Non-covalently Functionalized Graphene Oxide-Based Coating to Enhance Thermal Stability and Flame Retardancy of PVA Film
Corresponding Author: Yuan Liu
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 39
Abstract
The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the non-covalent strategy is simpler and expeditious and entirely preserves the original quality of graphene. Thus, non-covalently functionalized graphene oxide (FGO) with a phosphorus–nitrogen compound was successfully prepared via a one-pot process in this study. Polyethyleneimine and FGO were alternatively deposited on the surface of a poly(vinyl alcohol) (PVA) film via layer-by-layer assembly driven by electrostatic interaction, imparting excellent flame retardancy to the coated PVA film. The multilayer FGO-based coating formed a protective shield encapsulating the PVA matrix, effectively blocking the transfer of heat and mass during combustion. The coated PVA has a higher initial decomposition temperature of about 260 °C and a nearly 60% reduction in total heat release than neat PVA does. Our results may have a promising prospect for flame-retardant polymers.
Highlights:
1 Functionalized graphene oxide (FGO) containing phosphorus–nitrogen compound was prepared via a non-covalent strategy.
2 The multilayer FGO-based coating was deposited on a poly(vinyl alcohol) (PVA) film using the layer-by-layer assembly technique.
3 A significant synergistic effect between the FTO and conventional flame-retardant elements enhances thermal stability and fire retardancy of the coated PVA film.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 7(16), 7318–7322 (2015). https://doi.org/10.1039/C5NR00584A
- S. Wang, L. Ma, M. Gan, S. Fu, W. Dai, T. Zhou, X. Sun, H. Wang, H. Wang, Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J. Power Sources 299, 347–355 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.018
- H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 27(6), 1117–1123 (2015). https://doi.org/10.1002/adma.201404622
- J. Yin, G.C. Zhu, B.L. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379, 93–101 (2016). https://doi.org/10.1016/j.desal.2015.11.001
- J.H. Hu, Y. Liu, X.Z. Cao, P. Zhang, J.F. Zheng, M. Li, X. Zhang, L.J. Wang, A comprehensive physico-chemical study on the molecular structure effects of sulfonated polyamide thin-film composites. Mol. Syst. Des. Eng. 2(1), 57–66 (2017). https://doi.org/10.1039/C6ME00078A
- Q.F. Xue, Z.C. Hu, C. Sun, Z.M. Chen, F. Huang, H.L. Yip, Y. Cao, Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells. RSC Adv. 5(1), 775–783 (2015). https://doi.org/10.1039/C4RA11739E
- U.V. Patil, N.S. Ramgir, N. Karmakar, A. Bhogale, A.K. Debnath, D.K. Aswal, S.K. Gupta, D.C. Kothari, Room temperature ammonia sensor based on copper nanop intercalated polyaniline nanocomposite thin films. Appl. Surf. Sci. 339, 69–74 (2015). https://doi.org/10.1016/j.apsusc.2015.02.164
- W.P. Zhu, J. Gao, S.P. Sun, Z. Shang, T.S. Chung, Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. J. Membr. Sci. 487, 117–126 (2015). https://doi.org/10.1016/j.memsci.2015.03.033
- P. Ding, B. Kang, J. Zhang, J.W. Yang, N. Song, S.F. Tang, L.Y. Shi, Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. J. Colloids Interface Sci. 440, 46–52 (2015). https://doi.org/10.1016/j.jcis.2014.10.048
- M. Wang, X.W. Han, L. Liu, X.F. Zeng, H.K. Zou, J.X. Wang, J.F. Chen, Transparent aqueous Mg(OH)(2) nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property. Ind. Eng. Chem. Res. 54(51), 12805–12812 (2015). https://doi.org/10.1021/acs.iecr.5b03172
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membr. Sci. 484, 95–106 (2015). https://doi.org/10.1016/j.memsci.2015.03.011
- Y. Cui, S.I. Kundalwal, S. Kumar, Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016). https://doi.org/10.1016/j.carbon.2015.11.018
- H. Jang, Y.J. Park, X. Chen, T. Das, M.S. Kim, J.H. Ahn, Graphene-based flexible and stretchable electronics. Adv. Mater. 28(22), 4184 (2016). https://doi.org/10.1002/adma.201504245
- A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A.D. Carlo, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, 349–360 (2016). https://doi.org/10.1016/j.nanoen.2016.02.027
- W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C 120, 4153–4172 (2016). https://doi.org/10.1021/acs.jpcc.5b10187
- S. Wan, J. Peng, L. Jiang, Q. Cheng, Bioinspired graphene-based nanocomposites and their application in flexible energy devices. Adv. Mater. 28(36), 7862–7898 (2016). https://doi.org/10.1002/adma.201601934
- V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016). https://doi.org/10.1021/acs.chemrev.5b00620
- M. Wang, T. Zhang, X. Zeng, W. Zhang, Recent advances in biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 76, 195–212 (2016). https://doi.org/10.1016/j.bios.2015.07.002
- K.J. Peng, J.Y. Lai, Y.L. Liu, Nanohybrids of graphene oxide chemically-bonded with Nafion: preparation and application for proton exchange membrane fuel cells. J. Membr. Sci. 514, 86–94 (2016). https://doi.org/10.1016/j.memsci.2016.04.062
- G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21(1), 11–25 (2015). https://doi.org/10.1016/j.jiec.2014.03.022
- B. Yu, Y. Shi, B. Yuan, S. Qiu, W. Xing, W. Hu, L. Song, S. Lo, Y. Hu, Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J. Mater. Chem. A 3(15), 8034–8044 (2015). https://doi.org/10.1039/C4TA06613H
- L. Dong, C. Hu, L. Song, X. Huang, N. Chen, L. Qu, A large-area, flexible, and flame-retardant graphene paper. Adv. Funct. Mater. 26(9), 1470–1476 (2016). https://doi.org/10.1002/adfm.201504470
- B. Sang, Z.W. Li, X.H. Li, L.G. Yu, Z.J. Zhang, Graphene-based flame retardants: a review. J. Mater. Sci. 51(18), 8271–8295 (2016). https://doi.org/10.1007/s10853-016-0124-0
- C. Bao, Y. Guo, B. Yuan, Y. Hu, L. Song, Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J. Mater. Chem. 22(43), 23057–23063 (2012). https://doi.org/10.1039/c2jm35001g
- B. Yu, X. Wang, X. Qian, W. Xing, H. Yang et al., Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 4(60), 31782–31794 (2014). https://doi.org/10.1039/C3RA45945D
- X. Wang, W. Xing, X. Feng, B. Yu, L. Song, Y. Hu, Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism. Polym. Chem. 5(4), 1145–1154 (2014). https://doi.org/10.1039/C3PY00963G
- S. Gaan, S. Liang, H. Mispreuve, H. Perler, R. Naescher, M. Neisius, Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stab. 113, 180–188 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.01.007
- K. Salmeia, S. Gaan, G. Malucelli, Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers 8(9), 319 (2016). https://doi.org/10.3390/polym8090319
- Y. Yu, S. Fu, P.A. Song, X. Luo, Y. Jin, F. Lu, Q. Wu, J. Ye, Functionalized lignin by grafting phosphorus–nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym. Degrad. Stab. 97(4), 541–546 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.01.020
- D. Enescu, A. Frache, M. Lavaselli, O. Monticelli, F. Marino, Novel phosphorous–nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym. Degrad. Stab. 98(1), 297–305 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.09.012
- Z.M. Zhu, Y.J. Xu, W. Liao, S.M. Xu, Y.Z. Wang, Highly flame retardant expanded polystyrene foams from phosphorus–nitrogen–silicon synergistic adhesives. Ind. Eng. Chem. Res. 56(16), 4649–4658 (2017). https://doi.org/10.1021/acs.iecr.6b05065
- W. Chen, Y. Liu, P. Liu, C. Xu, Y. Liu, Q. Wang, The preparation and application of a graphene-based hybrid flame retardant containing a long-chain phosphaphenanthrene. Sci. Rep. 7(1), 8759 (2017). https://doi.org/10.1038/s41598-017-09459-9
- S.H. Liao, P.L. Liu, M.C. Hsiao, C.C. Teng, C.A. Wang, M.D. Ger, C.L. Chiang, One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind. Eng. Chem. Res. 51(12), 4573–4581 (2012). https://doi.org/10.1021/ie2026647
- Z. Wang, P. Wei, Y. Qian, J. Liu, The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos. Part B Eng. 60, 341–349 (2014). https://doi.org/10.1016/j.compositesb.2013.12.033
- B. Yuan, H. Sheng, X. Mu, L. Song, Q. Tai, Y. Shi, K.M. Liew, Y. Hu, Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J. Mater. Sci. 50(16), 5389–5401 (2015). https://doi.org/10.1007/s10853-015-9083-0
- X. Zhang, Q. Shen, X. Zhang, H. Pan, Y. Lu, Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J. Mater. Sci. 51(23), 10361–10374 (2016). https://doi.org/10.1007/s10853-016-0247-3
- S.H. Song, K.H. Park, H.K. Bo, W.C. Yong, G.H. Jun, J.L. Dong, B.S. Kong, K.W. Paik, S. Jeon, Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013). https://doi.org/10.1002/adma.201202736
- H. Nasrallah, S. Germain, P. Queval, C. Bouvier, M. Mauduit, C. Crévisy, E. Schulz, Non covalent immobilization of pyrene-tagged ruthenium complexes onto graphene surfaces for recycling in olefin metathesis reactions. J. Mol. Catal. A Chem. 425, 136–146 (2016). https://doi.org/10.1016/j.molcata.2016.10.004
- C. Chen, S. Qiu, M. Cui, S. Qin, G. Yan, H. Zhao, L. Wang, Q. Xue, Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114, 356–366 (2017). https://doi.org/10.1016/j.carbon.2016.12.044
- X. Ji, L. Cui, Y. Xu, J. Liu, Non-covalent interactions for synthesis of new graphene based composites. Compos. Sci. Technol. 106(106), 25–31 (2015). https://doi.org/10.1016/j.compscitech.2014.10.018
- G. Decher, J.D. Hong, Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol. Symp. 46(1), 321–327 (1991). https://doi.org/10.1002/masy.19910460145
- T. Wang, J. Lu, L. Mao, Z. Wang, Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane. J. Membr. Sci. 515, 125–133 (2016). https://doi.org/10.1016/j.memsci.2016.05.053
- F. Yan, H. Chen, L. Yang, Z. Lü, S. Yu, M. Liu, C. Gao, Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. J. Membr. Sci. 513, 108–116 (2016). https://doi.org/10.1016/j.memsci.2016.04.049
- N. Chai, H. Wang, C. Hu, Q. Wang, H. Zhang, Well-controlled layer-by-layer assembly of carbon dots/cds heterojunction for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 3(32), 16613–16620 (2015). https://doi.org/10.1039/C5TA03649F
- Y. Wu, Y. Long, Q.L. Li, S. Han, J. Ma, Y.W. Yang, H. Gao, Layer-by-layer (LBL) self-assembled biohybrid nanomaterials for efficient antibacterial applications. ACS Appl. Mater. Interfaces 7(31), 17255–17263 (2015). https://doi.org/10.1021/acsami.5b04216
- B. Mi, Graphene oxide membranes for ionic and molecular sieving. Science 343(6172), 740–742 (2014). https://doi.org/10.1126/science.1250247
- L. Wang, W. Wang, Y. Fu, J. Wang, Y. Lvov, J. Liu, Y. Lu, L. Zhang, Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly. Compos. Part B Eng. 90, 457–464 (2016). https://doi.org/10.1016/j.compositesb.2015.12.048
- L. Zhao, H. Zhang, N.H. Kim, D. Hui, J.H. Lee, Q. Li, H. Sun, P. Li, Preparation of graphene oxide/polyethyleneimine layer-by-layer assembled film for enhanced hydrogen barrier property. Compos. Part B Eng. 92, 252–258 (2016). https://doi.org/10.1016/j.compositesb.2016.02.037
- L. Zhao, B. Yuan, Y. Geng, C. Yu, N.H. Kim, J.H. Lee, P. Li, Fabrication of ultrahigh hydrogen barrier polyethyleneimine/graphene oxide films by lbl assembly fine-tuned with electric field application. Compos. Part A Appl. Sci. 78, 60–69 (2015). https://doi.org/10.1016/j.compositesa.2015.07.020
- Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, Y. Jiang, Novel highly sensitive qcm humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film. Sensor Actuat. B Chem. 234, 145–154 (2016). https://doi.org/10.1016/j.snb.2016.04.070
- Y. Jia, H. Yu, Y. Zhang, F. Dong, Z. Li, Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor. Colloids Surf. B 148, 263–269 (2016). https://doi.org/10.1016/j.colsurfb.2016.09.007
- G. Huang, J. Yang, J. Gao, X. Wang, Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric. Ind. Eng. Chem. Res. 51(38), 12355–12366 (2012). https://doi.org/10.1021/ie301911t
- H. Pan, B. Yu, W. Wang, Y. Pan, L. Song, Y. Hu, Comparative study of layer by layer assembled multilayer films based on graphene oxide and reduced graphene oxide on flexible polyurethane foam: flame retardant and smoke suppression properties. RSC Adv. 115, 114304–114312 (2016). https://doi.org/10.1039/C6RA15522G
- X.Q. Qiu, Z.W. Li, X.H. Li, Z.J. Zhang, Flame retardant coatings prepared using layer by layer assembly: a review. Chem. Eng. J. 334, 108–122 (2018). https://doi.org/10.1016/j.cej.2017.09.194
- W.S.H. Jr, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368
- Y. Guo, C. Bao, L. Song, B. Yuan, Y. Hu, In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Ind. Eng. Chem. Res. 50(13), 7772–7783 (2011). https://doi.org/10.1021/ie200152x
- K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008). https://doi.org/10.1021/nl071822y
- J.I. Paredes, S. Villarrodil, A. Martínezalonso, J.M. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008). https://doi.org/10.1021/la801744a
- K.K. Manga, Y. Zhou, Y. Yan, K.P. Loh, Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater. 19(22), 3638–3643 (2010). https://doi.org/10.1002/adfm.200900891
- A. Ballistreri, S. Foti, G. Montaudo, E. Scamporrino, Evolution of aromatic compounds in the thermal decomposition of vinyl polymers. J. Polym. Sci. Polym. Chem. 18(4), 1147–1153 (1980). https://doi.org/10.1002/pol.1980.170180401
- B.J. Holland, J.N. Hay, The thermal degradation of poly(vinyl alcohol). Polymer 42(16), 6775–6783 (2001). https://doi.org/10.1016/S0032-3861(01)00166-5
- G.B. Huang, H.D. Liang, W. Yong, X. Wang, J.R. Gao, Z.D. Fei, Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater. Chem. Phys. 132(2–3), 520–528 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.064
- G.B. Huang, S.Q. Chen, H.D. Liang, X. Wang, J.R. Gao, Combination of graphene and montmorillonite reduces the flammability of poly(vinyl alcohol) nanocomposites. Appl. Clay Sci. 80–81, 433–437 (2013). https://doi.org/10.1016/j.clay.2013.01.005
- P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Model for raman scattering from incompletely graphitized carbons. Carbon 20(5), 427–431 (1982). https://doi.org/10.1016/0008-6223(82)90043-4
References
X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 7(16), 7318–7322 (2015). https://doi.org/10.1039/C5NR00584A
S. Wang, L. Ma, M. Gan, S. Fu, W. Dai, T. Zhou, X. Sun, H. Wang, H. Wang, Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J. Power Sources 299, 347–355 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.018
H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 27(6), 1117–1123 (2015). https://doi.org/10.1002/adma.201404622
J. Yin, G.C. Zhu, B.L. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379, 93–101 (2016). https://doi.org/10.1016/j.desal.2015.11.001
J.H. Hu, Y. Liu, X.Z. Cao, P. Zhang, J.F. Zheng, M. Li, X. Zhang, L.J. Wang, A comprehensive physico-chemical study on the molecular structure effects of sulfonated polyamide thin-film composites. Mol. Syst. Des. Eng. 2(1), 57–66 (2017). https://doi.org/10.1039/C6ME00078A
Q.F. Xue, Z.C. Hu, C. Sun, Z.M. Chen, F. Huang, H.L. Yip, Y. Cao, Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells. RSC Adv. 5(1), 775–783 (2015). https://doi.org/10.1039/C4RA11739E
U.V. Patil, N.S. Ramgir, N. Karmakar, A. Bhogale, A.K. Debnath, D.K. Aswal, S.K. Gupta, D.C. Kothari, Room temperature ammonia sensor based on copper nanop intercalated polyaniline nanocomposite thin films. Appl. Surf. Sci. 339, 69–74 (2015). https://doi.org/10.1016/j.apsusc.2015.02.164
W.P. Zhu, J. Gao, S.P. Sun, Z. Shang, T.S. Chung, Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. J. Membr. Sci. 487, 117–126 (2015). https://doi.org/10.1016/j.memsci.2015.03.033
P. Ding, B. Kang, J. Zhang, J.W. Yang, N. Song, S.F. Tang, L.Y. Shi, Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. J. Colloids Interface Sci. 440, 46–52 (2015). https://doi.org/10.1016/j.jcis.2014.10.048
M. Wang, X.W. Han, L. Liu, X.F. Zeng, H.K. Zou, J.X. Wang, J.F. Chen, Transparent aqueous Mg(OH)(2) nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property. Ind. Eng. Chem. Res. 54(51), 12805–12812 (2015). https://doi.org/10.1021/acs.iecr.5b03172
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membr. Sci. 484, 95–106 (2015). https://doi.org/10.1016/j.memsci.2015.03.011
Y. Cui, S.I. Kundalwal, S. Kumar, Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016). https://doi.org/10.1016/j.carbon.2015.11.018
H. Jang, Y.J. Park, X. Chen, T. Das, M.S. Kim, J.H. Ahn, Graphene-based flexible and stretchable electronics. Adv. Mater. 28(22), 4184 (2016). https://doi.org/10.1002/adma.201504245
A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A.D. Carlo, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, 349–360 (2016). https://doi.org/10.1016/j.nanoen.2016.02.027
W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C 120, 4153–4172 (2016). https://doi.org/10.1021/acs.jpcc.5b10187
S. Wan, J. Peng, L. Jiang, Q. Cheng, Bioinspired graphene-based nanocomposites and their application in flexible energy devices. Adv. Mater. 28(36), 7862–7898 (2016). https://doi.org/10.1002/adma.201601934
V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016). https://doi.org/10.1021/acs.chemrev.5b00620
M. Wang, T. Zhang, X. Zeng, W. Zhang, Recent advances in biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 76, 195–212 (2016). https://doi.org/10.1016/j.bios.2015.07.002
K.J. Peng, J.Y. Lai, Y.L. Liu, Nanohybrids of graphene oxide chemically-bonded with Nafion: preparation and application for proton exchange membrane fuel cells. J. Membr. Sci. 514, 86–94 (2016). https://doi.org/10.1016/j.memsci.2016.04.062
G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21(1), 11–25 (2015). https://doi.org/10.1016/j.jiec.2014.03.022
B. Yu, Y. Shi, B. Yuan, S. Qiu, W. Xing, W. Hu, L. Song, S. Lo, Y. Hu, Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J. Mater. Chem. A 3(15), 8034–8044 (2015). https://doi.org/10.1039/C4TA06613H
L. Dong, C. Hu, L. Song, X. Huang, N. Chen, L. Qu, A large-area, flexible, and flame-retardant graphene paper. Adv. Funct. Mater. 26(9), 1470–1476 (2016). https://doi.org/10.1002/adfm.201504470
B. Sang, Z.W. Li, X.H. Li, L.G. Yu, Z.J. Zhang, Graphene-based flame retardants: a review. J. Mater. Sci. 51(18), 8271–8295 (2016). https://doi.org/10.1007/s10853-016-0124-0
C. Bao, Y. Guo, B. Yuan, Y. Hu, L. Song, Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J. Mater. Chem. 22(43), 23057–23063 (2012). https://doi.org/10.1039/c2jm35001g
B. Yu, X. Wang, X. Qian, W. Xing, H. Yang et al., Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 4(60), 31782–31794 (2014). https://doi.org/10.1039/C3RA45945D
X. Wang, W. Xing, X. Feng, B. Yu, L. Song, Y. Hu, Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism. Polym. Chem. 5(4), 1145–1154 (2014). https://doi.org/10.1039/C3PY00963G
S. Gaan, S. Liang, H. Mispreuve, H. Perler, R. Naescher, M. Neisius, Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stab. 113, 180–188 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.01.007
K. Salmeia, S. Gaan, G. Malucelli, Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers 8(9), 319 (2016). https://doi.org/10.3390/polym8090319
Y. Yu, S. Fu, P.A. Song, X. Luo, Y. Jin, F. Lu, Q. Wu, J. Ye, Functionalized lignin by grafting phosphorus–nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym. Degrad. Stab. 97(4), 541–546 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.01.020
D. Enescu, A. Frache, M. Lavaselli, O. Monticelli, F. Marino, Novel phosphorous–nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym. Degrad. Stab. 98(1), 297–305 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.09.012
Z.M. Zhu, Y.J. Xu, W. Liao, S.M. Xu, Y.Z. Wang, Highly flame retardant expanded polystyrene foams from phosphorus–nitrogen–silicon synergistic adhesives. Ind. Eng. Chem. Res. 56(16), 4649–4658 (2017). https://doi.org/10.1021/acs.iecr.6b05065
W. Chen, Y. Liu, P. Liu, C. Xu, Y. Liu, Q. Wang, The preparation and application of a graphene-based hybrid flame retardant containing a long-chain phosphaphenanthrene. Sci. Rep. 7(1), 8759 (2017). https://doi.org/10.1038/s41598-017-09459-9
S.H. Liao, P.L. Liu, M.C. Hsiao, C.C. Teng, C.A. Wang, M.D. Ger, C.L. Chiang, One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind. Eng. Chem. Res. 51(12), 4573–4581 (2012). https://doi.org/10.1021/ie2026647
Z. Wang, P. Wei, Y. Qian, J. Liu, The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos. Part B Eng. 60, 341–349 (2014). https://doi.org/10.1016/j.compositesb.2013.12.033
B. Yuan, H. Sheng, X. Mu, L. Song, Q. Tai, Y. Shi, K.M. Liew, Y. Hu, Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J. Mater. Sci. 50(16), 5389–5401 (2015). https://doi.org/10.1007/s10853-015-9083-0
X. Zhang, Q. Shen, X. Zhang, H. Pan, Y. Lu, Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J. Mater. Sci. 51(23), 10361–10374 (2016). https://doi.org/10.1007/s10853-016-0247-3
S.H. Song, K.H. Park, H.K. Bo, W.C. Yong, G.H. Jun, J.L. Dong, B.S. Kong, K.W. Paik, S. Jeon, Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25(5), 732–737 (2013). https://doi.org/10.1002/adma.201202736
H. Nasrallah, S. Germain, P. Queval, C. Bouvier, M. Mauduit, C. Crévisy, E. Schulz, Non covalent immobilization of pyrene-tagged ruthenium complexes onto graphene surfaces for recycling in olefin metathesis reactions. J. Mol. Catal. A Chem. 425, 136–146 (2016). https://doi.org/10.1016/j.molcata.2016.10.004
C. Chen, S. Qiu, M. Cui, S. Qin, G. Yan, H. Zhao, L. Wang, Q. Xue, Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114, 356–366 (2017). https://doi.org/10.1016/j.carbon.2016.12.044
X. Ji, L. Cui, Y. Xu, J. Liu, Non-covalent interactions for synthesis of new graphene based composites. Compos. Sci. Technol. 106(106), 25–31 (2015). https://doi.org/10.1016/j.compscitech.2014.10.018
G. Decher, J.D. Hong, Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol. Symp. 46(1), 321–327 (1991). https://doi.org/10.1002/masy.19910460145
T. Wang, J. Lu, L. Mao, Z. Wang, Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane. J. Membr. Sci. 515, 125–133 (2016). https://doi.org/10.1016/j.memsci.2016.05.053
F. Yan, H. Chen, L. Yang, Z. Lü, S. Yu, M. Liu, C. Gao, Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. J. Membr. Sci. 513, 108–116 (2016). https://doi.org/10.1016/j.memsci.2016.04.049
N. Chai, H. Wang, C. Hu, Q. Wang, H. Zhang, Well-controlled layer-by-layer assembly of carbon dots/cds heterojunction for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 3(32), 16613–16620 (2015). https://doi.org/10.1039/C5TA03649F
Y. Wu, Y. Long, Q.L. Li, S. Han, J. Ma, Y.W. Yang, H. Gao, Layer-by-layer (LBL) self-assembled biohybrid nanomaterials for efficient antibacterial applications. ACS Appl. Mater. Interfaces 7(31), 17255–17263 (2015). https://doi.org/10.1021/acsami.5b04216
B. Mi, Graphene oxide membranes for ionic and molecular sieving. Science 343(6172), 740–742 (2014). https://doi.org/10.1126/science.1250247
L. Wang, W. Wang, Y. Fu, J. Wang, Y. Lvov, J. Liu, Y. Lu, L. Zhang, Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly. Compos. Part B Eng. 90, 457–464 (2016). https://doi.org/10.1016/j.compositesb.2015.12.048
L. Zhao, H. Zhang, N.H. Kim, D. Hui, J.H. Lee, Q. Li, H. Sun, P. Li, Preparation of graphene oxide/polyethyleneimine layer-by-layer assembled film for enhanced hydrogen barrier property. Compos. Part B Eng. 92, 252–258 (2016). https://doi.org/10.1016/j.compositesb.2016.02.037
L. Zhao, B. Yuan, Y. Geng, C. Yu, N.H. Kim, J.H. Lee, P. Li, Fabrication of ultrahigh hydrogen barrier polyethyleneimine/graphene oxide films by lbl assembly fine-tuned with electric field application. Compos. Part A Appl. Sci. 78, 60–69 (2015). https://doi.org/10.1016/j.compositesa.2015.07.020
Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, Y. Jiang, Novel highly sensitive qcm humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film. Sensor Actuat. B Chem. 234, 145–154 (2016). https://doi.org/10.1016/j.snb.2016.04.070
Y. Jia, H. Yu, Y. Zhang, F. Dong, Z. Li, Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor. Colloids Surf. B 148, 263–269 (2016). https://doi.org/10.1016/j.colsurfb.2016.09.007
G. Huang, J. Yang, J. Gao, X. Wang, Thin films of intumescent flame retardant-polyacrylamide and exfoliated graphene oxide fabricated via layer-by-layer assembly for improving flame retardant properties of cotton fabric. Ind. Eng. Chem. Res. 51(38), 12355–12366 (2012). https://doi.org/10.1021/ie301911t
H. Pan, B. Yu, W. Wang, Y. Pan, L. Song, Y. Hu, Comparative study of layer by layer assembled multilayer films based on graphene oxide and reduced graphene oxide on flexible polyurethane foam: flame retardant and smoke suppression properties. RSC Adv. 115, 114304–114312 (2016). https://doi.org/10.1039/C6RA15522G
X.Q. Qiu, Z.W. Li, X.H. Li, Z.J. Zhang, Flame retardant coatings prepared using layer by layer assembly: a review. Chem. Eng. J. 334, 108–122 (2018). https://doi.org/10.1016/j.cej.2017.09.194
W.S.H. Jr, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). https://doi.org/10.1021/ja01539a017
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368
Y. Guo, C. Bao, L. Song, B. Yuan, Y. Hu, In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Ind. Eng. Chem. Res. 50(13), 7772–7783 (2011). https://doi.org/10.1021/ie200152x
K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008). https://doi.org/10.1021/nl071822y
J.I. Paredes, S. Villarrodil, A. Martínezalonso, J.M. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008). https://doi.org/10.1021/la801744a
K.K. Manga, Y. Zhou, Y. Yan, K.P. Loh, Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater. 19(22), 3638–3643 (2010). https://doi.org/10.1002/adfm.200900891
A. Ballistreri, S. Foti, G. Montaudo, E. Scamporrino, Evolution of aromatic compounds in the thermal decomposition of vinyl polymers. J. Polym. Sci. Polym. Chem. 18(4), 1147–1153 (1980). https://doi.org/10.1002/pol.1980.170180401
B.J. Holland, J.N. Hay, The thermal degradation of poly(vinyl alcohol). Polymer 42(16), 6775–6783 (2001). https://doi.org/10.1016/S0032-3861(01)00166-5
G.B. Huang, H.D. Liang, W. Yong, X. Wang, J.R. Gao, Z.D. Fei, Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater. Chem. Phys. 132(2–3), 520–528 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.064
G.B. Huang, S.Q. Chen, H.D. Liang, X. Wang, J.R. Gao, Combination of graphene and montmorillonite reduces the flammability of poly(vinyl alcohol) nanocomposites. Appl. Clay Sci. 80–81, 433–437 (2013). https://doi.org/10.1016/j.clay.2013.01.005
P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Model for raman scattering from incompletely graphitized carbons. Carbon 20(5), 427–431 (1982). https://doi.org/10.1016/0008-6223(82)90043-4