamed, H. Chen, Q.Y. Huang, Enhancing the photocatalytic activity of lead molybdate by modifying with fullerene. J. Mol. Catal. A-Chem. 374, 111–117 (2013). doi:10.1016/j.molcata.2013.03.027
Z.H. Xu, J.G. Yu, Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays. Nanoscale 3(8), 3138–3144 (2011). doi:10.1039/c1nr10282f
M. Liu, X.Q. Qiu, M. Miyauchi, K. Hashimoto, Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J. Am. Chem. Soc. 135(27), 10064–10072 (2013). doi:10.1021/ja401541k
Y. Shi, H.Y. Li, L. Wang, W. Shen, H.Z. Chen, Novel alpha-Fe2O3/CdS cornlike nanorods with enhanced photocatalytic performance. ACS Appl. Mater. Interfaces 4(9), 4800–4806 (2012). doi:10.1021/am3011516
G.K. Pradhan, D.K. Padhi, K.M. Parida, Fabrication of alpha-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl. Mater. Interfaces 5(18), 9101–9110 (2013). doi:10.1021/am402487h
N. Liang, J.T. Zai, M. Xu, Q. Zhu, X. Wei, X.F. Qian, Novel Bi2S3/Bi2O2CO3 heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment. J. Mater. Chem. A 2, 4208–4216 (2014). doi:10.1039/c3ta13931j
H.F. Cheng, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem. Commun. 48, 97–99 (2012). doi:10.1039/c1cc15487g
P. Madhusudan, J.R. Ran, J. Zhang, J.G. Yu, G. Liu, Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Appl. Catal. B 110, 286–295 (2011). doi:10.1016/j.apcatb.2011.09.014
N. Liang, M. Wang, L. Jin, S.S. Huang, W.L. Chen, MXuQQ He, J.T. Zai, N.H. Fang, X.F. Qian, Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity. ACS Appl. Mater. Interfaces 6(14), 11698–11705 (2014). doi:10.1021/am502481z
M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, Optical properties of iron oxide (alpha-Fe2O3) thin films deposited by the reactive evaporation of iron. J. Alloys Compd. 521, 178–182 (2012). doi:10.1016/j.jallcom.2012.01.115
Q.J. Xiang, J.G. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012). doi:10.1021/ja302846n
G.C. Xie, K. Zhang, B.D. Guo, Q. Liu, L. Fang, J.R. Gong, Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 25(28), 3820–3839 (2013). doi:10.1002/adma.201301207
Y.B. Li, L. Zhang, A. Torres-Pardo, J.M. Gozalez-Calbet, Y.H. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima, D. Cha, L. Zhao, K. Takanabe, J. Kubota, K. Domen, Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 4, 2566 (2013). doi:10.1038/ncomms3566
M.C. Long, W.M. Cai, J. Cai, B.X. Zhou, X.Y. Chai, Y.H. Wu, Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 110(41), 20211–20216 (2006). doi:10.1021/jp063441z