Scalable Electrocatalytic Urea Wastewater Treatment Coupled with Hydrogen Production by Regulating Adsorption Behavior of Urea Molecule
Corresponding Author: Bin Xu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 159
Abstract
Electrocatalytic urea wastewater treatment technology has emerged as a promising method for environmental remediation. However, the realization of highly efficient and scalable electrocatalytic urea wastewater treatment (SEUWT) is still an enormous challenge. Herein, through regulating the adsorption behavior of urea functional groups, the efficient SEUWT coupled hydrogen production is realized in anion exchange membrane water electrolyzer (AEMWE). Density functional theory calculations indicate that self-driven electron transfer at the heterogeneous interface (NiO/Co3O4) can induce charge redistribution, resulting in electron-rich NiO and electron-deficient Co3O4, which are superior to adsorbing C=O (electron-withdrawing group) and –NH2 (electron-donating group), respectively, regulating the adsorption behavior of urea molecule and accelerating the reaction kinetics of urea oxidation. This viewpoint is further verified by temperature-programmed desorption experiments. The SEUWT coupled hydrogen production in AEMWE assembled with NiO/Co3O4 (anode) and NiCoP (cathode) can continuously treat urea wastewater at an initial current density of 600 mA cm−2, with the average urea treatment efficiency about 53%. Compared with overall water splitting, the H2 production rate (8.33 mmol s−1) increases by approximately 3.5 times. This work provides a cost-effective strategy for scalable purifying urea-rich wastewater and energy-saving hydrogen production.
Highlights:
1 The heterogeneous interface of NiO/Co3O4 was constructed for regulating adsorption behavior of urea functional groups.
2 The regulation mechanism of urea molecular adsorption behavior was verified by temperature-programmed desorption experiments and density functional theory calculations.
3 Efficient and scalable electrocatalytic urea wastewater treatment coupled with hydrogen production was realized in anion exchange membrane water electrolyzer AEMWE, which can continuously treat urea wastewater at an initial current density of 600 mA cm-2, with about 53% in average urea treatment efficiency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Gao, S. Zhang, P. Wang, M. Jaroniec, Y. Zheng et al., Urea catalytic oxidation for energy and environmental applications. Chem. Soc. Rev. 53, 1552–1591 (2024). https://doi.org/10.1039/d3cs00963g
- A.N. Rollinson, J. Jones, V. Dupont, M.V. Twigg, Urea as a hydrogencarrier: a perspective on its potential for safe, sustainable and long-term energy supply. Energy Environ. Sci. 4, 1216–1224 (2011). https://doi.org/10.1039/C0EE00705F
- W. Chen, L. Xu, X. Zhu, Y.C. Huang, W. Zhou et al., Unveiling the electrooxidation of urea: intramolecular coupling of the N−N bond. Angew. Chem. Int. Ed. 60(13), 7297–7307 (2021). https://doi.org/10.1002/anie.202015773
- M. Zhong, M. Xu, S. Ren, W. Li, C. Wang et al., Modulating the electronic structure of Ni(OH)2 by coupling with low-content Pt for boosting the urea oxidation reaction enables significantly promoted energy-saving hydrogen production. Energy Environ. Sci. 17, 1984–1996 (2024). https://doi.org/10.1039/D3EE03398H
- E. Urbańczyk, M. Sowa, W. Simka, Urea removal from aqueous solutions—a review. J. Appl. Electrochem. 46, 1011–1029 (2016). https://doi.org/10.1007/s10800-016-0993-6
- M. Pan, G. Qian, T. Yu, J. Chen, L. Luo et al., Ni modified Co2VO4 heterojunction with poor/rich-electron structure for overall urea-rich wastewater oxidation. Chem. Eng. J. 435, 134986 (2022). https://doi.org/10.1016/j.cej.2022.134986
- Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
- F. Yue, C. Wang, W. Duan, H. Pang, T. Wei et al., Selenium vacancies regulate d-band centers in Ni3Se4 toward paired electrolysis in anion-exchange membrane electrolyzers for upgrading N-containing compounds. Sci. China Chem. 66, 2109–2120 (2023). https://doi.org/10.1007/s11426-023-1636-7
- J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro Lett. 16, 39 (2023). https://doi.org/10.1007/s40820-023-01253-9
- X. Zhuo, W. Jiang, T. Yu, G. Qian, J. Chen et al., Crystalline–amorphous Ni3S2–NiMoO4 heterostructure for durable urea electrolysis-assisted hydrogen production at high current density. ACS Appl. Mater. Interfaces 14, 46481–46490 (2022). https://doi.org/10.1021/acsami.2c11238
- G. Meng, Z. Chang, L. Zhu, C. Chen, Y. Chen et al., Adsorption site regulations of [W-O]-doped CoP boosting the hydrazine oxidation-coupled hydrogen evolution at elevated current density. Nano-Micro Lett. 15, 212 (2023). https://doi.org/10.1007/s40820-023-01185-4
- T. Wang, L. Miao, S. Zheng, H. Qin, X. Cao et al., Interfacial engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction. ACS Catal. 13, 4091–4100 (2023). https://doi.org/10.1021/acscatal.3c00113
- C. Yang, L. Zhang, Y. Lu, Y. Zou, S. Wang, Designing efficient catalysts for electrocatalytic organic synthesis: from electronic structure to adsorption behavior. Matter 7, 456–474 (2024). https://doi.org/10.1016/j.matt.2023.12.014
- Y. Zeng, Z. Cao, J. Liao, H. Liang, B. Wei et al., Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B Environ. 292, 120160 (2021). https://doi.org/10.1016/j.apcatb.2021.120160
- S. Ni, H. Qu, Z. Xu, X. Zhu, H. Xing et al., Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B Environ. 299, 120638 (2021). https://doi.org/10.1016/j.apcatb.2021.120638
- X. Li, W. Zhu, Y. Zhang, Y. Zhao, D. Wang et al., Rational design of local microenvironment for electrocatalytic water splitting. Inorg. Chem. Front. 11, 4080–4106 (2024). https://doi.org/10.1039/d4qi00854e
- T.G. Yun, Y. Sim, Y. Lim, D. Kim, J.-S. An et al., Surface dissolution and amorphization of electrocatalysts during oxygen evolution reaction: atomistic features and viewpoints. Mater. Today 58, 221–237 (2022). https://doi.org/10.1016/j.mattod.2022.06.023
- Z.-Y. Yu, Y. Duan, X.-Y. Feng, X. Yu, M.-R. Gao et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, e2007100 (2021). https://doi.org/10.1002/adma.202007100
- Y. Fan, J. Zhang, J. Han, M. Zhang, W. Bao et al., In situ self-reconstructed hierarchical bimetallic oxyhydroxide nanosheets of metallic sulfides for high-efficiency electrochemical water splitting. Mater. Horiz. 11, 1797–1807 (2024). https://doi.org/10.1039/d3mh02090h
- J. Zhang, J. Qian, J. Ran, P. Xi, L. Yang et al., Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 10, 12376–12384 (2020). https://doi.org/10.1021/acscatal.0c03756
- Y. Li, J. Han, W. Bao, J. Zhang, T. Ai et al., Self-derivation and reconstruction of silver nanop reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting. J. Energy Chem. 90, 590–599 (2024). https://doi.org/10.1016/j.jechem.2023.11.043
- Y. Zhang, M. Xie, Y. He, Y. Zhang, L. Liu et al., Hybrid NiO/Co3O4 nanoflowers as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 420, 130469 (2021). https://doi.org/10.1016/j.cej.2021.130469
- T. Wang, X. Cao, H. Qin, L. Shang, S. Zheng et al., P-block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 21237–21241 (2021). https://doi.org/10.1002/anie.202108599
- X. Li, W. Zhu, F. Yue, H. Pang, C. Wang et al., Accelerating alcohol oxidation kinetics for electrochemical biomass upgrading via photoinduced active CuIII-O generation. Appl. Catal. B Environ. Energy 358, 124418 (2024). https://doi.org/10.1016/j.apcatb.2024.124418
- Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Z. Liu et al., Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59, 19215–19221 (2020). https://doi.org/10.1002/anie.202007767
- F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu et al., Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12, 4182 (2021). https://doi.org/10.1038/s41467-021-24529-3
- Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang et al., Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 60, 6673–6681 (2021). https://doi.org/10.1002/anie.202016102
- T.A. Shifa, K. Yusupov, G. Solomon, A. Gradone, R. Mazzaro et al., In situ-generated oxide in Sn-doped nickel phosphide enables ultrafast oxygen evolution. ACS Catal. 11, 4520–4529 (2021). https://doi.org/10.1021/acscatal.1c00476
- Y. Li, Z.G. Yu, L. Wang, Y. Weng, C.S. Tang et al., Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. Nat. Commun. 10, 3149 (2019). https://doi.org/10.1038/s41467-019-11124-w
- Z. Li, Y. Feng, Y.-L. Liang, C.-Q. Cheng, C.-K. Dong et al., Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 32, e1908521 (2020). https://doi.org/10.1002/adma.201908521
- L. Chen, Y. Song, Y. Liu, L. Xu, J. Qin et al., NiCoP nanoleaves array for electrocatalytic alkaline H2 evolution and overall water splitting. J. Energy Chem. 50, 395–401 (2020). https://doi.org/10.1016/j.jechem.2020.03.046
- M. Yang, W. Bao, J. Zhang, T. Ai, J. Han et al., Molybdenum/selenium based heterostructure catalyst for efficient hydrogen evolution: effects of ionic dissolution and repolymerization on catalytic performance. J. Colloid Interface Sci. 658, 32–42 (2024). https://doi.org/10.1016/j.jcis.2023.12.033
- Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Y. Liu et al., Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 63, 980–986 (2020). https://doi.org/10.1007/s11426-020-9749-8
- H. Xu, W.-D. Zhang, Y. Yao, J. Yang, J. Liu et al., Amorphous chromium oxide confined Ni/NiO nanops-assembled nanosheets for highly efficient and stable overall urea splitting. J. Colloid Interface Sci. 629, 501–510 (2023). https://doi.org/10.1016/j.jcis.2022.09.072
- T. Li, Z. Wang, L. Wang, M. Wang, Y.-Q. Liu, Nd and Ni Co-doped spinel Co3O4 nanosheet as an effective electrocatalyst for oxygen evolution reaction. Appl. Catal. B Environ. Energy 352, 123990 (2024). https://doi.org/10.1016/j.apcatb.2024.123990
- X. Cao, T. Wang, H. Qin, G. Lin, L. Zhao et al., Crystalline—amorphous interfaces of NiO-CrOx electrocatalysts for boosting the urea oxidation reaction. Nano Res. 16, 3665–3671 (2023). https://doi.org/10.1007/s12274-022-4635-5
- H. Zhang, F. Wan, X. Li, X. Chen, S. Xiong et al., Ultrafine PtMo nanocrystals confined on N-doped carbon toward efficient pH-universal hydrogen evolution reaction. Adv. Funct. Mater. 33, 2306340 (2023). https://doi.org/10.1002/adfm.202306340
- H. Ding, Z. Zhao, H. Zeng, X. Li, K. Cui et al., Heterojunction-induced local charge redistribution boosting energy-saving hydrogen production via urea electrolysis. ACS Mater. Lett. 6, 1029–1041 (2024). https://doi.org/10.1021/acsmaterialslett.3c01578
- X. Xu, H. Liao, L. Huang, S. Chen, R. Wang et al., Surface reconstruction and directed electron transport in NiSe2/MoSe2 Mott-Schottky heterojunction catalysts promote urea-assisted water splitting. Appl. Catal. B Environ. 341, 123312 (2024). https://doi.org/10.1016/j.apcatb.2023.123312
- M. Cai, Q. Zhu, X. Wang, Z. Shao, L. Yao et al., Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv. Mater. 35, e2209338 (2023). https://doi.org/10.1002/adma.202209338
- B. You, Y. Zhang, Y. Jiao, K. Davey, S.Z. Qiao, Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water. Angew. Chem. Int. Ed. 58, 11796–11800 (2019). https://doi.org/10.1002/anie.201906683
- J. Yao, M. Zhang, X. Ma, L. Xu, F. Gao et al., Interfacial electronic modulation of CoP-CoO p-p type heterojunction for enhancing oxygen evolution reaction. J. Colloid Interface Sci. 607, 1343–1352 (2022). https://doi.org/10.1016/j.jcis.2021.09.097
- Y. Lu, T. Liu, C.-L. Dong, Y.-C. Huang, Y. Li et al., Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 33, e2007056 (2021). https://doi.org/10.1002/adma.202007056
- J. Li, J. Li, T. Liu, L. Chen, Y. Li et al., Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis. Angew. Chem. Int. Ed. 60, 26656–26662 (2021). https://doi.org/10.1002/anie.202107886
- X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16, 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
- D. Li, X. Zhou, Q. Ruan, L. Liu, J. Liu et al., Suppression of passivation on nickel hydroxide in electrocatalytic urea oxidization. Adv. Funct. Mater. 34, 2313680 (2024). https://doi.org/10.1002/adfm.202313680
References
X. Gao, S. Zhang, P. Wang, M. Jaroniec, Y. Zheng et al., Urea catalytic oxidation for energy and environmental applications. Chem. Soc. Rev. 53, 1552–1591 (2024). https://doi.org/10.1039/d3cs00963g
A.N. Rollinson, J. Jones, V. Dupont, M.V. Twigg, Urea as a hydrogencarrier: a perspective on its potential for safe, sustainable and long-term energy supply. Energy Environ. Sci. 4, 1216–1224 (2011). https://doi.org/10.1039/C0EE00705F
W. Chen, L. Xu, X. Zhu, Y.C. Huang, W. Zhou et al., Unveiling the electrooxidation of urea: intramolecular coupling of the N−N bond. Angew. Chem. Int. Ed. 60(13), 7297–7307 (2021). https://doi.org/10.1002/anie.202015773
M. Zhong, M. Xu, S. Ren, W. Li, C. Wang et al., Modulating the electronic structure of Ni(OH)2 by coupling with low-content Pt for boosting the urea oxidation reaction enables significantly promoted energy-saving hydrogen production. Energy Environ. Sci. 17, 1984–1996 (2024). https://doi.org/10.1039/D3EE03398H
E. Urbańczyk, M. Sowa, W. Simka, Urea removal from aqueous solutions—a review. J. Appl. Electrochem. 46, 1011–1029 (2016). https://doi.org/10.1007/s10800-016-0993-6
M. Pan, G. Qian, T. Yu, J. Chen, L. Luo et al., Ni modified Co2VO4 heterojunction with poor/rich-electron structure for overall urea-rich wastewater oxidation. Chem. Eng. J. 435, 134986 (2022). https://doi.org/10.1016/j.cej.2022.134986
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
F. Yue, C. Wang, W. Duan, H. Pang, T. Wei et al., Selenium vacancies regulate d-band centers in Ni3Se4 toward paired electrolysis in anion-exchange membrane electrolyzers for upgrading N-containing compounds. Sci. China Chem. 66, 2109–2120 (2023). https://doi.org/10.1007/s11426-023-1636-7
J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro Lett. 16, 39 (2023). https://doi.org/10.1007/s40820-023-01253-9
X. Zhuo, W. Jiang, T. Yu, G. Qian, J. Chen et al., Crystalline–amorphous Ni3S2–NiMoO4 heterostructure for durable urea electrolysis-assisted hydrogen production at high current density. ACS Appl. Mater. Interfaces 14, 46481–46490 (2022). https://doi.org/10.1021/acsami.2c11238
G. Meng, Z. Chang, L. Zhu, C. Chen, Y. Chen et al., Adsorption site regulations of [W-O]-doped CoP boosting the hydrazine oxidation-coupled hydrogen evolution at elevated current density. Nano-Micro Lett. 15, 212 (2023). https://doi.org/10.1007/s40820-023-01185-4
T. Wang, L. Miao, S. Zheng, H. Qin, X. Cao et al., Interfacial engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction. ACS Catal. 13, 4091–4100 (2023). https://doi.org/10.1021/acscatal.3c00113
C. Yang, L. Zhang, Y. Lu, Y. Zou, S. Wang, Designing efficient catalysts for electrocatalytic organic synthesis: from electronic structure to adsorption behavior. Matter 7, 456–474 (2024). https://doi.org/10.1016/j.matt.2023.12.014
Y. Zeng, Z. Cao, J. Liao, H. Liang, B. Wei et al., Construction of hydroxide pn junction for water splitting electrocatalysis. Appl. Catal. B Environ. 292, 120160 (2021). https://doi.org/10.1016/j.apcatb.2021.120160
S. Ni, H. Qu, Z. Xu, X. Zhu, H. Xing et al., Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B Environ. 299, 120638 (2021). https://doi.org/10.1016/j.apcatb.2021.120638
X. Li, W. Zhu, Y. Zhang, Y. Zhao, D. Wang et al., Rational design of local microenvironment for electrocatalytic water splitting. Inorg. Chem. Front. 11, 4080–4106 (2024). https://doi.org/10.1039/d4qi00854e
T.G. Yun, Y. Sim, Y. Lim, D. Kim, J.-S. An et al., Surface dissolution and amorphization of electrocatalysts during oxygen evolution reaction: atomistic features and viewpoints. Mater. Today 58, 221–237 (2022). https://doi.org/10.1016/j.mattod.2022.06.023
Z.-Y. Yu, Y. Duan, X.-Y. Feng, X. Yu, M.-R. Gao et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, e2007100 (2021). https://doi.org/10.1002/adma.202007100
Y. Fan, J. Zhang, J. Han, M. Zhang, W. Bao et al., In situ self-reconstructed hierarchical bimetallic oxyhydroxide nanosheets of metallic sulfides for high-efficiency electrochemical water splitting. Mater. Horiz. 11, 1797–1807 (2024). https://doi.org/10.1039/d3mh02090h
J. Zhang, J. Qian, J. Ran, P. Xi, L. Yang et al., Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 10, 12376–12384 (2020). https://doi.org/10.1021/acscatal.0c03756
Y. Li, J. Han, W. Bao, J. Zhang, T. Ai et al., Self-derivation and reconstruction of silver nanop reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting. J. Energy Chem. 90, 590–599 (2024). https://doi.org/10.1016/j.jechem.2023.11.043
Y. Zhang, M. Xie, Y. He, Y. Zhang, L. Liu et al., Hybrid NiO/Co3O4 nanoflowers as high-performance anode materials for lithium-ion batteries. Chem. Eng. J. 420, 130469 (2021). https://doi.org/10.1016/j.cej.2021.130469
T. Wang, X. Cao, H. Qin, L. Shang, S. Zheng et al., P-block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 21237–21241 (2021). https://doi.org/10.1002/anie.202108599
X. Li, W. Zhu, F. Yue, H. Pang, C. Wang et al., Accelerating alcohol oxidation kinetics for electrochemical biomass upgrading via photoinduced active CuIII-O generation. Appl. Catal. B Environ. Energy 358, 124418 (2024). https://doi.org/10.1016/j.apcatb.2024.124418
Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Z. Liu et al., Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59, 19215–19221 (2020). https://doi.org/10.1002/anie.202007767
F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu et al., Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12, 4182 (2021). https://doi.org/10.1038/s41467-021-24529-3
Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang et al., Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 60, 6673–6681 (2021). https://doi.org/10.1002/anie.202016102
T.A. Shifa, K. Yusupov, G. Solomon, A. Gradone, R. Mazzaro et al., In situ-generated oxide in Sn-doped nickel phosphide enables ultrafast oxygen evolution. ACS Catal. 11, 4520–4529 (2021). https://doi.org/10.1021/acscatal.1c00476
Y. Li, Z.G. Yu, L. Wang, Y. Weng, C.S. Tang et al., Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. Nat. Commun. 10, 3149 (2019). https://doi.org/10.1038/s41467-019-11124-w
Z. Li, Y. Feng, Y.-L. Liang, C.-Q. Cheng, C.-K. Dong et al., Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 32, e1908521 (2020). https://doi.org/10.1002/adma.201908521
L. Chen, Y. Song, Y. Liu, L. Xu, J. Qin et al., NiCoP nanoleaves array for electrocatalytic alkaline H2 evolution and overall water splitting. J. Energy Chem. 50, 395–401 (2020). https://doi.org/10.1016/j.jechem.2020.03.046
M. Yang, W. Bao, J. Zhang, T. Ai, J. Han et al., Molybdenum/selenium based heterostructure catalyst for efficient hydrogen evolution: effects of ionic dissolution and repolymerization on catalytic performance. J. Colloid Interface Sci. 658, 32–42 (2024). https://doi.org/10.1016/j.jcis.2023.12.033
Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Y. Liu et al., Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 63, 980–986 (2020). https://doi.org/10.1007/s11426-020-9749-8
H. Xu, W.-D. Zhang, Y. Yao, J. Yang, J. Liu et al., Amorphous chromium oxide confined Ni/NiO nanops-assembled nanosheets for highly efficient and stable overall urea splitting. J. Colloid Interface Sci. 629, 501–510 (2023). https://doi.org/10.1016/j.jcis.2022.09.072
T. Li, Z. Wang, L. Wang, M. Wang, Y.-Q. Liu, Nd and Ni Co-doped spinel Co3O4 nanosheet as an effective electrocatalyst for oxygen evolution reaction. Appl. Catal. B Environ. Energy 352, 123990 (2024). https://doi.org/10.1016/j.apcatb.2024.123990
X. Cao, T. Wang, H. Qin, G. Lin, L. Zhao et al., Crystalline—amorphous interfaces of NiO-CrOx electrocatalysts for boosting the urea oxidation reaction. Nano Res. 16, 3665–3671 (2023). https://doi.org/10.1007/s12274-022-4635-5
H. Zhang, F. Wan, X. Li, X. Chen, S. Xiong et al., Ultrafine PtMo nanocrystals confined on N-doped carbon toward efficient pH-universal hydrogen evolution reaction. Adv. Funct. Mater. 33, 2306340 (2023). https://doi.org/10.1002/adfm.202306340
H. Ding, Z. Zhao, H. Zeng, X. Li, K. Cui et al., Heterojunction-induced local charge redistribution boosting energy-saving hydrogen production via urea electrolysis. ACS Mater. Lett. 6, 1029–1041 (2024). https://doi.org/10.1021/acsmaterialslett.3c01578
X. Xu, H. Liao, L. Huang, S. Chen, R. Wang et al., Surface reconstruction and directed electron transport in NiSe2/MoSe2 Mott-Schottky heterojunction catalysts promote urea-assisted water splitting. Appl. Catal. B Environ. 341, 123312 (2024). https://doi.org/10.1016/j.apcatb.2023.123312
M. Cai, Q. Zhu, X. Wang, Z. Shao, L. Yao et al., Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv. Mater. 35, e2209338 (2023). https://doi.org/10.1002/adma.202209338
B. You, Y. Zhang, Y. Jiao, K. Davey, S.Z. Qiao, Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water. Angew. Chem. Int. Ed. 58, 11796–11800 (2019). https://doi.org/10.1002/anie.201906683
J. Yao, M. Zhang, X. Ma, L. Xu, F. Gao et al., Interfacial electronic modulation of CoP-CoO p-p type heterojunction for enhancing oxygen evolution reaction. J. Colloid Interface Sci. 607, 1343–1352 (2022). https://doi.org/10.1016/j.jcis.2021.09.097
Y. Lu, T. Liu, C.-L. Dong, Y.-C. Huang, Y. Li et al., Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 33, e2007056 (2021). https://doi.org/10.1002/adma.202007056
J. Li, J. Li, T. Liu, L. Chen, Y. Li et al., Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis. Angew. Chem. Int. Ed. 60, 26656–26662 (2021). https://doi.org/10.1002/anie.202107886
X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16, 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
D. Li, X. Zhou, Q. Ruan, L. Liu, J. Liu et al., Suppression of passivation on nickel hydroxide in electrocatalytic urea oxidization. Adv. Funct. Mater. 34, 2313680 (2024). https://doi.org/10.1002/adfm.202313680