Atomically Dispersed Fe-N4 Modified with Precisely Located S for Highly Efficient Oxygen Reduction
Corresponding Author: Xiaoming Sun
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 116
Abstract
Immobilizing metal atoms by multiple nitrogen atoms has triggered exceptional catalytic activity toward many critical electrochemical reactions due to their merits of highly unsaturated coordination and strong metal-substrate interaction. Herein, atomically dispersed Fe-NC material with precise sulfur modification to Fe periphery (termed as Fe-NSC) was synthesized, X-ray absorption near edge structure analysis confirmed the central Fe atom being stabilized in a specific configuration of Fe(N3)(N–C–S). By enabling precisely localized S doping, the electronic structure of Fe-N4 moiety could be mediated, leading to the beneficial adjustment of absorption/desorption properties of reactant/intermediate on Fe center. Density functional theory simulation suggested that more negative charge density would be localized over Fe-N4 moiety after S doping, allowing weakened binding capability to *OH intermediates and faster charge transfer from Fe center to O species. Electrochemical measurements revealed that the Fe-NSC sample exhibited significantly enhanced oxygen reduction reaction performance compared to the S-free Fe-NC material (termed as Fe-NC), showing an excellent onset potential of 1.09 V and half-wave potential of 0.92 V in 0.1 M KOH. Our work may enlighten relevant studies regarding to accessing improvement on the catalytic performance of atomically dispersed M-NC materials by managing precisely tuned local environments of M-Nx moiety.
Highlights:
1 Precisely located S doping of atomic Fe-N4 in Fe(N3)(N–C–S) motif was realized.
2 This S doping renders weakened *OH binding and faster charge transfer on Fe-N4.
3 Fe-NSC showed excellent oxygen reduction reaction performance with onset potential ~ 1.09 V and half-wave potential ~ 0.92 V.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Chen, X. Liu, L. Zheng, Y. Li, X. Guo et al., Insights into the role of active site density in the fuel cell performance of Co–N–C catalysts. Appl. Catal. B 256(5), 117849 (2019). https://doi.org/10.1016/j.apcatb.2019.117849
- L. Wang, X. Wan, S. Liu, L. Xu, J. Shui, Fe–N–C catalysts for PEMFC: progress towards the commercial application under DOE reference. J. Energy Chem. 39, 77–87 (2019). https://doi.org/10.1016/j.jechem.2018.12.019
- X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2(3), 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
- J. Wang, W. Liu, G. Luo, Z. Li, C. Zhao et al., Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 11(12), 3375–3379 (2018). https://doi.org/10.1039/c8ee02656d
- Z. Li, H. He, H. Cao, S. Sun, W. Diao et al., Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B 240, 112–121 (2019). https://doi.org/10.1016/j.apcatb.2018.08.074
- Y. Lian, W. Yang, C. Zhang, H. Sun, Z. Deng et al., Unpaired 3d electron on atomically dispersed cobalt centre in coordination polymers to regulate both orr activity and selectivity. Angew. Chem. Int. Ed. 132(1), 292–300 (2019). https://doi.org/10.1002/ange.201910879
- L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen et al., Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4(2), 285–297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005
- F. Li, G.-F. Han, H.-J. Noh, J.-P. Jeon, I. Ahmad et al., Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 10(1), 4060 (2019). https://doi.org/10.1038/s41467-019-12012-z
- Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nano-sheets for efficient water oxidation. Nat. Commun. 10(1), 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
- L. Han, X. Liu, J. Chen, R. Lin, H. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58(8), 2321–2325 (2019). https://doi.org/10.1002/ange.201900203
- P. Huang, M. Cheng, H. Zhang, M. Zuo, C. Xiao, Y. Xie, Single Mo atom realized enhanced CO2 electro-reduction into formate on n-doped graphene. Nano Energy 61, 428–434 (2019). https://doi.org/10.1016/j.nanoen.2019.05.003
- D. Karapinar, N.T. Huan, N.S. Ranjbar, J. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58(42), 15098–15103 (2019). https://doi.org/10.1002/ange.201907994
- H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X.W.D. Lou, Unveiling the activity origin of electrocatalytic oxygen evolution over isolated ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31(48), 1904548 (2019). https://doi.org/10.1002/adma.201904548
- A.S. Varela, W. Ju, A. Bagger, P. Franco, J. Rossmeisl, P. Strasser, Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9(8), 7270–7284 (2019). https://doi.org/10.1002/aenm.201703614
- Q.-Q. Yan, D.-X. Wu, S.-Q. Chu, Z.-Q. Chen, Y. Lin et al., Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10(1), 4977 (2019). https://doi.org/10.1038/s41467-019-12851-w
- J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin et al., Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 141(37), 14515–14519 (2019). https://doi.org/10.1021/jacs.9b06482
- Z. Li, L. Wei, W.-J. Jiang, Z. Hu, H. Luo et al., Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Appl. Catal. B 251(15), 240–246 (2019). https://doi.org/10.1016/j.apcatb.2019.03.046
- S. Büchele, Z. Chen, S. Mitchell, R. Hauert, F. Krumeich, J. Pérez-Ramírez, Tailoring nitrogen-doped carbons as hosts for single-atom catalysts. ChemCatChem 11(12), 2812–2820 (2019). https://doi.org/10.1002/cctc.201900547
- J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen et al., Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ. Sci. 9(7), 2418–2432 (2016). https://doi.org/10.1039/c6ee01160h
- K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy et al., Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nat. Commun. 6(1), 7343 (2015). https://doi.org/10.1038/ncomms8343
- N. Zhang, T. Zhou, M. Chen, H. Feng, R. Yuan et al., High-purity pyrrole-type FeN4 site as superior oxygen reduction electrocatalyst. Energy Environ. Sci. 13, 111–118 (2020). https://doi.org/10.1039/c9ee03027a
- Q. Jia, E. Liu, L. Jiao, S. Pann, S. Mukerjee, X-ray absorption spectroscopy characterizations on pgm-free electrocatalysts: justification, advantages, and limitations. Adv. Mater. 31(31), 1805157 (2018). https://doi.org/10.1002/adma.201805157
- U.I. Kramm, L. Ni, S. Wagner, 57Fe mössbauer spectroscopy characterization of electrocatalysts. Adv. Mater. 31(31), 1805623 (2019). https://doi.org/10.1002/adma.201805623
- X. Li, X. Yang, J. Zhang, Y. Huang, B. Liu, In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9(3), 2521–2531 (2019). https://doi.org/10.1021/acscatal.8b04937
- S. Wagner, H. Auerbach, C.E. Tait, I. Martinaiou, S.C. Kumar et al., Elucidating the structural composition of a fe-n-c catalyst by nuclear and electron resonance techniques. Angew. Chem. Int. Ed. 58(31), 10486–10492 (2019). https://doi.org/10.1002/ange.201903753
- K. Chi, Z. Chen, F. Xiao, W. Guo, W. Xi et al., Maximizing the utility of single atom electrocatalysts on a 3d graphene nanomesh. J. Mater. Chem. A 7(26), 15575–15579 (2019). https://doi.org/10.1039/c9ta00942f
- J. Zhang, X. Tian, M. Liu, H. Guo, J. Zhou et al., Cobalt modulated mo-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J. Am. Chem. Soc. 141(49), 19269–19275 (2019). https://doi.org/10.1021/jacs.9b02501
- Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang et al., Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31(44), 1904496 (2019). https://doi.org/10.1002/adma.201904496
- V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31(48), 1903841 (2019). https://doi.org/10.1002/adma.201903841
- H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., Graphene supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58(42), 14871–14876 (2019). https://doi.org/10.1002/ange.201906079
- B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10(1), 2980 (2019). https://doi.org/10.1038/s41467-019-10854-1
- A.B. Anderson, E.F. Holby, Pathways for O2 electroreduction over substitutional FeN4, HoFeN4, and OFeN4 in graphene bulk sites: critical evaluation of overpotential predictions using lger and che models. J. Phys. Chem. C 123(30), 18398–18409 (2019). https://doi.org/10.1021/acs.jpcc.9b03703
- J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous s, n-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 15(24), 1900307 (2019). https://doi.org/10.1002/smll.201900307
- J.-C. Li, H. Zhong, M. Xu, T. Li, L. Wang et al., Boosting the activity of fe-n x moieties in Fe-NC electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci. China Mater. (2019). https://doi.org/10.1007/s40843-019-1207-y
- H. Sun, M. Wang, X. Du, Y. Jiao, S. Liu et al., Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. J. Mater. Chem. A 7(36), 20952–20957 (2019). https://doi.org/10.1039/c9ta06949f
- Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J.W. Han, J. Lee, Versatile strategy for tuning orr activity of a single fe-n4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141(15), 6254–6262 (2019). https://doi.org/10.1021/jacs.8b13543
- G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun et al., A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy Environ. Sci. 12(4), 1317–1325 (2019). https://doi.org/10.1039/c9ee00162j
- P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/ange.201604802
- H. Zhang, H.T. Chung, D.A. Cullen, S. Wagner, U.I. Kramm, K.L. More, P. Zelenay, G. Wu, High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12, 2548–2558 (2019). https://doi.org/10.1039/c9ee00877b
- Y. Deng, B. Chi, J. Li, G. Wang, L. Zheng et al., Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward pem fuel cells. Adv. Energy Mater. 9(13), 1802856 (2019). https://doi.org/10.1002/aenm.201802856
- Z. Yang, B. Chen, W. Chen, Y. Qu, F. Zhou et al., Directly transforming copper (i) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 10(1), 3734 (2019). https://doi.org/10.1038/s41467-019-11796-4
- G. Zhang, L. Wang, Y. Hao, X. Jin, Y. Xu, Y. Kuang, L. Dai, X. Sun, Unconventional carbon: alkaline dehalogenation of polymers yields n-doped carbon electrode for high-performance capacitive energy storage. Adv. Funct. Mater. 26(19), 3340–3348 (2016). https://doi.org/10.1002/adfm.201505533
- E. Dervishi, Z. Ji, H. Htoon, M. Sykora, S.K. Doorn, Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale 11(35), 16571–16581 (2019). https://doi.org/10.1039/c9nr05345j
- J. Xu, J. Zhu, X. Yang, S. Cao, J. Yu, M. Shalom, M. Antonietti, Synthesis of organized layered carbon by self-templating of dithiooxamide. Adv. Mater. 28(31), 6727–6733 (2016). https://doi.org/10.1002/adma.201600707
- H. Jin, H. Zhou, D. He, Z. Wang, Q. Wu, Q. Liang, S. Liu, S. Mu, MOF-derived 3d Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B 250(5), 143–149 (2019). https://doi.org/10.1016/j.apcatb.2019.03.013
- Y. Kuang, G. Feng, P. Li, Y. Bi, Y. Li, X. Sun, Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem. Int. Ed. 55(2), 693–697 (2016). https://doi.org/10.1002/ange.201509616
- C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P.-L. Taberna, P. Simon, M. Salanne, Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137(39), 12627–12632 (2015). https://doi.org/10.1021/jacs.5b07416
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 1–12 (2018). https://doi.org/10.1038/s41467-018-07850-2
- G. Zhang, H. Luo, H. Li, L. Wang, B. Han et al., ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst. Nano Energy 26, 241–247 (2016). https://doi.org/10.1016/j.nanoen.2016.05.029
- C. Weidenthaler, A.-H. Lu, W. Schmidt, F. Schüth, X-ray photoelectron spectroscopic studies of pan-based ordered mesoporous carbons (OMC). Microporous Mesoporous Mater. 88(1–3), 238–243 (2006). https://doi.org/10.1016/j.micromeso.2005.09.015
- L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011). https://doi.org/10.1021/jp201991j
- M. Wang, L. Árnadóttir, Z.J. Xu, Z. Feng, In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett. 11(1), 47 (2019). https://doi.org/10.1007/s40820-019-0277-x
- Y. Chang, F. Hong, C. He, Q. Zhang, J. Liu, Nitrogen and sulfur dual-doped non-noble catalyst using fluidic acrylonitrile telomer as precursor for efficient oxygen reduction. Adv. Mater. 25(34), 4794–4799 (2013). https://doi.org/10.1002/adma.201301002
- I.-Y. Jeon, H.-J. Choi, S.-M. Jung, J.-M. Seo, M.-J. Kim, L. Dai, J.-B. Baek, Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 135(4), 1386–1393 (2012). https://doi.org/10.1021/ja3091643
- Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on n-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/ange.201703992
- D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu et al., Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci. 257(21), 9193–9198 (2011). https://doi.org/10.1016/j.apsusc.2011.05.131
- J. Shui, M. Wang, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1(1), e1400129 (2015). https://doi.org/10.1126/sciadv.1400129
- D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10(2), 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
- M. Xiao, L. Gao, Y. Wang, X. Wang, J. Zhu et al., Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 141(50), 19800–19806 (2019). https://doi.org/10.1021/jacs.9b09234
- J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/ange.201206720
- Z. Jiang, W. Sun, H. Shang, W. Chen, T. Sun et al., Atomic interface effect of single atom copper catalyst for enhanced oxygen reduction reaction. Energy Environ. Sci. 12, 3508–3514 (2019). https://doi.org/10.1039/c9ee02974e
- A.K. Fajrial, M.F. Abdulkarim, A.G. Saputro, M.K. Agusta, H.K. Dipojono, Boron and nitrogen co-doping configuration on pyrolyzed Fe-N4/C catalyst. Procedia Eng. 170, 131–135 (2017). https://doi.org/10.1016/j.proeng.2017.03.028
- R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. J. Phys. Chem. B 110(4), 1787–1793 (2006). https://doi.org/10.1021/jp055150g
- H. Jin, H. Zhou, W. Li, Z. Wang, J. Yang et al., In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc–air batteries. J. Mater. Chem A 6(41), 20093–20099 (2018). https://doi.org/10.1039/c8ta07849a
- J. Meng, C. Niu, L. Xu, J. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
- H. Xu, D. Cheng, D. Cao, X.C. Zeng, A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1(5), 339 (2018). https://doi.org/10.1038/s41929-018-0063-z
References
L. Chen, X. Liu, L. Zheng, Y. Li, X. Guo et al., Insights into the role of active site density in the fuel cell performance of Co–N–C catalysts. Appl. Catal. B 256(5), 117849 (2019). https://doi.org/10.1016/j.apcatb.2019.117849
L. Wang, X. Wan, S. Liu, L. Xu, J. Shui, Fe–N–C catalysts for PEMFC: progress towards the commercial application under DOE reference. J. Energy Chem. 39, 77–87 (2019). https://doi.org/10.1016/j.jechem.2018.12.019
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2(3), 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
J. Wang, W. Liu, G. Luo, Z. Li, C. Zhao et al., Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 11(12), 3375–3379 (2018). https://doi.org/10.1039/c8ee02656d
Z. Li, H. He, H. Cao, S. Sun, W. Diao et al., Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B 240, 112–121 (2019). https://doi.org/10.1016/j.apcatb.2018.08.074
Y. Lian, W. Yang, C. Zhang, H. Sun, Z. Deng et al., Unpaired 3d electron on atomically dispersed cobalt centre in coordination polymers to regulate both orr activity and selectivity. Angew. Chem. Int. Ed. 132(1), 292–300 (2019). https://doi.org/10.1002/ange.201910879
L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen et al., Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4(2), 285–297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005
F. Li, G.-F. Han, H.-J. Noh, J.-P. Jeon, I. Ahmad et al., Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 10(1), 4060 (2019). https://doi.org/10.1038/s41467-019-12012-z
Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nano-sheets for efficient water oxidation. Nat. Commun. 10(1), 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
L. Han, X. Liu, J. Chen, R. Lin, H. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58(8), 2321–2325 (2019). https://doi.org/10.1002/ange.201900203
P. Huang, M. Cheng, H. Zhang, M. Zuo, C. Xiao, Y. Xie, Single Mo atom realized enhanced CO2 electro-reduction into formate on n-doped graphene. Nano Energy 61, 428–434 (2019). https://doi.org/10.1016/j.nanoen.2019.05.003
D. Karapinar, N.T. Huan, N.S. Ranjbar, J. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58(42), 15098–15103 (2019). https://doi.org/10.1002/ange.201907994
H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X.W.D. Lou, Unveiling the activity origin of electrocatalytic oxygen evolution over isolated ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31(48), 1904548 (2019). https://doi.org/10.1002/adma.201904548
A.S. Varela, W. Ju, A. Bagger, P. Franco, J. Rossmeisl, P. Strasser, Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9(8), 7270–7284 (2019). https://doi.org/10.1002/aenm.201703614
Q.-Q. Yan, D.-X. Wu, S.-Q. Chu, Z.-Q. Chen, Y. Lin et al., Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10(1), 4977 (2019). https://doi.org/10.1038/s41467-019-12851-w
J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin et al., Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 141(37), 14515–14519 (2019). https://doi.org/10.1021/jacs.9b06482
Z. Li, L. Wei, W.-J. Jiang, Z. Hu, H. Luo et al., Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Appl. Catal. B 251(15), 240–246 (2019). https://doi.org/10.1016/j.apcatb.2019.03.046
S. Büchele, Z. Chen, S. Mitchell, R. Hauert, F. Krumeich, J. Pérez-Ramírez, Tailoring nitrogen-doped carbons as hosts for single-atom catalysts. ChemCatChem 11(12), 2812–2820 (2019). https://doi.org/10.1002/cctc.201900547
J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen et al., Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ. Sci. 9(7), 2418–2432 (2016). https://doi.org/10.1039/c6ee01160h
K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy et al., Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nat. Commun. 6(1), 7343 (2015). https://doi.org/10.1038/ncomms8343
N. Zhang, T. Zhou, M. Chen, H. Feng, R. Yuan et al., High-purity pyrrole-type FeN4 site as superior oxygen reduction electrocatalyst. Energy Environ. Sci. 13, 111–118 (2020). https://doi.org/10.1039/c9ee03027a
Q. Jia, E. Liu, L. Jiao, S. Pann, S. Mukerjee, X-ray absorption spectroscopy characterizations on pgm-free electrocatalysts: justification, advantages, and limitations. Adv. Mater. 31(31), 1805157 (2018). https://doi.org/10.1002/adma.201805157
U.I. Kramm, L. Ni, S. Wagner, 57Fe mössbauer spectroscopy characterization of electrocatalysts. Adv. Mater. 31(31), 1805623 (2019). https://doi.org/10.1002/adma.201805623
X. Li, X. Yang, J. Zhang, Y. Huang, B. Liu, In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9(3), 2521–2531 (2019). https://doi.org/10.1021/acscatal.8b04937
S. Wagner, H. Auerbach, C.E. Tait, I. Martinaiou, S.C. Kumar et al., Elucidating the structural composition of a fe-n-c catalyst by nuclear and electron resonance techniques. Angew. Chem. Int. Ed. 58(31), 10486–10492 (2019). https://doi.org/10.1002/ange.201903753
K. Chi, Z. Chen, F. Xiao, W. Guo, W. Xi et al., Maximizing the utility of single atom electrocatalysts on a 3d graphene nanomesh. J. Mater. Chem. A 7(26), 15575–15579 (2019). https://doi.org/10.1039/c9ta00942f
J. Zhang, X. Tian, M. Liu, H. Guo, J. Zhou et al., Cobalt modulated mo-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J. Am. Chem. Soc. 141(49), 19269–19275 (2019). https://doi.org/10.1021/jacs.9b02501
Y. Qu, L. Wang, Z. Li, P. Li, Q. Zhang et al., Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 31(44), 1904496 (2019). https://doi.org/10.1002/adma.201904496
V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31(48), 1903841 (2019). https://doi.org/10.1002/adma.201903841
H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., Graphene supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58(42), 14871–14876 (2019). https://doi.org/10.1002/ange.201906079
B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10(1), 2980 (2019). https://doi.org/10.1038/s41467-019-10854-1
A.B. Anderson, E.F. Holby, Pathways for O2 electroreduction over substitutional FeN4, HoFeN4, and OFeN4 in graphene bulk sites: critical evaluation of overpotential predictions using lger and che models. J. Phys. Chem. C 123(30), 18398–18409 (2019). https://doi.org/10.1021/acs.jpcc.9b03703
J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous s, n-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 15(24), 1900307 (2019). https://doi.org/10.1002/smll.201900307
J.-C. Li, H. Zhong, M. Xu, T. Li, L. Wang et al., Boosting the activity of fe-n x moieties in Fe-NC electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci. China Mater. (2019). https://doi.org/10.1007/s40843-019-1207-y
H. Sun, M. Wang, X. Du, Y. Jiao, S. Liu et al., Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. J. Mater. Chem. A 7(36), 20952–20957 (2019). https://doi.org/10.1039/c9ta06949f
Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J.W. Han, J. Lee, Versatile strategy for tuning orr activity of a single fe-n4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141(15), 6254–6262 (2019). https://doi.org/10.1021/jacs.8b13543
G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun et al., A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy Environ. Sci. 12(4), 1317–1325 (2019). https://doi.org/10.1039/c9ee00162j
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/ange.201604802
H. Zhang, H.T. Chung, D.A. Cullen, S. Wagner, U.I. Kramm, K.L. More, P. Zelenay, G. Wu, High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12, 2548–2558 (2019). https://doi.org/10.1039/c9ee00877b
Y. Deng, B. Chi, J. Li, G. Wang, L. Zheng et al., Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward pem fuel cells. Adv. Energy Mater. 9(13), 1802856 (2019). https://doi.org/10.1002/aenm.201802856
Z. Yang, B. Chen, W. Chen, Y. Qu, F. Zhou et al., Directly transforming copper (i) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 10(1), 3734 (2019). https://doi.org/10.1038/s41467-019-11796-4
G. Zhang, L. Wang, Y. Hao, X. Jin, Y. Xu, Y. Kuang, L. Dai, X. Sun, Unconventional carbon: alkaline dehalogenation of polymers yields n-doped carbon electrode for high-performance capacitive energy storage. Adv. Funct. Mater. 26(19), 3340–3348 (2016). https://doi.org/10.1002/adfm.201505533
E. Dervishi, Z. Ji, H. Htoon, M. Sykora, S.K. Doorn, Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale 11(35), 16571–16581 (2019). https://doi.org/10.1039/c9nr05345j
J. Xu, J. Zhu, X. Yang, S. Cao, J. Yu, M. Shalom, M. Antonietti, Synthesis of organized layered carbon by self-templating of dithiooxamide. Adv. Mater. 28(31), 6727–6733 (2016). https://doi.org/10.1002/adma.201600707
H. Jin, H. Zhou, D. He, Z. Wang, Q. Wu, Q. Liang, S. Liu, S. Mu, MOF-derived 3d Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B 250(5), 143–149 (2019). https://doi.org/10.1016/j.apcatb.2019.03.013
Y. Kuang, G. Feng, P. Li, Y. Bi, Y. Li, X. Sun, Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem. Int. Ed. 55(2), 693–697 (2016). https://doi.org/10.1002/ange.201509616
C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P.-L. Taberna, P. Simon, M. Salanne, Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137(39), 12627–12632 (2015). https://doi.org/10.1021/jacs.5b07416
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 1–12 (2018). https://doi.org/10.1038/s41467-018-07850-2
G. Zhang, H. Luo, H. Li, L. Wang, B. Han et al., ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst. Nano Energy 26, 241–247 (2016). https://doi.org/10.1016/j.nanoen.2016.05.029
C. Weidenthaler, A.-H. Lu, W. Schmidt, F. Schüth, X-ray photoelectron spectroscopic studies of pan-based ordered mesoporous carbons (OMC). Microporous Mesoporous Mater. 88(1–3), 238–243 (2006). https://doi.org/10.1016/j.micromeso.2005.09.015
L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011). https://doi.org/10.1021/jp201991j
M. Wang, L. Árnadóttir, Z.J. Xu, Z. Feng, In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett. 11(1), 47 (2019). https://doi.org/10.1007/s40820-019-0277-x
Y. Chang, F. Hong, C. He, Q. Zhang, J. Liu, Nitrogen and sulfur dual-doped non-noble catalyst using fluidic acrylonitrile telomer as precursor for efficient oxygen reduction. Adv. Mater. 25(34), 4794–4799 (2013). https://doi.org/10.1002/adma.201301002
I.-Y. Jeon, H.-J. Choi, S.-M. Jung, J.-M. Seo, M.-J. Kim, L. Dai, J.-B. Baek, Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 135(4), 1386–1393 (2012). https://doi.org/10.1021/ja3091643
Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on n-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/ange.201703992
D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu et al., Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci. 257(21), 9193–9198 (2011). https://doi.org/10.1016/j.apsusc.2011.05.131
J. Shui, M. Wang, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1(1), e1400129 (2015). https://doi.org/10.1126/sciadv.1400129
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu, J. Wang, Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10(2), 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
M. Xiao, L. Gao, Y. Wang, X. Wang, J. Zhu et al., Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 141(50), 19800–19806 (2019). https://doi.org/10.1021/jacs.9b09234
J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/ange.201206720
Z. Jiang, W. Sun, H. Shang, W. Chen, T. Sun et al., Atomic interface effect of single atom copper catalyst for enhanced oxygen reduction reaction. Energy Environ. Sci. 12, 3508–3514 (2019). https://doi.org/10.1039/c9ee02974e
A.K. Fajrial, M.F. Abdulkarim, A.G. Saputro, M.K. Agusta, H.K. Dipojono, Boron and nitrogen co-doping configuration on pyrolyzed Fe-N4/C catalyst. Procedia Eng. 170, 131–135 (2017). https://doi.org/10.1016/j.proeng.2017.03.028
R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. J. Phys. Chem. B 110(4), 1787–1793 (2006). https://doi.org/10.1021/jp055150g
H. Jin, H. Zhou, W. Li, Z. Wang, J. Yang et al., In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc–air batteries. J. Mater. Chem A 6(41), 20093–20099 (2018). https://doi.org/10.1039/c8ta07849a
J. Meng, C. Niu, L. Xu, J. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
H. Xu, D. Cheng, D. Cao, X.C. Zeng, A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1(5), 339 (2018). https://doi.org/10.1038/s41929-018-0063-z