Advances in Anion Chemistry in the Electrolyte Design for Better Lithium Batteries
Corresponding Author: Yongzhu Fu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 149
Abstract
Electrolytes are crucial components in electrochemical energy storage devices, sparking considerable research interest. However, the significance of anions in the electrolytes is often underestimated. In fact, the anions have significant impacts on the performance and stability of lithium batteries. Therefore, comprehensively understanding anion chemistry in electrolytes is of crucial importance. Herein, in-depth comprehension of anion chemistry and its positive effects on the interface, solvation structure of Li-ions, as well as the electrochemical performance of the batteries have been emphasized and summarized. This review aims to present a full scope of anion chemistry and furnish systematic cognition for the rational design of advanced electrolytes for better lithium batteries with high energy density, lifespan, and safety. Furthermore, insightful analysis and perspectives based on the current research are proposed. We hope that this review sheds light on new perspectives on understanding anion chemistry in electrolytes.
Highlights:
1 The impact of anions on the interface is summarized, including forming a solid electrolyte interphase (SEI), repairing the damaged SEI, and modulate electric double layer.
2 The influence of anions on the solvation structure is presented, including enhancing desolvation process of the Li-ions and the antioxidant property of the electrolyte.
3 This review also emphasizes the important role of anions in enhancing battery safety through their flame-retardant properties, as well as their impact on energy density and power density by altering reaction pathways and accelerating reactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
- A.-M. Li, O. Borodin, T.P. Pollard, W. Zhang, N. Zhang et al., Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries. Nat. Chem. 16, 922–929 (2024). https://doi.org/10.1038/s41557-024-01497-x
- Q. Li, C.-G. Han, S. Wang, C.-C. Ye, X. Zhang et al., Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K–CH3SO3K. eScience 3, 100169 (2023). https://doi.org/10.1016/j.esci.2023.100169
- X. Fan, C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021). https://doi.org/10.1039/d1cs00450f
- Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li et al., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021). https://doi.org/10.1038/s41560-021-00839-0
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee et al., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019). https://doi.org/10.1039/C8EE02601G
- X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
- C. Tian, K. Qin, L. Suo, Concentrated electrolytes for rechargeable lithium metal batteries. Mater. Futur. 2, 012101 (2023). https://doi.org/10.1088/2752-5724/acac68
- S. Lin, H. Hua, P. Lai, J. Zhao, A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 11, 2101775 (2021). https://doi.org/10.1002/aenm.202101775
- S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018). https://doi.org/10.1002/adma.201706102
- T.D. Pham, A. Bin Faheem, J. Kim, H.M. Oh, K.K. Lee, Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte. Small 18, e2107492 (2022). https://doi.org/10.1002/smll.202107492
- T.D. Pham, K.K. Lee, Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small 17, e2100133 (2021). https://doi.org/10.1002/smll.202100133
- S. Zhu, J. Chen, Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Mater. 44, 48–56 (2022). https://doi.org/10.1016/j.ensm.2021.10.007
- T. Cai, Q. Sun, Z. Cao, Z. Ma, W. Wahyudi et al., Electrolyte additive-controlled interfacial models enabling stable antimony anodes for lithium-ion batteries. J. Phys. Chem. C 126, 20302–20313 (2022). https://doi.org/10.1021/acs.jpcc.2c07094
- R. Zhao, S. Shen, D. Chai, S. Tang, Y. Liao et al., Interface engineering enabling non-corrosive sulfonimide salt for 4.4 V class lithium batteries. J. Power Sour. 616, 235125 (2024). https://doi.org/10.1016/j.jpowsour.2024.235125
- Y.-W. Song, L. Shen, N. Yao, S. Feng, Q. Cheng et al., Anion-involved solvation structure of lithium polysulfides in lithium-sulfur batteries. Angew. Chem. Int. Ed. 63, e202400343 (2024). https://doi.org/10.1002/anie.202400343
- J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang et al., Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3, 100135 (2023). https://doi.org/10.1016/j.esci.2023.100135
- J. Xu, V. Koverga, A. Phan, A. Min Li, N. Zhang et al., Revealing the anion-solvent interaction for ultralow temperature lithium metal batteries. Adv. Mater. 36, e2306462 (2024). https://doi.org/10.1002/adma.202306462
- J. Wu, Z. Gao, Y. Wang, X. Yang, Q. Liu et al., Electrostatic interaction tailored anion-rich solvation sheath stabilizing high-voltage lithium metal batteries. Nano-Micro Lett. 14, 147 (2022). https://doi.org/10.1007/s40820-022-00896-4
- R. Zhao, X. Li, Y. Si, S. Tang, W. Guo et al., Cu(NO3)2 as efficient electrolyte additive for 4 V class Li metal batteries with ultrahigh stability. Energy Storage Mater. 37, 1–7 (2021). https://doi.org/10.1016/j.ensm.2021.01.030
- J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023). https://doi.org/10.1038/s41467-023-37999-4
- Q. Sun, Z. Gong, T. Zhang, J. Li, X. Zhu et al., Molecule-level multiscale design of nonflammable gel polymer electrolyte to build stable SEI/CEI for lithium metal battery. Nano-Micro Lett. 17, 18 (2024). https://doi.org/10.1007/s40820-024-01508-z
- N. Chen, M. Feng, C. Li, Y. Shang, Y. Ma et al., Anion-dominated conventional-concentrations electrolyte to improve low-temperature performance of lithium-ion batteries. Adv. Funct. Mater. 34, 2400337 (2024). https://doi.org/10.1002/adfm.202400337
- J.A. Weeks, J.N. Burrow, J. Diao, A.G. Paul-Orecchio, H.S. Srinivasan et al., In situ engineering of inorganic-rich solid electrolyte interphases via anion choice enables stable, lithium anodes. Adv. Mater. 36, e2305645 (2024). https://doi.org/10.1002/adma.202305645
- M. Qin, Z. Zeng, Q. Wu, F. Ma, Q. Liu et al., Microsolvating competition in Li+ solvation structure affording PC-based electrolyte with fast kinetics for lithium-ion batteries. Adv. Funct. Mater. 34, 2406357 (2024). https://doi.org/10.1002/adfm.202406357
- G. Yang, S. Zhang, S. Weng, X. Li, X. Wang et al., Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 21, 5316–5323 (2021). https://doi.org/10.1021/acs.nanolett.1c01436
- H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425
- X. Zhu, J. Chen, G. Liu, Y. Mo, Y. Xie et al., Non-fluorinated cyclic ether-based electrolyte with quasi-conjugate effect for high-performance lithium metal batteries. Angew. Chem. Int. Ed. 64, e202412859 (2025). https://doi.org/10.1002/anie.202412859
- J. Chen, Z. Cheng, Y. Liao, L. Yuan, Z. Li et al., Selection of redox mediators for reactivating dead Li in lithium metal batteries. Adv. Energy Mater. 12, 2201800 (2022). https://doi.org/10.1002/aenm.202201800
- C.-B. Jin, X.-Q. Zhang, O.-W. Sheng, S.-Y. Sun, L.-P. Hou et al., Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 22990–22995 (2021). https://doi.org/10.1002/anie.202110589
- S. Qin, J. Zhang, M. Xu, P. Xu, J. Zou et al., Formulating self-repairing solid electrolyte interface via dynamic electric double layer for practical zinc ion batteries. Angew. Chem. Int. Ed. 63, e202410422 (2024). https://doi.org/10.1002/anie.202410422
- H. Wang, J. Zhang, H. Zhang, W. Li, M. Chen et al., Regulating interfacial structure enables high-voltage dilute ether electrolytes. Cell Rep. Phys. Sci. 3, 100919 (2022). https://doi.org/10.1016/j.xcrp.2022.100919
- W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022). https://doi.org/10.1038/s41467-022-29761-z
- D. Chai, H. Yan, X. Wang, X. Li, Y. Fu, Retuning solvating ability of ether solvent by anion chemistry toward 4.5 V class Li metal battery. Adv. Funct. Mater. 34, 2310516 (2024). https://doi.org/10.1002/adfm.202310516
- Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun et al., Lithium anodes: an anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes (adv. energy mater. 14/2020). Adv. Energy Mater. 10, 2070063 (2020). https://doi.org/10.1002/aenm.202070063
- S. Yuan, S. Cao, X. Chen, J. Wei, Z. Lv et al., Deshielding anions enable solvation chemistry control of LiPF6-based electrolyte toward low-temperature lithium-ion batteries. Adv. Mater. 36, e2311327 (2024). https://doi.org/10.1002/adma.202311327
- K. Xu, C. Wang, Batteries: widening voltage windows. Nat. Energy 1, 16161 (2016). https://doi.org/10.1038/nenergy.2016.161
- L. Wu, F. Pei, D. Cheng, Y. Zhang, H. Cheng et al., Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 34, 2310084 (2024). https://doi.org/10.1002/adfm.202310084
- J.H. Yang, Y.K. Jeong, W. Kim, M.A. Lee, J.W. Choi et al., Dual flame-retardant mechanism-assisted suppression of thermal runaway in lithium metal batteries with improved electrochemical performances. Adv. Energy Mater. 2304366 (2024). https://doi.org/10.1002/aenm.202304366
- Z. Huang, X. Li, Z. Chen, P. Li, X. Ji et al., Anion chemistry in energy storage devices. Nat. Rev. Chem. 7, 616–631 (2023). https://doi.org/10.1038/s41570-023-00506-w
- Z. Song, X. Wang, W. Feng, M. Armand, Z. Zhou et al., Designer anions for better rechargeable lithium batteries and beyond. Adv. Mater. 36, 2310245 (2024). https://doi.org/10.1002/adma.202310245
- B. Jagger, M. Pasta, Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023). https://doi.org/10.1016/j.joule.2023.08.007
- Y. Zhu, W. Li, L. Zhang, W. Fang, Q. Ruan et al., Electrode/electrolyte interphases in high-temperature batteries: a review. Energy Environ. Sci. 16, 2825–2855 (2023). https://doi.org/10.1039/d3ee00439b
- J. Popovic, The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat. Commun. 12, 6240 (2021). https://doi.org/10.1038/s41467-021-26481-8
- W. Gu, G. Xue, Q. Dong, R. Yi, Y. Mao et al., Trimethoxyboroxine as an electrolyte additive to enhance the 4.5 V cycling performance of a Ni-rich layered oxide cathode. eScience 2, 486–493 (2022). https://doi.org/10.1016/j.esci.2022.05.003
- L. Lv, H. Zhang, D. Lu, Y. Yu, J. Qi et al., A low-concentration sulfone electrolyte enables high-voltage chemistry of lithium-ion batteries. Energy Mater. 2, 200030 (2022). https://doi.org/10.20517/energymater.2022.38
- F. Qiu, X. Li, H. Deng, D. Wang, X. Mu et al., A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li. Adv. Energy Mater. 9, 1803372 (2019). https://doi.org/10.1002/aenm.201803372
- Q. Wu, M.T. McDowell, Y. Qi, Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145, 2473–2484 (2023). https://doi.org/10.1021/jacs.2c11807
- Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
- J.-F. Ding, R. Xu, C. Yan, B.-Q. Li, H. Yuan et al., A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 59, 306–319 (2021). https://doi.org/10.1016/j.jechem.2020.11.016
- H. Wang, J. Liu, J. He, S. Qi, M. Wu et al., Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2, 557–565 (2022). https://doi.org/10.1016/j.esci.2022.06.005
- L. Chen, J. Lu, Y. Wang, P. He, S. Huang et al., Double-salt electrolyte for Li-ion batteries operated at elevated temperatures. Energy Storage Mater. 49, 493–501 (2022). https://doi.org/10.1016/j.ensm.2022.04.036
- H. Zhou, Z. Fang, J. Li, LiPF6 and lithium difluoro(oxalato)borate/ethylene carbonate + dimethyl carbonate + ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode. J. Power Sources 230, 148–154 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.060
- R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9
- S. Yan, F. Liu, Y. Ou, H.-Y. Zhou, Y. Lu et al., Asymmetric trihalogenated aromatic lithium salt induced lithium halide rich interface for stable cycling of all-solid-state lithium batteries. ACS Nano 17, 19398–19409 (2023). https://doi.org/10.1021/acsnano.3c07246
- S. Wan, K. Song, J. Chen, S. Zhao, W. Ma et al., Reductive competition effect-derived solid electrolyte interphase with evenly scattered inorganics enabling ultrahigh rate and long-life span sodium metal batteries. J. Am. Chem. Soc. 145, 21661–21671 (2023). https://doi.org/10.1021/jacs.3c08224
- M. Yang, X. Chang, L. Wang, X. Wang, M. Gu et al., Interface modulation of metal sulfide anodes for long-cycle-life sodium-ion batteries. Adv. Mater. 35, e2208705 (2023). https://doi.org/10.1002/adma.202208705
- H. Jiang, Y. Han, C. Li, W. Sun, J. Zheng et al., Ultra-high voltage solid-state Li metal batteries enabled by in situ construction of cathode electrolyte interphase through synergistic dual-anion decomposition. Electrochim. Acta 457, 142439 (2023). https://doi.org/10.1016/j.electacta.2023.142439
- J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin et al., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017). https://doi.org/10.1038/nenergy.2017.12
- A. Fu, J. Lin, Z. Zhang, C. Xu, Y. Zou et al., Synergistical stabilization of Li metal anodes and LiCoO2 cathodes in high-voltage Li∥LiCoO2 batteries by potassium selenocyanate (KSeCN) additive. ACS Energy Lett. 7, 1364–1373 (2022). https://doi.org/10.1021/acsenergylett.2c00316
- J. Chen, Y. Peng, Y. Yin, M. Liu, Z. Fang et al., High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte. Energy Environ. Sci. 15, 3360–3368 (2022). https://doi.org/10.1039/D2EE01257J
- C. Wang, X. Zhao, D. Li, C. Yan, Q. Zhang et al., Anion-modulated ion conductor with chain conformational transformation for stabilizing interfacial phase of high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 63, e202317856 (2024). https://doi.org/10.1002/anie.202317856
- K. Dong, Y. Xu, J. Tan, M. Osenberg, F. Sun et al., Unravelling the mechanism of lithium nucleation and growth and the interaction with the solid electrolyte interface. ACS Energy Lett. 6, 1719–1728 (2021). https://doi.org/10.1021/acsenergylett.1c00551
- D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002). https://doi.org/10.1016/S0167-2738(02)00080-2
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019). https://doi.org/10.1016/j.trechm.2019.02.015
- C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z
- C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
- O. Sheng, H. Hu, T. Liu, Z. Ju, G. Lu et al., Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2111026 (2022). https://doi.org/10.1002/adfm.202111026
- S. Ma, J. Zhao, Q. Gao, C. Song, H. Xiao et al., Breaking mass transport limitations by iodized polyacrylonitrile anodes for extremely fast-charging lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202315564 (2023). https://doi.org/10.1002/anie.202315564
- Y. Xia, P. Zhou, X. Kong, J. Tian, W. Zhang et al., Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023). https://doi.org/10.1038/s41560-023-01282-z
- P. Zhou, H. Zhou, Y. Xia, Q. Feng, X. Kong et al., Rational lithium salt molecule tuning for fast charging/discharging lithium metal battery. Angew. Chem. Int. Ed. 63, e202316717 (2024). https://doi.org/10.1002/anie.202316717
- Y. Qin, H. Wang, J. Zhou, R. Li, C. Jiang et al., Binding FSI- to construct a self-healing SEI film for Li-metal batteries by in situ crosslinking vinyl ionic liquid. Angew. Chem. Int. Ed. 63, e202402456 (2024). https://doi.org/10.1002/anie.202402456
- J. Liu, J. Wang, Y. Ni, J. Liu, Y. Zhang et al., Tuning interphase chemistry to stabilize high-voltage LiCoO2 cathode material via spinel coating. Angew. Chem. Int. Ed. 61, e202207000 (2022). https://doi.org/10.1002/anie.202207000
- S. Mao, J. Mao, Z. Shen, Q. Wu, S. Zhang et al., Specific adsorption-oxidation strategy in cathode inner Helmholtz plane enabling 4.6 V practical lithium-ion full cells. Nano Lett. 23, 7014–7022 (2023). https://doi.org/10.1021/acs.nanolett.3c01700
- J. Zhang, Y. Yan, X. Wang, Y. Cui, Z. Zhang et al., Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes. Nat. Commun. 14, 3701 (2023). https://doi.org/10.1038/s41467-023-39384-7
- Z. Wen, W. Fang, F. Wang, H. Kang, S. Zhao et al., Dual-salt electrolyte additive enables high moisture tolerance and favorable electric double layer for lithium metal battery. Angew. Chem. Int. Ed. 63, e202314876 (2024). https://doi.org/10.1002/anie.202314876
- J. Ming, Z. Cao, W. Wahyudi, M. Li, P. Kumar et al., New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases. ACS Energy Lett. 3, 335–340 (2018). https://doi.org/10.1021/acsenergylett.7b01177
- Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9, 2201207 (2022). https://doi.org/10.1002/advs.202201207
- N. Yao, S.-Y. Sun, X. Chen, X.-Q. Zhang, X. Shen et al., The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 61, e202210859 (2022). https://doi.org/10.1002/anie.202210859
- S. Liu, C. Shu, Y. Yan, L. Ren, D. Du et al., Regulating solvation environment of Li ions via high donor number anions for high-performance Li-metal batteries. Chem. Eng. J. 450, 138369 (2022). https://doi.org/10.1016/j.cej.2022.138369
- H. Fu, X. Ye, Y. Zhang, Y. Zhong, X. Wang et al., Toward ultralow temperature lithium metal batteries: advancing the feasibility of 1, 3-dioxolane based localized high-concentration electrolytes via lithium nitrate. Adv. Energy Mater. 14, 2401961 (2024). https://doi.org/10.1002/aenm.202401961
- S. Kim, T.K. Lee, S.K. Kwak, N.-S. Choi, Solid electrolyte interphase layers by using lithiophilic and electrochemically active ionic additives for lithium metal anodes. ACS Energy Lett. 7, 67–69 (2022). https://doi.org/10.1021/acsenergylett.1c02461
- J. You, Q. Wang, R. Wei, L. Deng, Y. Hu et al., Boosting high-voltage practical lithium metal batteries with tailored additives. Nano-Micro Lett. 16, 257 (2024). https://doi.org/10.1007/s40820-024-01479-1
- D. Chai, Y. Zhu, C. Guan, T. Zhang, S. Tang et al., Achieving stable interphases toward lithium metal batteries by a dilute and anion-rich electrolyte. Energy Storage Mater. 62, 102957 (2023). https://doi.org/10.1016/j.ensm.2023.102957
- L. Zheng, F. Guo, T. Kang, Y. Fan, W. Gu et al., Stable lithium-carbon composite enabled by dual-salt additives. Nano-Micro Lett. 13, 111 (2021). https://doi.org/10.1007/s40820-021-00633-3
- Z. Jiang, T. Yang, C. Li, J. Zou, H. Yang et al., Synergistic additives enabling stable cycling of ether electrolyte in 4.4 V Ni-rich/Li metal batteries. Adv. Funct. Mater. 33, 2306868 (2023). https://doi.org/10.1002/adfm.202306868
- R. Zhao, X. Li, Y. Si, W. Guo, Y. Fu, Tuning solvation behavior of ester-based electrolytes toward highly stable lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 40582–40589 (2021). https://doi.org/10.1021/acsami.1c10279
- X. Li, R. Zhao, Y. Fu, A. Manthiram, Nitrate additives for lithium batteries: mechanisms, applications, and prospects. eScience 1, 108–123 (2021). https://doi.org/10.1016/j.esci.2021.12.006
- Y. Zhu, X. Li, Y. Si, X. Zhang, P. Sang et al., Regulating dissolution chemistry of nitrates in carbonate electrolyte for high-stable lithium metal batteries. J. Energy Chem. 73, 422–428 (2022). https://doi.org/10.1016/j.jechem.2022.06.046
- M. Xia, M. Lin, G. Liu, Y. Cheng, T. Jiao et al., Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chem. Eng. J. 442, 136351 (2022). https://doi.org/10.1016/j.cej.2022.136351
- J. Jung, H. Chu, I. Kim, D.H. Lee, G. Doo et al., Confronting sulfur electrode passivation and Li metal electrode degradation in lithium-sulfur batteries using thiocyanate anion. Adv. Sci. 10, e2301006 (2023). https://doi.org/10.1002/advs.202301006
- Z. Jiang, C. Li, T. Yang, Y. Deng, J. Zou et al., Fluorine-free lithium metal batteries with a stable LiF-free solid electrolyte interphase. ACS Energy Lett. 9, 1389–1396 (2024). https://doi.org/10.1021/acsenergylett.3c02724
- J.-X. Chen, J.-H. Zhang, X.-Z. Fan, F.-F. Wang, W. Tang et al., Solvating lithium and tethering aluminium using di-coordination-strength anions for low-temperature lithium metal batteries. Energy Environ. Sci. 17, 4036–4043 (2024). https://doi.org/10.1039/D3EE03809B
- X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
- K.W. Schroder, A.G. Dylla, L.D.C. Bishop, E.R. Kamilar, J. Saunders et al., Effects of solute-solvent hydrogen bonding on nonaqueous electrolyte structure. J. Phys. Chem. Lett. 6, 2888–2891 (2015). https://doi.org/10.1021/acs.jpclett.5b01216
- H. Li, Y. Kang, W. Wei, C. Yan, X. Ma et al., Branch-chain-rich diisopropyl ether with steric hindrance facilitates stable cycling of lithium batteries at –20 °C. Nano-Micro Lett. 16, 197 (2024). https://doi.org/10.1007/s40820-024-01419-z
- J. Wang, J. Zhang, J. Wu, M. Huang, L. Jia et al., Interfacial “single-atom-in-defects” catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries. Adv. Mater. 35, e2302828 (2023). https://doi.org/10.1002/adma.202302828
- Y. Huang, J. Geng, Z. Jiang, M. Ren, B. Wen et al., Solvation structure with enhanced anionic coordination for stable anodes in lithium-oxygen batteries. Angew. Chem. Int. Ed. 62, e202306236 (2023). https://doi.org/10.1002/anie.202306236
- X. Zhou, Y. Huang, B. Wen, Z. Yang, Z. Hao et al., Regulation of anion-Na+ coordination chemistry in electrolyte solvates for low-temperature sodium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 121, e2316914121 (2024). https://doi.org/10.1073/pnas.2316914121
- H. Su, Z. Chen, M. Li, P. Bai, Y. Li et al., Achieving practical high-energy-density lithium-metal batteries by a dual-anion regulated electrolyte. Adv. Mater. 35, e2301171 (2023). https://doi.org/10.1002/adma.202301171
- P. Liang, H. Hu, Y. Dong, Z. Wang, K. Liu et al., Competitive coordination of ternary anions enabling fast Li-ion desolvation for low-temperature lithium metal batteries. Adv. Funct. Mater. 34, 2309858 (2024). https://doi.org/10.1002/adfm.202309858
- X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
- C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
- Z. Wu, R. Li, S. Zhang, L. lv, T. Deng et al., Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9, 650–664 (2023). https://doi.org/10.1016/j.chempr.2022.10.027
- Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
- Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
- Z. Jiang, J. Mo, C. Li, H. Li, Q. Zhang et al., Anion-regulated weakly solvating electrolytes for high-voltage lithium metal batteries. Energy Environ. Mater. 6, 12440 (2023). https://doi.org/10.1002/eem2.12440
- Y.-F. Tian, S.-J. Tan, Z.-Y. Lu, D.-X. Xu, H.-X. Chen et al., Insights into anion-solvent interactions to boost stable operation of ether-based electrolytes in pure-SiOx||LiNi0.8Mn0.1Co0.1O2 full cells. Angew. Chem. Int. Ed. 62, 202305988 (2023). https://doi.org/10.1002/anie.202305988
- X. Min, C. Han, S. Zhang, J. Ma, N. Hu et al., Highly oxidative-resistant cyano-functionalized lithium borate salt for enhanced cycling performance of practical lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202302664 (2023). https://doi.org/10.1002/anie.202302664
- D. Wu, C. Zhu, M. Wu, H. Wang, J. Huang et al., Highly oxidation-resistant electrolyte for 4.7 V sodium metal batteries enabled by anion/cation solvation engineering. Angew. Chem. Int. Ed. 61, e202214198 (2022). https://doi.org/10.1002/anie.202214198
- S. Zhang, S. Li, Y. Lu, Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience 1, 163–177 (2021). https://doi.org/10.1016/j.esci.2021.12.003
- Z. Gao, S. Rao, T. Zhang, W. Li, X. Yang et al., Design strategies of flame-retardant additives for lithium ion electrolyte. J. Electrochem. Energy Convers. Storage 19, 030910 (2022). https://doi.org/10.1115/1.4053968
- R. He, K. Deng, D. Mo, X. Guan, Y. Hu et al., Active diluent-anion synergy strategy regulating nonflammable electrolytes for high-efficiency Li metal batteries. Angew. Chem. Int. Ed. 63, e202317176 (2024). https://doi.org/10.1002/anie.202317176
- Y. Zou, G. Liu, Y. Wang, Q. Li, Z. Ma et al., Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature. Adv. Energy Mater. 13, 2300443 (2023). https://doi.org/10.1002/aenm.202300443
- D.-J. Yoo, Q. Liu, O. Cohen, M. Kim, K.A. Persson et al., Rational design of fluorinated electrolytes for low temperature lithium-ion batteries. Adv. Energy Mater. 13, 2204182 (2023). https://doi.org/10.1002/aenm.202204182
- M. Qin, Z. Zeng, F. Ma, C. Gu, X. Chen et al., Doping in solvation structure: enabling fluorinated carbonate electrolyte for high-voltage and high-safety lithium-ion batteries. ACS Energy Lett. 9, 2536–2544 (2024). https://doi.org/10.1021/acsenergylett.4c00790
- P. Xiao, Y. Zhao, Z. Piao, B. Li, G. Zhou et al., A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li||NCM811 cells with a wide temperature range of 100 °C. Energy Environ. Sci. 15, 2435–2444 (2022). https://doi.org/10.1039/D1EE02959B
- L. Tan, S. Chen, Y. Chen, J. Fan, D. Ruan et al., Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality. Angew. Chem. Int. Ed. 61, e202203693 (2022). https://doi.org/10.1002/anie.202203693
- M. Zheng, X. Li, J. Sun, X. Wang, G. Liu et al., Research progress on chloride solid electrolytes for all-solid-state batteries. J. Power Sources 595, 234051 (2024). https://doi.org/10.1016/j.jpowsour.2024.234051
- D.H.S. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020). https://doi.org/10.1038/s41565-020-0657-x
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- C. Zuo, D. Dong, H. Wang, Y. Sun, Y.-C. Lu, Bromide-based nonflammable electrolyte for safe and long-life sodium metal batteries. Energy Environ. Sci. 17, 791–799 (2024). https://doi.org/10.1039/d3ee03332e
- Y. He, Y. Zhang, P. Yu, F. Ding, X. Li et al., Ion association tailoring SEI composition for Li metal anode protection. J. Energy Chem. 45, 1–6 (2020). https://doi.org/10.1016/j.jechem.2019.09.033
- Z. Jiang, Y. Deng, J. Mo, Q. Zhang, Z. Zeng et al., Switching reaction pathway of medium-concentration ether electrolytes to achieve 4.5 V lithium metal batteries. Nano Lett. 23, 8481–8489 (2023). https://doi.org/10.1021/acs.nanolett.3c02013
- Y. Yang, J. Wang, Z. Li, Z. Yang, B. Wang et al., Constructing LiF-dominated interphases with polymer interwoven outer layer enables long-term cycling of Si anodes. ACS Nano 18, 7666–7676 (2024). https://doi.org/10.1021/acsnano.4c00998
- S. Xue, J. Shang, X. Pu, H. Cheng, L. Zhang et al., Dual anionic doping strategy towards synergistic optimization of Co9S8 for fast and durable sodium storage. Energy Storage Mater. 55, 33–41 (2023). https://doi.org/10.1016/j.ensm.2022.11.040
- B. Wang, Y. Huang, Y. Wang, H. Wang, Synergistic solvation of anion: an effective strategy toward economical high-performance dual-ion battery. Adv. Funct. Mater. 33, 2212287 (2023). https://doi.org/10.1002/adfm.202212287
- H. Jiang, X. Han, X. Du, Z. Chen, C. Lu et al., A PF6––permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery. Adv. Mater. 34, e2108665 (2022). https://doi.org/10.1002/adma.202108665
- X. Tong, X. Ou, N. Wu, H. Wang, J. Li et al., High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery. Adv. Energy Mater. 11, 2100151 (2021). https://doi.org/10.1002/aenm.202100151
References
J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
A.-M. Li, O. Borodin, T.P. Pollard, W. Zhang, N. Zhang et al., Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries. Nat. Chem. 16, 922–929 (2024). https://doi.org/10.1038/s41557-024-01497-x
Q. Li, C.-G. Han, S. Wang, C.-C. Ye, X. Zhang et al., Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF3SO3K–CH3SO3K. eScience 3, 100169 (2023). https://doi.org/10.1016/j.esci.2023.100169
X. Fan, C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021). https://doi.org/10.1039/d1cs00450f
Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li et al., A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021). https://doi.org/10.1038/s41560-021-00839-0
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee et al., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019). https://doi.org/10.1039/C8EE02601G
X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
C. Tian, K. Qin, L. Suo, Concentrated electrolytes for rechargeable lithium metal batteries. Mater. Futur. 2, 012101 (2023). https://doi.org/10.1088/2752-5724/acac68
S. Lin, H. Hua, P. Lai, J. Zhao, A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 11, 2101775 (2021). https://doi.org/10.1002/aenm.202101775
S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018). https://doi.org/10.1002/adma.201706102
T.D. Pham, A. Bin Faheem, J. Kim, H.M. Oh, K.K. Lee, Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte. Small 18, e2107492 (2022). https://doi.org/10.1002/smll.202107492
T.D. Pham, K.K. Lee, Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte. Small 17, e2100133 (2021). https://doi.org/10.1002/smll.202100133
S. Zhu, J. Chen, Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Mater. 44, 48–56 (2022). https://doi.org/10.1016/j.ensm.2021.10.007
T. Cai, Q. Sun, Z. Cao, Z. Ma, W. Wahyudi et al., Electrolyte additive-controlled interfacial models enabling stable antimony anodes for lithium-ion batteries. J. Phys. Chem. C 126, 20302–20313 (2022). https://doi.org/10.1021/acs.jpcc.2c07094
R. Zhao, S. Shen, D. Chai, S. Tang, Y. Liao et al., Interface engineering enabling non-corrosive sulfonimide salt for 4.4 V class lithium batteries. J. Power Sour. 616, 235125 (2024). https://doi.org/10.1016/j.jpowsour.2024.235125
Y.-W. Song, L. Shen, N. Yao, S. Feng, Q. Cheng et al., Anion-involved solvation structure of lithium polysulfides in lithium-sulfur batteries. Angew. Chem. Int. Ed. 63, e202400343 (2024). https://doi.org/10.1002/anie.202400343
J. Chen, Y. Zhang, H. Lu, J. Ding, X. Wang et al., Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries. eScience 3, 100135 (2023). https://doi.org/10.1016/j.esci.2023.100135
J. Xu, V. Koverga, A. Phan, A. Min Li, N. Zhang et al., Revealing the anion-solvent interaction for ultralow temperature lithium metal batteries. Adv. Mater. 36, e2306462 (2024). https://doi.org/10.1002/adma.202306462
J. Wu, Z. Gao, Y. Wang, X. Yang, Q. Liu et al., Electrostatic interaction tailored anion-rich solvation sheath stabilizing high-voltage lithium metal batteries. Nano-Micro Lett. 14, 147 (2022). https://doi.org/10.1007/s40820-022-00896-4
R. Zhao, X. Li, Y. Si, S. Tang, W. Guo et al., Cu(NO3)2 as efficient electrolyte additive for 4 V class Li metal batteries with ultrahigh stability. Energy Storage Mater. 37, 1–7 (2021). https://doi.org/10.1016/j.ensm.2021.01.030
J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023). https://doi.org/10.1038/s41467-023-37999-4
Q. Sun, Z. Gong, T. Zhang, J. Li, X. Zhu et al., Molecule-level multiscale design of nonflammable gel polymer electrolyte to build stable SEI/CEI for lithium metal battery. Nano-Micro Lett. 17, 18 (2024). https://doi.org/10.1007/s40820-024-01508-z
N. Chen, M. Feng, C. Li, Y. Shang, Y. Ma et al., Anion-dominated conventional-concentrations electrolyte to improve low-temperature performance of lithium-ion batteries. Adv. Funct. Mater. 34, 2400337 (2024). https://doi.org/10.1002/adfm.202400337
J.A. Weeks, J.N. Burrow, J. Diao, A.G. Paul-Orecchio, H.S. Srinivasan et al., In situ engineering of inorganic-rich solid electrolyte interphases via anion choice enables stable, lithium anodes. Adv. Mater. 36, e2305645 (2024). https://doi.org/10.1002/adma.202305645
M. Qin, Z. Zeng, Q. Wu, F. Ma, Q. Liu et al., Microsolvating competition in Li+ solvation structure affording PC-based electrolyte with fast kinetics for lithium-ion batteries. Adv. Funct. Mater. 34, 2406357 (2024). https://doi.org/10.1002/adfm.202406357
G. Yang, S. Zhang, S. Weng, X. Li, X. Wang et al., Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 21, 5316–5323 (2021). https://doi.org/10.1021/acs.nanolett.1c01436
H. Cheng, Q. Sun, L. Li, Y. Zou, Y. Wang et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425
X. Zhu, J. Chen, G. Liu, Y. Mo, Y. Xie et al., Non-fluorinated cyclic ether-based electrolyte with quasi-conjugate effect for high-performance lithium metal batteries. Angew. Chem. Int. Ed. 64, e202412859 (2025). https://doi.org/10.1002/anie.202412859
J. Chen, Z. Cheng, Y. Liao, L. Yuan, Z. Li et al., Selection of redox mediators for reactivating dead Li in lithium metal batteries. Adv. Energy Mater. 12, 2201800 (2022). https://doi.org/10.1002/aenm.202201800
C.-B. Jin, X.-Q. Zhang, O.-W. Sheng, S.-Y. Sun, L.-P. Hou et al., Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 22990–22995 (2021). https://doi.org/10.1002/anie.202110589
S. Qin, J. Zhang, M. Xu, P. Xu, J. Zou et al., Formulating self-repairing solid electrolyte interface via dynamic electric double layer for practical zinc ion batteries. Angew. Chem. Int. Ed. 63, e202410422 (2024). https://doi.org/10.1002/anie.202410422
H. Wang, J. Zhang, H. Zhang, W. Li, M. Chen et al., Regulating interfacial structure enables high-voltage dilute ether electrolytes. Cell Rep. Phys. Sci. 3, 100919 (2022). https://doi.org/10.1016/j.xcrp.2022.100919
W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022). https://doi.org/10.1038/s41467-022-29761-z
D. Chai, H. Yan, X. Wang, X. Li, Y. Fu, Retuning solvating ability of ether solvent by anion chemistry toward 4.5 V class Li metal battery. Adv. Funct. Mater. 34, 2310516 (2024). https://doi.org/10.1002/adfm.202310516
Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun et al., Lithium anodes: an anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes (adv. energy mater. 14/2020). Adv. Energy Mater. 10, 2070063 (2020). https://doi.org/10.1002/aenm.202070063
S. Yuan, S. Cao, X. Chen, J. Wei, Z. Lv et al., Deshielding anions enable solvation chemistry control of LiPF6-based electrolyte toward low-temperature lithium-ion batteries. Adv. Mater. 36, e2311327 (2024). https://doi.org/10.1002/adma.202311327
K. Xu, C. Wang, Batteries: widening voltage windows. Nat. Energy 1, 16161 (2016). https://doi.org/10.1038/nenergy.2016.161
L. Wu, F. Pei, D. Cheng, Y. Zhang, H. Cheng et al., Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 34, 2310084 (2024). https://doi.org/10.1002/adfm.202310084
J.H. Yang, Y.K. Jeong, W. Kim, M.A. Lee, J.W. Choi et al., Dual flame-retardant mechanism-assisted suppression of thermal runaway in lithium metal batteries with improved electrochemical performances. Adv. Energy Mater. 2304366 (2024). https://doi.org/10.1002/aenm.202304366
Z. Huang, X. Li, Z. Chen, P. Li, X. Ji et al., Anion chemistry in energy storage devices. Nat. Rev. Chem. 7, 616–631 (2023). https://doi.org/10.1038/s41570-023-00506-w
Z. Song, X. Wang, W. Feng, M. Armand, Z. Zhou et al., Designer anions for better rechargeable lithium batteries and beyond. Adv. Mater. 36, 2310245 (2024). https://doi.org/10.1002/adma.202310245
B. Jagger, M. Pasta, Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023). https://doi.org/10.1016/j.joule.2023.08.007
Y. Zhu, W. Li, L. Zhang, W. Fang, Q. Ruan et al., Electrode/electrolyte interphases in high-temperature batteries: a review. Energy Environ. Sci. 16, 2825–2855 (2023). https://doi.org/10.1039/d3ee00439b
J. Popovic, The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat. Commun. 12, 6240 (2021). https://doi.org/10.1038/s41467-021-26481-8
W. Gu, G. Xue, Q. Dong, R. Yi, Y. Mao et al., Trimethoxyboroxine as an electrolyte additive to enhance the 4.5 V cycling performance of a Ni-rich layered oxide cathode. eScience 2, 486–493 (2022). https://doi.org/10.1016/j.esci.2022.05.003
L. Lv, H. Zhang, D. Lu, Y. Yu, J. Qi et al., A low-concentration sulfone electrolyte enables high-voltage chemistry of lithium-ion batteries. Energy Mater. 2, 200030 (2022). https://doi.org/10.20517/energymater.2022.38
F. Qiu, X. Li, H. Deng, D. Wang, X. Mu et al., A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li. Adv. Energy Mater. 9, 1803372 (2019). https://doi.org/10.1002/aenm.201803372
Q. Wu, M.T. McDowell, Y. Qi, Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145, 2473–2484 (2023). https://doi.org/10.1021/jacs.2c11807
Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
J.-F. Ding, R. Xu, C. Yan, B.-Q. Li, H. Yuan et al., A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 59, 306–319 (2021). https://doi.org/10.1016/j.jechem.2020.11.016
H. Wang, J. Liu, J. He, S. Qi, M. Wu et al., Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2, 557–565 (2022). https://doi.org/10.1016/j.esci.2022.06.005
L. Chen, J. Lu, Y. Wang, P. He, S. Huang et al., Double-salt electrolyte for Li-ion batteries operated at elevated temperatures. Energy Storage Mater. 49, 493–501 (2022). https://doi.org/10.1016/j.ensm.2022.04.036
H. Zhou, Z. Fang, J. Li, LiPF6 and lithium difluoro(oxalato)borate/ethylene carbonate + dimethyl carbonate + ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode. J. Power Sources 230, 148–154 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.060
R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin et al., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9
S. Yan, F. Liu, Y. Ou, H.-Y. Zhou, Y. Lu et al., Asymmetric trihalogenated aromatic lithium salt induced lithium halide rich interface for stable cycling of all-solid-state lithium batteries. ACS Nano 17, 19398–19409 (2023). https://doi.org/10.1021/acsnano.3c07246
S. Wan, K. Song, J. Chen, S. Zhao, W. Ma et al., Reductive competition effect-derived solid electrolyte interphase with evenly scattered inorganics enabling ultrahigh rate and long-life span sodium metal batteries. J. Am. Chem. Soc. 145, 21661–21671 (2023). https://doi.org/10.1021/jacs.3c08224
M. Yang, X. Chang, L. Wang, X. Wang, M. Gu et al., Interface modulation of metal sulfide anodes for long-cycle-life sodium-ion batteries. Adv. Mater. 35, e2208705 (2023). https://doi.org/10.1002/adma.202208705
H. Jiang, Y. Han, C. Li, W. Sun, J. Zheng et al., Ultra-high voltage solid-state Li metal batteries enabled by in situ construction of cathode electrolyte interphase through synergistic dual-anion decomposition. Electrochim. Acta 457, 142439 (2023). https://doi.org/10.1016/j.electacta.2023.142439
J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin et al., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017). https://doi.org/10.1038/nenergy.2017.12
A. Fu, J. Lin, Z. Zhang, C. Xu, Y. Zou et al., Synergistical stabilization of Li metal anodes and LiCoO2 cathodes in high-voltage Li∥LiCoO2 batteries by potassium selenocyanate (KSeCN) additive. ACS Energy Lett. 7, 1364–1373 (2022). https://doi.org/10.1021/acsenergylett.2c00316
J. Chen, Y. Peng, Y. Yin, M. Liu, Z. Fang et al., High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte. Energy Environ. Sci. 15, 3360–3368 (2022). https://doi.org/10.1039/D2EE01257J
C. Wang, X. Zhao, D. Li, C. Yan, Q. Zhang et al., Anion-modulated ion conductor with chain conformational transformation for stabilizing interfacial phase of high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 63, e202317856 (2024). https://doi.org/10.1002/anie.202317856
K. Dong, Y. Xu, J. Tan, M. Osenberg, F. Sun et al., Unravelling the mechanism of lithium nucleation and growth and the interaction with the solid electrolyte interface. ACS Energy Lett. 6, 1719–1728 (2021). https://doi.org/10.1021/acsenergylett.1c00551
D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002). https://doi.org/10.1016/S0167-2738(02)00080-2
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019). https://doi.org/10.1016/j.trechm.2019.02.015
C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z
C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
O. Sheng, H. Hu, T. Liu, Z. Ju, G. Lu et al., Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2111026 (2022). https://doi.org/10.1002/adfm.202111026
S. Ma, J. Zhao, Q. Gao, C. Song, H. Xiao et al., Breaking mass transport limitations by iodized polyacrylonitrile anodes for extremely fast-charging lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202315564 (2023). https://doi.org/10.1002/anie.202315564
Y. Xia, P. Zhou, X. Kong, J. Tian, W. Zhang et al., Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023). https://doi.org/10.1038/s41560-023-01282-z
P. Zhou, H. Zhou, Y. Xia, Q. Feng, X. Kong et al., Rational lithium salt molecule tuning for fast charging/discharging lithium metal battery. Angew. Chem. Int. Ed. 63, e202316717 (2024). https://doi.org/10.1002/anie.202316717
Y. Qin, H. Wang, J. Zhou, R. Li, C. Jiang et al., Binding FSI- to construct a self-healing SEI film for Li-metal batteries by in situ crosslinking vinyl ionic liquid. Angew. Chem. Int. Ed. 63, e202402456 (2024). https://doi.org/10.1002/anie.202402456
J. Liu, J. Wang, Y. Ni, J. Liu, Y. Zhang et al., Tuning interphase chemistry to stabilize high-voltage LiCoO2 cathode material via spinel coating. Angew. Chem. Int. Ed. 61, e202207000 (2022). https://doi.org/10.1002/anie.202207000
S. Mao, J. Mao, Z. Shen, Q. Wu, S. Zhang et al., Specific adsorption-oxidation strategy in cathode inner Helmholtz plane enabling 4.6 V practical lithium-ion full cells. Nano Lett. 23, 7014–7022 (2023). https://doi.org/10.1021/acs.nanolett.3c01700
J. Zhang, Y. Yan, X. Wang, Y. Cui, Z. Zhang et al., Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes. Nat. Commun. 14, 3701 (2023). https://doi.org/10.1038/s41467-023-39384-7
Z. Wen, W. Fang, F. Wang, H. Kang, S. Zhao et al., Dual-salt electrolyte additive enables high moisture tolerance and favorable electric double layer for lithium metal battery. Angew. Chem. Int. Ed. 63, e202314876 (2024). https://doi.org/10.1002/anie.202314876
J. Ming, Z. Cao, W. Wahyudi, M. Li, P. Kumar et al., New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases. ACS Energy Lett. 3, 335–340 (2018). https://doi.org/10.1021/acsenergylett.7b01177
Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9, 2201207 (2022). https://doi.org/10.1002/advs.202201207
N. Yao, S.-Y. Sun, X. Chen, X.-Q. Zhang, X. Shen et al., The anionic chemistry in regulating the reductive stability of electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 61, e202210859 (2022). https://doi.org/10.1002/anie.202210859
S. Liu, C. Shu, Y. Yan, L. Ren, D. Du et al., Regulating solvation environment of Li ions via high donor number anions for high-performance Li-metal batteries. Chem. Eng. J. 450, 138369 (2022). https://doi.org/10.1016/j.cej.2022.138369
H. Fu, X. Ye, Y. Zhang, Y. Zhong, X. Wang et al., Toward ultralow temperature lithium metal batteries: advancing the feasibility of 1, 3-dioxolane based localized high-concentration electrolytes via lithium nitrate. Adv. Energy Mater. 14, 2401961 (2024). https://doi.org/10.1002/aenm.202401961
S. Kim, T.K. Lee, S.K. Kwak, N.-S. Choi, Solid electrolyte interphase layers by using lithiophilic and electrochemically active ionic additives for lithium metal anodes. ACS Energy Lett. 7, 67–69 (2022). https://doi.org/10.1021/acsenergylett.1c02461
J. You, Q. Wang, R. Wei, L. Deng, Y. Hu et al., Boosting high-voltage practical lithium metal batteries with tailored additives. Nano-Micro Lett. 16, 257 (2024). https://doi.org/10.1007/s40820-024-01479-1
D. Chai, Y. Zhu, C. Guan, T. Zhang, S. Tang et al., Achieving stable interphases toward lithium metal batteries by a dilute and anion-rich electrolyte. Energy Storage Mater. 62, 102957 (2023). https://doi.org/10.1016/j.ensm.2023.102957
L. Zheng, F. Guo, T. Kang, Y. Fan, W. Gu et al., Stable lithium-carbon composite enabled by dual-salt additives. Nano-Micro Lett. 13, 111 (2021). https://doi.org/10.1007/s40820-021-00633-3
Z. Jiang, T. Yang, C. Li, J. Zou, H. Yang et al., Synergistic additives enabling stable cycling of ether electrolyte in 4.4 V Ni-rich/Li metal batteries. Adv. Funct. Mater. 33, 2306868 (2023). https://doi.org/10.1002/adfm.202306868
R. Zhao, X. Li, Y. Si, W. Guo, Y. Fu, Tuning solvation behavior of ester-based electrolytes toward highly stable lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 40582–40589 (2021). https://doi.org/10.1021/acsami.1c10279
X. Li, R. Zhao, Y. Fu, A. Manthiram, Nitrate additives for lithium batteries: mechanisms, applications, and prospects. eScience 1, 108–123 (2021). https://doi.org/10.1016/j.esci.2021.12.006
Y. Zhu, X. Li, Y. Si, X. Zhang, P. Sang et al., Regulating dissolution chemistry of nitrates in carbonate electrolyte for high-stable lithium metal batteries. J. Energy Chem. 73, 422–428 (2022). https://doi.org/10.1016/j.jechem.2022.06.046
M. Xia, M. Lin, G. Liu, Y. Cheng, T. Jiao et al., Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry. Chem. Eng. J. 442, 136351 (2022). https://doi.org/10.1016/j.cej.2022.136351
J. Jung, H. Chu, I. Kim, D.H. Lee, G. Doo et al., Confronting sulfur electrode passivation and Li metal electrode degradation in lithium-sulfur batteries using thiocyanate anion. Adv. Sci. 10, e2301006 (2023). https://doi.org/10.1002/advs.202301006
Z. Jiang, C. Li, T. Yang, Y. Deng, J. Zou et al., Fluorine-free lithium metal batteries with a stable LiF-free solid electrolyte interphase. ACS Energy Lett. 9, 1389–1396 (2024). https://doi.org/10.1021/acsenergylett.3c02724
J.-X. Chen, J.-H. Zhang, X.-Z. Fan, F.-F. Wang, W. Tang et al., Solvating lithium and tethering aluminium using di-coordination-strength anions for low-temperature lithium metal batteries. Energy Environ. Sci. 17, 4036–4043 (2024). https://doi.org/10.1039/D3EE03809B
X. Chen, Q. Zhang, Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020). https://doi.org/10.1021/acs.accounts.0c00412
K.W. Schroder, A.G. Dylla, L.D.C. Bishop, E.R. Kamilar, J. Saunders et al., Effects of solute-solvent hydrogen bonding on nonaqueous electrolyte structure. J. Phys. Chem. Lett. 6, 2888–2891 (2015). https://doi.org/10.1021/acs.jpclett.5b01216
H. Li, Y. Kang, W. Wei, C. Yan, X. Ma et al., Branch-chain-rich diisopropyl ether with steric hindrance facilitates stable cycling of lithium batteries at –20 °C. Nano-Micro Lett. 16, 197 (2024). https://doi.org/10.1007/s40820-024-01419-z
J. Wang, J. Zhang, J. Wu, M. Huang, L. Jia et al., Interfacial “single-atom-in-defects” catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries. Adv. Mater. 35, e2302828 (2023). https://doi.org/10.1002/adma.202302828
Y. Huang, J. Geng, Z. Jiang, M. Ren, B. Wen et al., Solvation structure with enhanced anionic coordination for stable anodes in lithium-oxygen batteries. Angew. Chem. Int. Ed. 62, e202306236 (2023). https://doi.org/10.1002/anie.202306236
X. Zhou, Y. Huang, B. Wen, Z. Yang, Z. Hao et al., Regulation of anion-Na+ coordination chemistry in electrolyte solvates for low-temperature sodium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 121, e2316914121 (2024). https://doi.org/10.1073/pnas.2316914121
H. Su, Z. Chen, M. Li, P. Bai, Y. Li et al., Achieving practical high-energy-density lithium-metal batteries by a dual-anion regulated electrolyte. Adv. Mater. 35, e2301171 (2023). https://doi.org/10.1002/adma.202301171
P. Liang, H. Hu, Y. Dong, Z. Wang, K. Liu et al., Competitive coordination of ternary anions enabling fast Li-ion desolvation for low-temperature lithium metal batteries. Adv. Funct. Mater. 34, 2309858 (2024). https://doi.org/10.1002/adfm.202309858
X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
C. Niu, H. Lee, S. Chen, Q. Li, J. Du et al., High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6
Z. Wu, R. Li, S. Zhang, L. lv, T. Deng et al., Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9, 650–664 (2023). https://doi.org/10.1016/j.chempr.2022.10.027
Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
Z. Jiang, J. Mo, C. Li, H. Li, Q. Zhang et al., Anion-regulated weakly solvating electrolytes for high-voltage lithium metal batteries. Energy Environ. Mater. 6, 12440 (2023). https://doi.org/10.1002/eem2.12440
Y.-F. Tian, S.-J. Tan, Z.-Y. Lu, D.-X. Xu, H.-X. Chen et al., Insights into anion-solvent interactions to boost stable operation of ether-based electrolytes in pure-SiOx||LiNi0.8Mn0.1Co0.1O2 full cells. Angew. Chem. Int. Ed. 62, 202305988 (2023). https://doi.org/10.1002/anie.202305988
X. Min, C. Han, S. Zhang, J. Ma, N. Hu et al., Highly oxidative-resistant cyano-functionalized lithium borate salt for enhanced cycling performance of practical lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202302664 (2023). https://doi.org/10.1002/anie.202302664
D. Wu, C. Zhu, M. Wu, H. Wang, J. Huang et al., Highly oxidation-resistant electrolyte for 4.7 V sodium metal batteries enabled by anion/cation solvation engineering. Angew. Chem. Int. Ed. 61, e202214198 (2022). https://doi.org/10.1002/anie.202214198
S. Zhang, S. Li, Y. Lu, Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience 1, 163–177 (2021). https://doi.org/10.1016/j.esci.2021.12.003
Z. Gao, S. Rao, T. Zhang, W. Li, X. Yang et al., Design strategies of flame-retardant additives for lithium ion electrolyte. J. Electrochem. Energy Convers. Storage 19, 030910 (2022). https://doi.org/10.1115/1.4053968
R. He, K. Deng, D. Mo, X. Guan, Y. Hu et al., Active diluent-anion synergy strategy regulating nonflammable electrolytes for high-efficiency Li metal batteries. Angew. Chem. Int. Ed. 63, e202317176 (2024). https://doi.org/10.1002/anie.202317176
Y. Zou, G. Liu, Y. Wang, Q. Li, Z. Ma et al., Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature. Adv. Energy Mater. 13, 2300443 (2023). https://doi.org/10.1002/aenm.202300443
D.-J. Yoo, Q. Liu, O. Cohen, M. Kim, K.A. Persson et al., Rational design of fluorinated electrolytes for low temperature lithium-ion batteries. Adv. Energy Mater. 13, 2204182 (2023). https://doi.org/10.1002/aenm.202204182
M. Qin, Z. Zeng, F. Ma, C. Gu, X. Chen et al., Doping in solvation structure: enabling fluorinated carbonate electrolyte for high-voltage and high-safety lithium-ion batteries. ACS Energy Lett. 9, 2536–2544 (2024). https://doi.org/10.1021/acsenergylett.4c00790
P. Xiao, Y. Zhao, Z. Piao, B. Li, G. Zhou et al., A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li||NCM811 cells with a wide temperature range of 100 °C. Energy Environ. Sci. 15, 2435–2444 (2022). https://doi.org/10.1039/D1EE02959B
L. Tan, S. Chen, Y. Chen, J. Fan, D. Ruan et al., Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality. Angew. Chem. Int. Ed. 61, e202203693 (2022). https://doi.org/10.1002/anie.202203693
M. Zheng, X. Li, J. Sun, X. Wang, G. Liu et al., Research progress on chloride solid electrolytes for all-solid-state batteries. J. Power Sources 595, 234051 (2024). https://doi.org/10.1016/j.jpowsour.2024.234051
D.H.S. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020). https://doi.org/10.1038/s41565-020-0657-x
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
C. Zuo, D. Dong, H. Wang, Y. Sun, Y.-C. Lu, Bromide-based nonflammable electrolyte for safe and long-life sodium metal batteries. Energy Environ. Sci. 17, 791–799 (2024). https://doi.org/10.1039/d3ee03332e
Y. He, Y. Zhang, P. Yu, F. Ding, X. Li et al., Ion association tailoring SEI composition for Li metal anode protection. J. Energy Chem. 45, 1–6 (2020). https://doi.org/10.1016/j.jechem.2019.09.033
Z. Jiang, Y. Deng, J. Mo, Q. Zhang, Z. Zeng et al., Switching reaction pathway of medium-concentration ether electrolytes to achieve 4.5 V lithium metal batteries. Nano Lett. 23, 8481–8489 (2023). https://doi.org/10.1021/acs.nanolett.3c02013
Y. Yang, J. Wang, Z. Li, Z. Yang, B. Wang et al., Constructing LiF-dominated interphases with polymer interwoven outer layer enables long-term cycling of Si anodes. ACS Nano 18, 7666–7676 (2024). https://doi.org/10.1021/acsnano.4c00998
S. Xue, J. Shang, X. Pu, H. Cheng, L. Zhang et al., Dual anionic doping strategy towards synergistic optimization of Co9S8 for fast and durable sodium storage. Energy Storage Mater. 55, 33–41 (2023). https://doi.org/10.1016/j.ensm.2022.11.040
B. Wang, Y. Huang, Y. Wang, H. Wang, Synergistic solvation of anion: an effective strategy toward economical high-performance dual-ion battery. Adv. Funct. Mater. 33, 2212287 (2023). https://doi.org/10.1002/adfm.202212287
H. Jiang, X. Han, X. Du, Z. Chen, C. Lu et al., A PF6––permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery. Adv. Mater. 34, e2108665 (2022). https://doi.org/10.1002/adma.202108665
X. Tong, X. Ou, N. Wu, H. Wang, J. Li et al., High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery. Adv. Energy Mater. 11, 2100151 (2021). https://doi.org/10.1002/aenm.202100151