Intelligent Point-of-Care Biosensing Platform Based on Luminescent Nanoparticles and Microfluidic Biochip with Machine Vision Algorithm Analysis
Corresponding Author: Jianhua Hao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 215
Abstract
Realizing the point-of-care tumor markers biodetection with good convenience and high sensitivity possesses great significance for prompting cancer monitoring and screening in biomedical study field. Herein, the quantum dots luminescence and microfluidic biochip with machine vision algorithm-based intelligent biosensing platform have been designed and manufactured for point-of-care tumor markers diagnostics. The employed quantum dots with excellent photoluminescent performance are modified with specific antibody as the optical labeling agents for the designed sandwich structure immunoassay. The corresponding biosensing investigations of the designed biodetection platform illustrate several advantages involving high sensitivity (~ 0.021 ng mL−1), outstanding accessibility, and great integrability. Moreover, related test results of human-sourced artificial saliva samples demonstrate better detection capabilities compared with commercially utilized rapid test strips. Combining these infusive abilities, our elaborate biosensing platform is expected to exhibit potential applications for the future point-of-care tumor markers diagnostic area.
Highlights:
1 A novel intelligent biosensing platform consisting of quantum dots luminescence and biochip with machine vision algorithm is proposed for point-of-care carcinoembryonic antigen (CEA) protein diagnostics.
2 The designed diagnostic platform possesses outstanding detection limitation of approximately 0.021 ng mL−1 of CEA concentration compared with some commercial biodetection devices of lateral flow assay strips.
3 The utilization of machine vision algorithm improves the detection features of portability and integration, which expands the potential of point-of-care biosensing applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.D. Huntington, J. Cursons, J. Rautela, The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 20(8), 437–454 (2020). https://doi.org/10.1038/s41568-020-0272-z
- I. Vitale, E. Shema, S. Loi, L. Galluzzi, Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27(2), 212–224 (2021). https://doi.org/10.1038/s41591-021-01233-9
- J.E. Visvader, Cells of origin in cancer. Nature 469(7330), 314–322 (2011). https://doi.org/10.1038/nature09781
- F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74(3), 229–263 (2024). https://doi.org/10.3322/caac.21834
- C. Gridelli, A. Rossi, D.P. Carbone, J. Guarize, N. Karachaliou et al., Non-small-cell lung cancer. Nat. Rev. Dis. Primers. 1, 15009 (2015). https://doi.org/10.1038/nrdp.2015.9
- J.D. Mizrahi, R. Surana, J.W. Valle, R.T. Shroff, Pancreatic cancer. Lancet 395(10242), 2008–2020 (2020). https://doi.org/10.1016/s0140-6736(20)30974-0
- M.J. Duffy, C. Sturgeon, R. Lamerz, C. Haglund, V.L. Holubec et al., Tumor markers in pancreatic cancer: a European group on tumor markers (EGTM) status report. Ann. Oncol. 21(3), 441–447 (2010). https://doi.org/10.1093/annonc/mdp332
- M.J. Leveridge, P.J. Bostrom, G. Koulouris, A. Finelli, N. Lawrentschuk, Imaging renal cell carcinoma with ultrasonography. CT and MRI. Nat. Rev. Urol. 7(6), 311–325 (2010). https://doi.org/10.1038/nrurol.2010.63
- C. Bouzigues, T. Gacoin, A. Alexandrou, Biological applications of rare-earth based nanops. ACS Nano 5(11), 8488–8505 (2011). https://doi.org/10.1021/nn202378b
- A. Jain, P.G.J. Fournier, V. Mendoza-Lavaniegos, P. Sengar, F.M. Guerra-Olvera et al., Functionalized rare earth-doped nanops for breast cancer nanodiagnostic using fluorescence and CT imaging. J. Nanobiotechnology 16(1), 26 (2018). https://doi.org/10.1186/s12951-018-0359-9
- F. Cheng, L. Su, C. Qian, Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 7(30), 48832–48841 (2016). https://doi.org/10.18632/oncotarget.9453
- R. Lubin, G. Zalcman, L. Bouchet, J. Trédanel, Y. Legros et al., Serum p53 antibodies as early markers of lung cancer. Nat. Med. 1(7), 701–702 (1995). https://doi.org/10.1038/nm0795-701
- N. Yonet-Tanyeri, B.Z. Ahlmark, S.R. Little, Advances in multiplexed paper-based analytical devices for cancer diagnosis: a review of technological developments. Adv. Mater. Technol. 6(8), 2001138 (2021). https://doi.org/10.1002/admt.202001138
- E.M. Beltrami, I.T. Williams, C.N. Shapiro, M.E. Chamberland, Risk and management of blood-borne infections in health care workers. Clin. Microbiol. Rev. 13(3), 385–407 (2000). https://doi.org/10.1128/CMR.13.3.385
- Z. Yaari, Y. Yang, E. Apfelbaum, C. Cupo, A.H. Settle et al., A perception-based nanosensor platform to detect cancer biomarkers. Sci. Adv. 7(47), eaj0852 (2021). https://doi.org/10.1126/sciadv.abj0852
- N. Kumar, V.S. Gowri, R. Khan, P. Ranjan, M.A. Sadique, S. Yadav et al., Efficiency of nanomaterials for electrochemical diagnostics based point-of-care detection of non-invasive oral cancer biomarkers. Adv. Mater. Lett. 12(8), 1–20 (2021). https://doi.org/10.5185/amlett.2021.081651
- W. Li, H. Wang, Z. Zhao, H. Gao, C. Liu et al., Emerging nanotechnologies for liquid biopsy: the detection of circulating tumor cells and extracellular vesicles. Adv. Mater. 31(45), e1805344 (2019). https://doi.org/10.1002/adma.201805344
- J. Kaur, M. Preethi, R. Srivastava, V. Borse, Role of IL-6 and IL-8 biomarkers for optical and electrochemical based point-of-care detection of oral cancer. Biosens. Bioelectron. X 11, 100212 (2022). https://doi.org/10.1016/j.biosx.2022.100212
- F.P. de García Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer et al., Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021). https://doi.org/10.1126/science
- K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre et al., Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445(7130), 896–899 (2007). https://doi.org/10.1038/nature05586
- S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015). https://doi.org/10.1039/c4cs00269e
- W.C. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998). https://doi.org/10.1126/science.281.5385.2016
- T. Lee, B.J. Kim, H. Lee, D. Hahm, W.K. Bae et al., Bright and stable quantum dot light-emitting diodes. Adv. Mater. 34(4), 2106276 (2022). https://doi.org/10.1002/adma.202106276
- X. Liu, W. Wu, D. Cui, X. Chen, W. Li, Functional micro-/ nanomaterials for multiplexed biodetection. Adv. Mater. 33(30), e2004734 (2021). https://doi.org/10.1002/adma.202004734
- C. Grazon, R.C. Baer, U. Kuzmanović, T. Nguyen, M. Chen et al., A progesterone biosensor derived from microbial screening. Nat. Commun. 11(1), 1276 (2020). https://doi.org/10.1038/s41467-020-14942-5
- M. Chen, T.T. Nguyen, N. Varongchayakul, C. Grazon, M. Chern et al., Surface immobilized nucleic acid-transcription factor quantum dots for biosensing. Adv. Healthc. Mater. 9(17), e2000403 (2020). https://doi.org/10.1002/adhm.202000403
- K. Chen, L.Y.T. Chou, F. Song, W.C.W. Chan, Fabrication of metal nanoshell quantum-dot barcodes for biomolecular detection. Nano Today 8(3), 228–234 (2013). https://doi.org/10.1016/j.nantod.2013.04.009
- X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai et al., Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal. Chim. Acta 758, 1–18 (2013). https://doi.org/10.1016/j.aca.2012.10.060
- J. Baniukevic, I. Hakk Boyaci, A. Goktug Bozkurt, U. Tamer, A. Ramanavicius et al., Magnetic gold nanops in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens. Bioelectron. 43, 281–288 (2013). https://doi.org/10.1016/j.bios.2012.12.014
- H. Ueda, K. Tsumoto, K. Kubota, E. Suzuki, T. Nagamune et al., Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region. Nat. Biotechnol. 14(13), 1714–1718 (1996). https://doi.org/10.1038/nbt1296-1714
- M. Poudineh, C.L. Maikawa, E.Y. Ma, J. Pan, D. Mamerow et al., A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat. Biomed. Eng. 5(1), 53–63 (2021). https://doi.org/10.1038/s41551-020-00661-1
- Q. Zhang, Z. Dong, X. Dong, Q. Duan, J. Ji et al., Double-side-coated grid-type mechanical membrane biosensor based on AuNPs self-assembly and 3D printing. Adv. Mater. Interfaces 9(3), 2101461 (2022). https://doi.org/10.1002/admi.202101461
- Q. Xiong, C.Y. Lim, J. Ren, J. Zhou, K. Pu et al., Magnetic nanochain integrated microfluidic biochips. Nat. Commun. 9(1), 1743 (2018). https://doi.org/10.1038/s41467-018-04172-1
- R. Dong, Y. Liu, L. Mou, J. Deng, X. Jiang, Microfluidics-based biomaterials and biodevices. Adv. Mater. 31(45), 1805033 (2019). https://doi.org/10.1002/adma.201805033
- L. Mou, X. Jiang, Materials for microfluidic immunoassays: a review. Adv. Healthc. Mater. 6, 1601403 (2017). https://doi.org/10.1002/adhm.201601403
- U. Hassan, T. Ghonge, B. Reddy Jr., M. Patel, M. Rappleye et al., A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat. Commun. 8, 15949 (2017). https://doi.org/10.1038/ncomms15949
- Y. Zhang, M. Sun, H. Zhou, Y. Zhang, J. Qiu et al., Microfluidic biosensing platform integrated with flexible sensing array for cancer biomarker point-of-care testing. Sens. Actuat. B Chem. 427, 137148 (2025). https://doi.org/10.1016/j.snb.2024.137148
- J.W. Lee, A machine vision system for lane-departure detection. Comput. Vis. Image Underst. 86(1), 52–78 (2002). https://doi.org/10.1006/cviu.2002.0958
- Y. Wu, Y. Lu, An intelligent machine vision system for detecting surface defects on packing boxes based on support vector machine. Meas. Control 52, 1102–1110 (2019). https://doi.org/10.1177/0020294019858175
- W. Kong, L. Zhou, Y. Wang, J. Zhang, J. Liu et al., A system of driving fatigue detection based on machine vision and its application on smart device. J. Sens. 2015, 548602 (2015). https://doi.org/10.1155/2015/548602
- J. Zhou, P.T. Lin, Midinfrared multispectral detection for real-time and noninvasive analysis of the structure and composition of materials. ACS Sens. 3(7), 1322–1328 (2018). https://doi.org/10.1021/acssensors.8b00222
- X. Sun, K. Chen, E.P. Berg, J.D. Magolski, Predicting fresh beef color grade using machine vision imaging and support vector machine (SVM) analysis. J. Anim. Vet. Adv. 10(12), 1504–1511 (2011). https://doi.org/10.3923/javaa.2011.1504.1511
- Y. Yang, J. Wang, W. Huang, G. Wan, M. Xia et al., Integrated urinalysis devices based on interface-engineered field-effect transistor biosensors incorporated with electronic circuits. Adv. Mater. 34(36), e2203224 (2022). https://doi.org/10.1002/adma.202203224
- Y. Zhang, D. Chen, W. He, N. Chen, L. Zhou et al., Interface-engineered field-effect transistor electronic devices for biosensing. Adv. Mater. 2306252 (2023). https://doi.org/10.1002/adma.202306252
- A.K. Patel, S. Chatterjee, A.K. Gorai, Development of machine vision-based ore classification model using support vector machine (SVM) algorithm. Arab. J. Geosci. 10(5), 107 (2017). https://doi.org/10.1007/s12517-017-2909-0
- G.H. John, Robust Decision Trees: Removing Outliers from Databases. in KDD-95 Proc. (1995), pp. 174–179
- J. Hao, H. Liu, J. Miao, R. Lu, Z. Zhou et al., A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Sci. Rep. 9(1), 12048 (2019). https://doi.org/10.1038/s41598-019-48469-7
- N.T. Vo, H.D. Ngo, N.P. Do Thi, K.P. Nguyen Thi, A.P. Duong et al., Stability investigation of ligand-exchanged CdSe/ZnS-Y (Y = 3-mercaptopropionic acid or mercaptosuccinic acid) through Zeta potential measurements. J. Nanomater. 2016(1), 8564648 (2016). https://doi.org/10.1155/2016/8564648
- D.U. Lee, D.H. Kim, D.H. Choi, S.W. Kim, H.S. Lee et al., Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots. Opt. Express 24(2), A350–A357 (2016). https://doi.org/10.1364/OE.24.00A350
- I. Coropceanu, M.G. Bawendi, Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14(7), 4097–4101 (2014). https://doi.org/10.1021/nl501627e
- M. Song, M. Yang, J. Hao, Pathogenic virus detection by optical nanobiosensors. Cell Rep. Phys. Sci. 2(1), 100288 (2021). https://doi.org/10.1016/j.xcrp.2020.100288
- A.D. Chowdhury, K. Takemura, T.-C. Li, T. Suzuki, E.Y. Park, Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 10, 3737 (2019). https://doi.org/10.1038/s41467-019-11644-5
- S. Zhou, D. Tu, Y. Liu, W. You, Y. Zhang et al., Ultrasensitive point-of-care test for tumor marker in human saliva based on luminescence-amplification strategy of lanthanide nanoprobes. Adv. Sci. 8(5), 2002657 (2021). https://doi.org/10.1002/advs.202002657
- M. Song, M.-C. Wong, L. Li, F. Guo, Y. Liu et al., Rapid point-of-care detection of SARS-CoV-2 RNA with smartphone-based upconversion luminescence diagnostics. Biosens. Bioelectron. 222, 114987 (2023). https://doi.org/10.1016/j.bios.2022.114987
- Y. Chen, W. Chu, W. Liu, X. Guo, Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice. Sens. Actuat. B Chem. 260, 452–459 (2018). https://doi.org/10.1016/j.snb.2017.12.197
- P. Li, W. Li, Z. Xie, H. Zhan, L. Deng et al., A label-free and signal-amplifiable assay method for colorimetric detection of carcinoembryonic antigen. Biotechnol. Bioeng. 119, 504–512 (2022). https://doi.org/10.1002/bit.28003
- S. Shi, J. Chen, X. Wang, M. Xiao, A.R. Chandrasekaran et al., Biointerface engineering with nucleic acid materials for biosensing applications. Adv. Funct. Mater. 32(37), 2201069 (2022). https://doi.org/10.1002/adfm.202201069
- P. Gao, D. Wang, C. Che, Q. Ma, X. Wu et al., Regional and functional division of functional elements of solid-state nanochannels for enhanced sensitivity and specificity of biosensing in complex matrices. Nat. Protoc. 16(9), 4201–4226 (2021). https://doi.org/10.1038/s41596-021-00574-6
- G. Kabay, J. DeCastro, A. Altay, K. Smith, H.W. Lu et al., Emerging biosensing technologies for the diagnostics of viral infectious diseases. Adv. Mater. 34(30), 2201085 (2022). https://doi.org/10.1002/adma.202201085
- S.A. Taylor, CCD and CMOS imaging array technologies: technology review. UK: Xerox Res. Cent. Eur. 1–14 (1998)
- H. Liu, Z. Li, R. Shen, Z. Li, Y. Yang et al., Point-of-care pathogen testing using photonic crystals and machine vision for diagnosis of urinary tract infections. Nano Lett. 21(7), 2854–2860 (2021). https://doi.org/10.1021/acs.nanolett.0c04942
- R.W.G. Hunt, M.R. Pointer, Measuring colour (John Wiley & Sons, New York, 2011)
- P.B. Catrysse, N. Zhao, W. Jin, S. Fan, Subwavelength Bayer RGB color routers with perfect optical efficiency. Nanophotonics 11(10), 2381–2387 (2022). https://doi.org/10.1515/nanoph-2022-0069
- J. Menser, F. Schneider, T. Dreier, S.A. Kaiser, Multi-pulse shadowgraphic RGB illumination and detection for flow tracking. Exp. Fluids 59(6), 90 (2018). https://doi.org/10.1007/s00348-018-2541-0
- K.J. Söderholm, R. Mukherjee, J. Longmate, Filler leachability of composites stored in distilled water or artificial saliva. J. Dent. Res. 75(9), 1692–1699 (1996). https://doi.org/10.1177/00220345960750091201
- F. Naim, S. Messier, L. Saucier, G. Piette, Postprocessing in vitro digestion challenge to evaluate survival of Escherichia coli O157:H7 in fermented dry sausages. Appl. Environ. Microbiol. 70(11), 6637–6642 (2004). https://doi.org/10.1128/AEM.70.11.6637-6642.2004
References
N.D. Huntington, J. Cursons, J. Rautela, The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 20(8), 437–454 (2020). https://doi.org/10.1038/s41568-020-0272-z
I. Vitale, E. Shema, S. Loi, L. Galluzzi, Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27(2), 212–224 (2021). https://doi.org/10.1038/s41591-021-01233-9
J.E. Visvader, Cells of origin in cancer. Nature 469(7330), 314–322 (2011). https://doi.org/10.1038/nature09781
F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74(3), 229–263 (2024). https://doi.org/10.3322/caac.21834
C. Gridelli, A. Rossi, D.P. Carbone, J. Guarize, N. Karachaliou et al., Non-small-cell lung cancer. Nat. Rev. Dis. Primers. 1, 15009 (2015). https://doi.org/10.1038/nrdp.2015.9
J.D. Mizrahi, R. Surana, J.W. Valle, R.T. Shroff, Pancreatic cancer. Lancet 395(10242), 2008–2020 (2020). https://doi.org/10.1016/s0140-6736(20)30974-0
M.J. Duffy, C. Sturgeon, R. Lamerz, C. Haglund, V.L. Holubec et al., Tumor markers in pancreatic cancer: a European group on tumor markers (EGTM) status report. Ann. Oncol. 21(3), 441–447 (2010). https://doi.org/10.1093/annonc/mdp332
M.J. Leveridge, P.J. Bostrom, G. Koulouris, A. Finelli, N. Lawrentschuk, Imaging renal cell carcinoma with ultrasonography. CT and MRI. Nat. Rev. Urol. 7(6), 311–325 (2010). https://doi.org/10.1038/nrurol.2010.63
C. Bouzigues, T. Gacoin, A. Alexandrou, Biological applications of rare-earth based nanops. ACS Nano 5(11), 8488–8505 (2011). https://doi.org/10.1021/nn202378b
A. Jain, P.G.J. Fournier, V. Mendoza-Lavaniegos, P. Sengar, F.M. Guerra-Olvera et al., Functionalized rare earth-doped nanops for breast cancer nanodiagnostic using fluorescence and CT imaging. J. Nanobiotechnology 16(1), 26 (2018). https://doi.org/10.1186/s12951-018-0359-9
F. Cheng, L. Su, C. Qian, Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 7(30), 48832–48841 (2016). https://doi.org/10.18632/oncotarget.9453
R. Lubin, G. Zalcman, L. Bouchet, J. Trédanel, Y. Legros et al., Serum p53 antibodies as early markers of lung cancer. Nat. Med. 1(7), 701–702 (1995). https://doi.org/10.1038/nm0795-701
N. Yonet-Tanyeri, B.Z. Ahlmark, S.R. Little, Advances in multiplexed paper-based analytical devices for cancer diagnosis: a review of technological developments. Adv. Mater. Technol. 6(8), 2001138 (2021). https://doi.org/10.1002/admt.202001138
E.M. Beltrami, I.T. Williams, C.N. Shapiro, M.E. Chamberland, Risk and management of blood-borne infections in health care workers. Clin. Microbiol. Rev. 13(3), 385–407 (2000). https://doi.org/10.1128/CMR.13.3.385
Z. Yaari, Y. Yang, E. Apfelbaum, C. Cupo, A.H. Settle et al., A perception-based nanosensor platform to detect cancer biomarkers. Sci. Adv. 7(47), eaj0852 (2021). https://doi.org/10.1126/sciadv.abj0852
N. Kumar, V.S. Gowri, R. Khan, P. Ranjan, M.A. Sadique, S. Yadav et al., Efficiency of nanomaterials for electrochemical diagnostics based point-of-care detection of non-invasive oral cancer biomarkers. Adv. Mater. Lett. 12(8), 1–20 (2021). https://doi.org/10.5185/amlett.2021.081651
W. Li, H. Wang, Z. Zhao, H. Gao, C. Liu et al., Emerging nanotechnologies for liquid biopsy: the detection of circulating tumor cells and extracellular vesicles. Adv. Mater. 31(45), e1805344 (2019). https://doi.org/10.1002/adma.201805344
J. Kaur, M. Preethi, R. Srivastava, V. Borse, Role of IL-6 and IL-8 biomarkers for optical and electrochemical based point-of-care detection of oral cancer. Biosens. Bioelectron. X 11, 100212 (2022). https://doi.org/10.1016/j.biosx.2022.100212
F.P. de García Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer et al., Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021). https://doi.org/10.1126/science
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre et al., Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445(7130), 896–899 (2007). https://doi.org/10.1038/nature05586
S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015). https://doi.org/10.1039/c4cs00269e
W.C. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998). https://doi.org/10.1126/science.281.5385.2016
T. Lee, B.J. Kim, H. Lee, D. Hahm, W.K. Bae et al., Bright and stable quantum dot light-emitting diodes. Adv. Mater. 34(4), 2106276 (2022). https://doi.org/10.1002/adma.202106276
X. Liu, W. Wu, D. Cui, X. Chen, W. Li, Functional micro-/ nanomaterials for multiplexed biodetection. Adv. Mater. 33(30), e2004734 (2021). https://doi.org/10.1002/adma.202004734
C. Grazon, R.C. Baer, U. Kuzmanović, T. Nguyen, M. Chen et al., A progesterone biosensor derived from microbial screening. Nat. Commun. 11(1), 1276 (2020). https://doi.org/10.1038/s41467-020-14942-5
M. Chen, T.T. Nguyen, N. Varongchayakul, C. Grazon, M. Chern et al., Surface immobilized nucleic acid-transcription factor quantum dots for biosensing. Adv. Healthc. Mater. 9(17), e2000403 (2020). https://doi.org/10.1002/adhm.202000403
K. Chen, L.Y.T. Chou, F. Song, W.C.W. Chan, Fabrication of metal nanoshell quantum-dot barcodes for biomolecular detection. Nano Today 8(3), 228–234 (2013). https://doi.org/10.1016/j.nantod.2013.04.009
X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai et al., Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal. Chim. Acta 758, 1–18 (2013). https://doi.org/10.1016/j.aca.2012.10.060
J. Baniukevic, I. Hakk Boyaci, A. Goktug Bozkurt, U. Tamer, A. Ramanavicius et al., Magnetic gold nanops in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens. Bioelectron. 43, 281–288 (2013). https://doi.org/10.1016/j.bios.2012.12.014
H. Ueda, K. Tsumoto, K. Kubota, E. Suzuki, T. Nagamune et al., Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region. Nat. Biotechnol. 14(13), 1714–1718 (1996). https://doi.org/10.1038/nbt1296-1714
M. Poudineh, C.L. Maikawa, E.Y. Ma, J. Pan, D. Mamerow et al., A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat. Biomed. Eng. 5(1), 53–63 (2021). https://doi.org/10.1038/s41551-020-00661-1
Q. Zhang, Z. Dong, X. Dong, Q. Duan, J. Ji et al., Double-side-coated grid-type mechanical membrane biosensor based on AuNPs self-assembly and 3D printing. Adv. Mater. Interfaces 9(3), 2101461 (2022). https://doi.org/10.1002/admi.202101461
Q. Xiong, C.Y. Lim, J. Ren, J. Zhou, K. Pu et al., Magnetic nanochain integrated microfluidic biochips. Nat. Commun. 9(1), 1743 (2018). https://doi.org/10.1038/s41467-018-04172-1
R. Dong, Y. Liu, L. Mou, J. Deng, X. Jiang, Microfluidics-based biomaterials and biodevices. Adv. Mater. 31(45), 1805033 (2019). https://doi.org/10.1002/adma.201805033
L. Mou, X. Jiang, Materials for microfluidic immunoassays: a review. Adv. Healthc. Mater. 6, 1601403 (2017). https://doi.org/10.1002/adhm.201601403
U. Hassan, T. Ghonge, B. Reddy Jr., M. Patel, M. Rappleye et al., A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat. Commun. 8, 15949 (2017). https://doi.org/10.1038/ncomms15949
Y. Zhang, M. Sun, H. Zhou, Y. Zhang, J. Qiu et al., Microfluidic biosensing platform integrated with flexible sensing array for cancer biomarker point-of-care testing. Sens. Actuat. B Chem. 427, 137148 (2025). https://doi.org/10.1016/j.snb.2024.137148
J.W. Lee, A machine vision system for lane-departure detection. Comput. Vis. Image Underst. 86(1), 52–78 (2002). https://doi.org/10.1006/cviu.2002.0958
Y. Wu, Y. Lu, An intelligent machine vision system for detecting surface defects on packing boxes based on support vector machine. Meas. Control 52, 1102–1110 (2019). https://doi.org/10.1177/0020294019858175
W. Kong, L. Zhou, Y. Wang, J. Zhang, J. Liu et al., A system of driving fatigue detection based on machine vision and its application on smart device. J. Sens. 2015, 548602 (2015). https://doi.org/10.1155/2015/548602
J. Zhou, P.T. Lin, Midinfrared multispectral detection for real-time and noninvasive analysis of the structure and composition of materials. ACS Sens. 3(7), 1322–1328 (2018). https://doi.org/10.1021/acssensors.8b00222
X. Sun, K. Chen, E.P. Berg, J.D. Magolski, Predicting fresh beef color grade using machine vision imaging and support vector machine (SVM) analysis. J. Anim. Vet. Adv. 10(12), 1504–1511 (2011). https://doi.org/10.3923/javaa.2011.1504.1511
Y. Yang, J. Wang, W. Huang, G. Wan, M. Xia et al., Integrated urinalysis devices based on interface-engineered field-effect transistor biosensors incorporated with electronic circuits. Adv. Mater. 34(36), e2203224 (2022). https://doi.org/10.1002/adma.202203224
Y. Zhang, D. Chen, W. He, N. Chen, L. Zhou et al., Interface-engineered field-effect transistor electronic devices for biosensing. Adv. Mater. 2306252 (2023). https://doi.org/10.1002/adma.202306252
A.K. Patel, S. Chatterjee, A.K. Gorai, Development of machine vision-based ore classification model using support vector machine (SVM) algorithm. Arab. J. Geosci. 10(5), 107 (2017). https://doi.org/10.1007/s12517-017-2909-0
G.H. John, Robust Decision Trees: Removing Outliers from Databases. in KDD-95 Proc. (1995), pp. 174–179
J. Hao, H. Liu, J. Miao, R. Lu, Z. Zhou et al., A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Sci. Rep. 9(1), 12048 (2019). https://doi.org/10.1038/s41598-019-48469-7
N.T. Vo, H.D. Ngo, N.P. Do Thi, K.P. Nguyen Thi, A.P. Duong et al., Stability investigation of ligand-exchanged CdSe/ZnS-Y (Y = 3-mercaptopropionic acid or mercaptosuccinic acid) through Zeta potential measurements. J. Nanomater. 2016(1), 8564648 (2016). https://doi.org/10.1155/2016/8564648
D.U. Lee, D.H. Kim, D.H. Choi, S.W. Kim, H.S. Lee et al., Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots. Opt. Express 24(2), A350–A357 (2016). https://doi.org/10.1364/OE.24.00A350
I. Coropceanu, M.G. Bawendi, Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14(7), 4097–4101 (2014). https://doi.org/10.1021/nl501627e
M. Song, M. Yang, J. Hao, Pathogenic virus detection by optical nanobiosensors. Cell Rep. Phys. Sci. 2(1), 100288 (2021). https://doi.org/10.1016/j.xcrp.2020.100288
A.D. Chowdhury, K. Takemura, T.-C. Li, T. Suzuki, E.Y. Park, Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat. Commun. 10, 3737 (2019). https://doi.org/10.1038/s41467-019-11644-5
S. Zhou, D. Tu, Y. Liu, W. You, Y. Zhang et al., Ultrasensitive point-of-care test for tumor marker in human saliva based on luminescence-amplification strategy of lanthanide nanoprobes. Adv. Sci. 8(5), 2002657 (2021). https://doi.org/10.1002/advs.202002657
M. Song, M.-C. Wong, L. Li, F. Guo, Y. Liu et al., Rapid point-of-care detection of SARS-CoV-2 RNA with smartphone-based upconversion luminescence diagnostics. Biosens. Bioelectron. 222, 114987 (2023). https://doi.org/10.1016/j.bios.2022.114987
Y. Chen, W. Chu, W. Liu, X. Guo, Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice. Sens. Actuat. B Chem. 260, 452–459 (2018). https://doi.org/10.1016/j.snb.2017.12.197
P. Li, W. Li, Z. Xie, H. Zhan, L. Deng et al., A label-free and signal-amplifiable assay method for colorimetric detection of carcinoembryonic antigen. Biotechnol. Bioeng. 119, 504–512 (2022). https://doi.org/10.1002/bit.28003
S. Shi, J. Chen, X. Wang, M. Xiao, A.R. Chandrasekaran et al., Biointerface engineering with nucleic acid materials for biosensing applications. Adv. Funct. Mater. 32(37), 2201069 (2022). https://doi.org/10.1002/adfm.202201069
P. Gao, D. Wang, C. Che, Q. Ma, X. Wu et al., Regional and functional division of functional elements of solid-state nanochannels for enhanced sensitivity and specificity of biosensing in complex matrices. Nat. Protoc. 16(9), 4201–4226 (2021). https://doi.org/10.1038/s41596-021-00574-6
G. Kabay, J. DeCastro, A. Altay, K. Smith, H.W. Lu et al., Emerging biosensing technologies for the diagnostics of viral infectious diseases. Adv. Mater. 34(30), 2201085 (2022). https://doi.org/10.1002/adma.202201085
S.A. Taylor, CCD and CMOS imaging array technologies: technology review. UK: Xerox Res. Cent. Eur. 1–14 (1998)
H. Liu, Z. Li, R. Shen, Z. Li, Y. Yang et al., Point-of-care pathogen testing using photonic crystals and machine vision for diagnosis of urinary tract infections. Nano Lett. 21(7), 2854–2860 (2021). https://doi.org/10.1021/acs.nanolett.0c04942
R.W.G. Hunt, M.R. Pointer, Measuring colour (John Wiley & Sons, New York, 2011)
P.B. Catrysse, N. Zhao, W. Jin, S. Fan, Subwavelength Bayer RGB color routers with perfect optical efficiency. Nanophotonics 11(10), 2381–2387 (2022). https://doi.org/10.1515/nanoph-2022-0069
J. Menser, F. Schneider, T. Dreier, S.A. Kaiser, Multi-pulse shadowgraphic RGB illumination and detection for flow tracking. Exp. Fluids 59(6), 90 (2018). https://doi.org/10.1007/s00348-018-2541-0
K.J. Söderholm, R. Mukherjee, J. Longmate, Filler leachability of composites stored in distilled water or artificial saliva. J. Dent. Res. 75(9), 1692–1699 (1996). https://doi.org/10.1177/00220345960750091201
F. Naim, S. Messier, L. Saucier, G. Piette, Postprocessing in vitro digestion challenge to evaluate survival of Escherichia coli O157:H7 in fermented dry sausages. Appl. Environ. Microbiol. 70(11), 6637–6642 (2004). https://doi.org/10.1128/AEM.70.11.6637-6642.2004