Two-Dimensional TiO2 Ultraviolet Filters for Sunscreens
Corresponding Author: Hui‑Ming Cheng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 300
Abstract
Titanium dioxide (TiO2) has been an important protective ingredient in mineral-based sunscreens since the 1990s. However, traditional TiO2 nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission, biosafety, and visual appearance. Here, we report the discovery of two-dimensional (2D) TiO2, characterized by a micro-sized lateral dimension (~1.6 μm) and atomic-scale thickness, which fundamentally resolves these long-standing issues. The 2D structure enables exceptional light management, achieving 80% visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO2 nanoparticles. Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration (0.96 w/w%), significantly enhancing biosafety. Moreover, the unique layered architecture inherently suppresses the generation of reactive oxygen species (ROS) under sunlight exposure, reducing the ROS generation rate by 50-fold compared to traditional TiO2 nanoparticles. Through precise metal element modulation, we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones. The 2D TiO2 offers a potentially transformative approach to modern sunscreen formulation, combining superior UV protection, enhanced safety and a natural appearance.
Highlights:
1 Two-dimensional (2D) TiO2 was developed with > 99% visible light transmittance for non-whitening UV protection, outperforming conventional 0D TiO2 in aesthetics while matching UV-blocking efficacy.
2 2D TiO2 achieves ultralow skin penetration and 90% reduced reactive oxygen species generation versus 0D TiO2, eliminating photocatalytic toxicity and DNA damage risks.
3 2D TiO2 enabled tunable UVA/UVB coverage via metal doping without compromising visible light transmittance, ensuring Scientific Committee on Consumer Safety compliance and biocompatibility.
4 We integrated high UV protection, natural appearance, and photoinertness into a single material, redefining aesthetic-safe sunscreen design through 2D structural innovation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
- G.K. Griffin, C.A.G. Booth, K. Togami, S.S. Chung, D. Ssozi et al., Ultraviolet radiation shapes dendritic cell leukaemia transformation in the skin. Nature 618(7966), 834–841 (2023). https://doi.org/10.1038/s41586-023-06156-8
- A.S. Aldahan, V.V. Shah, S. Mlacker, K. Nouri, The history of sunscreen. JAMA Dermatol. 151(12), 1316 (2015). https://doi.org/10.1001/jamadermatol.2015.3011
- Y. Ma, J. Yoo, History of sunscreen: an updated view. J. Cosmet. Dermatol. 20(4), 1044–1049 (2021). https://doi.org/10.1111/jocd.14004
- D.L. Giokas, A. Salvador, A. Chisvert, UV filters: from sunscreens to human body and the environment. TrAC Trends Anal. Chem. 26(5), 360–374 (2007). https://doi.org/10.1016/j.trac.2007.02.012
- M.N. Pantelic, N. Wong, M. Kwa, H.W. Lim, Ultraviolet filters in the United States and European union: a review of safety and implications for the future of US sunscreens. J. Am. Acad. Dermatol. 88(3), 632–646 (2023). https://doi.org/10.1016/j.jaad.2022.11.039
- Y. Huang, J.C. Law, T.-K. Lam, K.S. Leung, Risks of organic UV filters: a review of environmental and human health concern studies. Sci. Total. Environ. 755, 142486 (2021). https://doi.org/10.1016/j.scitotenv.2020.142486
- A.R. Abid, B. Marciniak, T. Pędziński, M. Shahid, Photo-stability and photo-sensitizing characterization of selected sunscreens’ ingredients. J. Photochem. Photobiol. A Chem. 332, 241–250 (2017). https://doi.org/10.1016/j.jphotochem.2016.08.036
- J. Ao, T. Yuan, L. Gao, X. Yu, X. Zhao et al., Organic UV filters exposure induces the production of inflammatory cytokines in human macrophages. Sci. Total. Environ. 635, 926–935 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.217
- D. Vuckovic, A.I. Tinoco, L. Ling, C. Renicke, J.R. Pringle et al., Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals. Science 376(6593), 644–648 (2022). https://doi.org/10.1126/science.abn2600
- J. Wang, L. Pan, S. Wu, L. Lu, Y. Xu et al., Recent advances on endocrine disrupting effects of UV filters. Int. J. Environ. Res. Public Health 13(8), 782 (2016). https://doi.org/10.3390/ijerph13080782
- G.M. Murphy, Sunblocks: mechanisms of action. Photodermatol. Photoimmunol. Photomed. 15(1), 34–36 (1999). https://doi.org/10.1111/j.1600-0781.1999.tb00051.x
- A.P. Popov, A.V. Priezzhev, J. Lademann, R. Myllyla. Presented at Proc. SPIE, Ottawa, Ontario, Canada, (December, 2004). https://doi.org/10.1117/12.567423
- Y. Dong, S. Chen, S. Zhou, S. Hou, Q. Lu, Perspectives on the next generation of sunscreen: safe, broadband, and long-term photostability. ACS Mater. Lett. 1(3), 336–343 (2019). https://doi.org/10.1021/acsmaterialslett.9b00203
- C. Cayrol, J. Sarraute, R. Tarroux, D. Redoules, M. Charveron et al., A mineral sunscreen affords genomic protection against ultraviolet (UV) B and UVA radiation: in vitro and in situ assays. Br. J. Dermatol. 141(2), 250–258 (1999). https://doi.org/10.1046/j.1365-2133.1999.02973.x
- C. Chaiyabutr, T. Sukakul, T. Kumpangsin, M. Bunyavaree, N. Charoenpipatsin et al., Ultraviolet filters in sunscreens and cosmetic products: a market survey. Contact Dermat. 85(1), 58–68 (2021). https://doi.org/10.1111/cod.13777
- R. Ghamarpoor, A. Fallah, M. Jamshidi, Investigating the use of titanium dioxide (TiO2) nanops on the amount of protection against UV irradiation. Sci. Rep. 13(1), 9793 (2023). https://doi.org/10.1038/s41598-023-37057-5
- R. Ghamarpoor, A. Fallah, M. Jamshidi, A review of synthesis methods, modifications, and mechanisms of ZnO/TiO2-based photocatalysts for photodegradation of contaminants. ACS Omega 9(24), 25457–25492 (2024). https://doi.org/10.1021/acsomega.3c08717
- R. Ghamarpoor, M. Jamshidi, A. Fallah, M. Neshastehgar, Designing a smart acrylic photocatalyst coating loaded with N/C-doped TiO2@SiO2 core-shell by bio-based Tarem-rice husk waste for organic pollutant degradation. Alex. Eng. J. 115, 131–146 (2025). https://doi.org/10.1016/j.aej.2024.12.023
- Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue et al., Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as co-catalysts. Nano-Micro Lett. 12(1), 6 (2019). https://doi.org/10.1007/s40820-019-0339-0
- C. Zhang, H. Hua, J. Liu, X. Han, Q. Liu et al., Enhanced photocatalytic activity of nanop-aggregated Ag-AgX(X = Cl, Br)@TiO2 microspheres under visible light. Nano-Micro Lett. 9(4), 49 (2017). https://doi.org/10.1007/s40820-017-0150-8
- S.C.C.S. Qasim Chaudhry, Chaudhry, opinion of the scientific committee on consumer safety (SCCS)—revision of the opinion on the safety of the use of titanium dioxide, nano form, in cosmetic products. Regul. Toxicol. Pharmacol. 73(2), 669–670 (2015). https://doi.org/10.1016/j.yrtph.2015.09.005
- V.G. Bairi, J.-H. Lim, A. Fong, S.W. Linder, Size characterization of metal oxide nanops in commercial sunscreen products. J. Nanopart. Res. 19(7), 256 (2017). https://doi.org/10.1007/s11051-017-3929-0
- X. Yan, V. Piffaut, F. Bernerd, C. Marionnet, M. Alyas et al., 54079 new tinted mineral sunscreen shades for skin of color populations. J. Am. Acad. Dermatol. 91(3), AB65 (2024). https://doi.org/10.1016/j.jaad.2024.07.268
- F. Wang, R. Lyu, H. Xu, R. Gong, B. Ding, Tunable colors from responsive 2D materials. Responsive Mater. 2(3), e20240007 (2024). https://doi.org/10.1002/rpm.20240007
- M. Mahmoudi, K. Azadmanesh, M.A. Shokrgozar, W.S. Journeay, S. Laurent, Effect of nanops on the cell life cycle. Chem. Rev. 111(5), 3407–3432 (2011). https://doi.org/10.1021/cr1003166
- A.R. Young, J. Claveau, A.B. Rossi, Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J. Am. Acad. Dermatol. 76(3S1), S100–S109 (2017). https://doi.org/10.1016/j.jaad.2016.09.038
- N. Serpone, A. Salinaro, A. Emeline. Presented at Proc. SPIE, San Jose, CA, United States (2001). https://doi.org/10.1117/12.430765.
- R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi et al., Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 418(1–2), 87–90 (1997). https://doi.org/10.1016/S0014-5793(97)01356-2
- A.S. Barnard, One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat. Nanotechnol. 5(4), 271–274 (2010). https://doi.org/10.1038/nnano.2010.25
- W. Zhao, W. Fu, H. Yang, C. Tian, M. Li et al., Synthesis and photocatalytic activity of Fe-doped TiO2 supported on hollow glass microbeads. Nano-Micro Lett. 3(1), 20–24 (2011). https://doi.org/10.1007/BF03353647
- B. Ding, Y. Pan, Z. Zhang, T. Lan, Z. Huang et al., Largely tunable magneto-coloration of monolayer 2D materials via size tailoring. ACS Nano 15(6), 9445–9452 (2021). https://doi.org/10.1021/acsnano.1c02259
- T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, H. Nakazawa, Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 118(35), 8329–8335 (1996). https://doi.org/10.1021/ja960073b
- T. Tanaka, Y. Ebina, K. Takada, K. Kurashima, T. Sasaki, Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chem. Mater. 15(18), 3564–3568 (2003). https://doi.org/10.1021/cm034307j
- H.C. Wulf, I.M. Stender, J. Lock-Andersen, Sunscreens used at the beach do not protect against erythema: a new definition of SPF is proposed. Photodermatol. Photoimmunol. Photomed. 13(4), 129–132 (1997). https://doi.org/10.1111/j.1600-0781.1997.tb00215.x
- A. Faurschou, H.C. Wulf, The relation between Sun protection factor and amount of suncreen applied in vivo. Br. J. Dermatol. 156(4), 716–719 (2007). https://doi.org/10.1111/j.1365-2133.2006.07684.x
- R. Lopez, J. Regier, M.B. Cole, M.I. Jordan, N. Yosef, Deep generative modeling for single-cell transcriptomics. Nat. Methods 15(12), 1053–1058 (2018). https://doi.org/10.1038/s41592-018-0229-2
- X. Ruan, S. Li, C. Huang, W. Zheng, X. Cui et al., Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids: emerging trends in a classical yet contemporary photocatalyst. Adv. Mater. 36(17), 2305285 (2024). https://doi.org/10.1002/adma.202305285
- H. Huang, Y. Song, N. Li, D. Chen, Q. Xu et al., One-step in situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl. Catal. B Environ. 251, 154–161 (2019). https://doi.org/10.1016/j.apcatb.2019.03.066
- Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han et al., Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114(19), 9987–10043 (2014). https://doi.org/10.1021/cr500008u
- Y. Wu, W. Xu, W. Tang, Z. Wang, Y. Wang et al., In-situ annealed “M-scheme” MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction. Nano Energy 90, 106532 (2021). https://doi.org/10.1016/j.nanoen.2021.106532
- S.-F. Ng, J.J. Rouse, F.D. Sanderson, V. Meidan, G.M. Eccleston, Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech 11(3), 1432–1441 (2010). https://doi.org/10.1208/s12249-010-9522-9
- J. Cadet, T. Douki, J.-L. Ravanat, Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem. Photobiol. 91(1), 140–155 (2015). https://doi.org/10.1111/php.12368
- Y. Deng, A. Ediriwickrema, F. Yang, J. Lewis, M. Girardi et al., A sunblock based on bioadhesive nanops. Nat. Mater. 14(12), 1278–1285 (2015). https://doi.org/10.1038/nmat4422
References
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
G.K. Griffin, C.A.G. Booth, K. Togami, S.S. Chung, D. Ssozi et al., Ultraviolet radiation shapes dendritic cell leukaemia transformation in the skin. Nature 618(7966), 834–841 (2023). https://doi.org/10.1038/s41586-023-06156-8
A.S. Aldahan, V.V. Shah, S. Mlacker, K. Nouri, The history of sunscreen. JAMA Dermatol. 151(12), 1316 (2015). https://doi.org/10.1001/jamadermatol.2015.3011
Y. Ma, J. Yoo, History of sunscreen: an updated view. J. Cosmet. Dermatol. 20(4), 1044–1049 (2021). https://doi.org/10.1111/jocd.14004
D.L. Giokas, A. Salvador, A. Chisvert, UV filters: from sunscreens to human body and the environment. TrAC Trends Anal. Chem. 26(5), 360–374 (2007). https://doi.org/10.1016/j.trac.2007.02.012
M.N. Pantelic, N. Wong, M. Kwa, H.W. Lim, Ultraviolet filters in the United States and European union: a review of safety and implications for the future of US sunscreens. J. Am. Acad. Dermatol. 88(3), 632–646 (2023). https://doi.org/10.1016/j.jaad.2022.11.039
Y. Huang, J.C. Law, T.-K. Lam, K.S. Leung, Risks of organic UV filters: a review of environmental and human health concern studies. Sci. Total. Environ. 755, 142486 (2021). https://doi.org/10.1016/j.scitotenv.2020.142486
A.R. Abid, B. Marciniak, T. Pędziński, M. Shahid, Photo-stability and photo-sensitizing characterization of selected sunscreens’ ingredients. J. Photochem. Photobiol. A Chem. 332, 241–250 (2017). https://doi.org/10.1016/j.jphotochem.2016.08.036
J. Ao, T. Yuan, L. Gao, X. Yu, X. Zhao et al., Organic UV filters exposure induces the production of inflammatory cytokines in human macrophages. Sci. Total. Environ. 635, 926–935 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.217
D. Vuckovic, A.I. Tinoco, L. Ling, C. Renicke, J.R. Pringle et al., Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals. Science 376(6593), 644–648 (2022). https://doi.org/10.1126/science.abn2600
J. Wang, L. Pan, S. Wu, L. Lu, Y. Xu et al., Recent advances on endocrine disrupting effects of UV filters. Int. J. Environ. Res. Public Health 13(8), 782 (2016). https://doi.org/10.3390/ijerph13080782
G.M. Murphy, Sunblocks: mechanisms of action. Photodermatol. Photoimmunol. Photomed. 15(1), 34–36 (1999). https://doi.org/10.1111/j.1600-0781.1999.tb00051.x
A.P. Popov, A.V. Priezzhev, J. Lademann, R. Myllyla. Presented at Proc. SPIE, Ottawa, Ontario, Canada, (December, 2004). https://doi.org/10.1117/12.567423
Y. Dong, S. Chen, S. Zhou, S. Hou, Q. Lu, Perspectives on the next generation of sunscreen: safe, broadband, and long-term photostability. ACS Mater. Lett. 1(3), 336–343 (2019). https://doi.org/10.1021/acsmaterialslett.9b00203
C. Cayrol, J. Sarraute, R. Tarroux, D. Redoules, M. Charveron et al., A mineral sunscreen affords genomic protection against ultraviolet (UV) B and UVA radiation: in vitro and in situ assays. Br. J. Dermatol. 141(2), 250–258 (1999). https://doi.org/10.1046/j.1365-2133.1999.02973.x
C. Chaiyabutr, T. Sukakul, T. Kumpangsin, M. Bunyavaree, N. Charoenpipatsin et al., Ultraviolet filters in sunscreens and cosmetic products: a market survey. Contact Dermat. 85(1), 58–68 (2021). https://doi.org/10.1111/cod.13777
R. Ghamarpoor, A. Fallah, M. Jamshidi, Investigating the use of titanium dioxide (TiO2) nanops on the amount of protection against UV irradiation. Sci. Rep. 13(1), 9793 (2023). https://doi.org/10.1038/s41598-023-37057-5
R. Ghamarpoor, A. Fallah, M. Jamshidi, A review of synthesis methods, modifications, and mechanisms of ZnO/TiO2-based photocatalysts for photodegradation of contaminants. ACS Omega 9(24), 25457–25492 (2024). https://doi.org/10.1021/acsomega.3c08717
R. Ghamarpoor, M. Jamshidi, A. Fallah, M. Neshastehgar, Designing a smart acrylic photocatalyst coating loaded with N/C-doped TiO2@SiO2 core-shell by bio-based Tarem-rice husk waste for organic pollutant degradation. Alex. Eng. J. 115, 131–146 (2025). https://doi.org/10.1016/j.aej.2024.12.023
Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue et al., Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as co-catalysts. Nano-Micro Lett. 12(1), 6 (2019). https://doi.org/10.1007/s40820-019-0339-0
C. Zhang, H. Hua, J. Liu, X. Han, Q. Liu et al., Enhanced photocatalytic activity of nanop-aggregated Ag-AgX(X = Cl, Br)@TiO2 microspheres under visible light. Nano-Micro Lett. 9(4), 49 (2017). https://doi.org/10.1007/s40820-017-0150-8
S.C.C.S. Qasim Chaudhry, Chaudhry, opinion of the scientific committee on consumer safety (SCCS)—revision of the opinion on the safety of the use of titanium dioxide, nano form, in cosmetic products. Regul. Toxicol. Pharmacol. 73(2), 669–670 (2015). https://doi.org/10.1016/j.yrtph.2015.09.005
V.G. Bairi, J.-H. Lim, A. Fong, S.W. Linder, Size characterization of metal oxide nanops in commercial sunscreen products. J. Nanopart. Res. 19(7), 256 (2017). https://doi.org/10.1007/s11051-017-3929-0
X. Yan, V. Piffaut, F. Bernerd, C. Marionnet, M. Alyas et al., 54079 new tinted mineral sunscreen shades for skin of color populations. J. Am. Acad. Dermatol. 91(3), AB65 (2024). https://doi.org/10.1016/j.jaad.2024.07.268
F. Wang, R. Lyu, H. Xu, R. Gong, B. Ding, Tunable colors from responsive 2D materials. Responsive Mater. 2(3), e20240007 (2024). https://doi.org/10.1002/rpm.20240007
M. Mahmoudi, K. Azadmanesh, M.A. Shokrgozar, W.S. Journeay, S. Laurent, Effect of nanops on the cell life cycle. Chem. Rev. 111(5), 3407–3432 (2011). https://doi.org/10.1021/cr1003166
A.R. Young, J. Claveau, A.B. Rossi, Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J. Am. Acad. Dermatol. 76(3S1), S100–S109 (2017). https://doi.org/10.1016/j.jaad.2016.09.038
N. Serpone, A. Salinaro, A. Emeline. Presented at Proc. SPIE, San Jose, CA, United States (2001). https://doi.org/10.1117/12.430765.
R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi et al., Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 418(1–2), 87–90 (1997). https://doi.org/10.1016/S0014-5793(97)01356-2
A.S. Barnard, One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat. Nanotechnol. 5(4), 271–274 (2010). https://doi.org/10.1038/nnano.2010.25
W. Zhao, W. Fu, H. Yang, C. Tian, M. Li et al., Synthesis and photocatalytic activity of Fe-doped TiO2 supported on hollow glass microbeads. Nano-Micro Lett. 3(1), 20–24 (2011). https://doi.org/10.1007/BF03353647
B. Ding, Y. Pan, Z. Zhang, T. Lan, Z. Huang et al., Largely tunable magneto-coloration of monolayer 2D materials via size tailoring. ACS Nano 15(6), 9445–9452 (2021). https://doi.org/10.1021/acsnano.1c02259
T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, H. Nakazawa, Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 118(35), 8329–8335 (1996). https://doi.org/10.1021/ja960073b
T. Tanaka, Y. Ebina, K. Takada, K. Kurashima, T. Sasaki, Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chem. Mater. 15(18), 3564–3568 (2003). https://doi.org/10.1021/cm034307j
H.C. Wulf, I.M. Stender, J. Lock-Andersen, Sunscreens used at the beach do not protect against erythema: a new definition of SPF is proposed. Photodermatol. Photoimmunol. Photomed. 13(4), 129–132 (1997). https://doi.org/10.1111/j.1600-0781.1997.tb00215.x
A. Faurschou, H.C. Wulf, The relation between Sun protection factor and amount of suncreen applied in vivo. Br. J. Dermatol. 156(4), 716–719 (2007). https://doi.org/10.1111/j.1365-2133.2006.07684.x
R. Lopez, J. Regier, M.B. Cole, M.I. Jordan, N. Yosef, Deep generative modeling for single-cell transcriptomics. Nat. Methods 15(12), 1053–1058 (2018). https://doi.org/10.1038/s41592-018-0229-2
X. Ruan, S. Li, C. Huang, W. Zheng, X. Cui et al., Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids: emerging trends in a classical yet contemporary photocatalyst. Adv. Mater. 36(17), 2305285 (2024). https://doi.org/10.1002/adma.202305285
H. Huang, Y. Song, N. Li, D. Chen, Q. Xu et al., One-step in situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl. Catal. B Environ. 251, 154–161 (2019). https://doi.org/10.1016/j.apcatb.2019.03.066
Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han et al., Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114(19), 9987–10043 (2014). https://doi.org/10.1021/cr500008u
Y. Wu, W. Xu, W. Tang, Z. Wang, Y. Wang et al., In-situ annealed “M-scheme” MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction. Nano Energy 90, 106532 (2021). https://doi.org/10.1016/j.nanoen.2021.106532
S.-F. Ng, J.J. Rouse, F.D. Sanderson, V. Meidan, G.M. Eccleston, Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech 11(3), 1432–1441 (2010). https://doi.org/10.1208/s12249-010-9522-9
J. Cadet, T. Douki, J.-L. Ravanat, Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem. Photobiol. 91(1), 140–155 (2015). https://doi.org/10.1111/php.12368
Y. Deng, A. Ediriwickrema, F. Yang, J. Lewis, M. Girardi et al., A sunblock based on bioadhesive nanops. Nat. Mater. 14(12), 1278–1285 (2015). https://doi.org/10.1038/nmat4422