Recent Progress in Emerging Two-Dimensional Transition Metal Carbides
Corresponding Author: Mingdong Dong
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 183
Abstract
As a new member in two-dimensional materials family, transition metal carbides (TMCs) have many excellent properties, such as chemical stability, in-plane anisotropy, high conductivity and flexibility, and remarkable energy conversation efficiency, which predispose them for promising applications as transparent electrode, flexible electronics, broadband photodetectors and battery electrodes. However, up to now, their device applications are in the early stage, especially because their controllable synthesis is still a great challenge. This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure, property, synthesis and applicability of TMCs. Finally, the current challenges and future perspectives are outlined for the application of 2D TMCs.
Highlights:
1 The phase diagram of transition metal carbides (TMCs) is discussed.
2 The physical and chemical property of TMCs is systematically summarized.
3 The potential application and controllable synthesis of TMCs is discussed.
4 A summary is provided to afford the principle to further investigation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013). https://doi.org/10.1126/science.1226419
- A.K.G.K.S. Novoselov, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- L. Lin, B. Deng, J. Sun, H. Peng, Z. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118, 9281–9343 (2018). https://doi.org/10.1021/acs.chemrev.8b00325
- Z.-G. Wang, Y.-F. Chen, P.-J. Li, X. Hao, J.-B. Liu et al., Flexible graphene-based electroluminescent devices. ACS Nano 5, 7149–7154 (2011). https://doi.org/10.1021/nn2018649
- X. Wang, A. Jones, K. Seyler, V. Tran, Y. Jia et al., Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotech. 10, 517–521 (2014). https://doi.org/10.1038/nnano.2015.71
- Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum Carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
- W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao et al., MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6, 8976–8982 (2018). https://doi.org/10.1021/acssuschemeng.8b01348
- P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47, 7426–7451 (2018). https://doi.org/10.1039/C8CS00561C
- P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014). https://doi.org/10.1039/C4CS00102H
- Z. Wang, J. Liu, X. Hao, Y. Wang, Y. Chen et al., Investigating the stability of molecule doped graphene field effect transistors. New J. Chem. 43, 15275–15279 (2019). https://doi.org/10.1039/C9NJ03537K
- Z. Wang, X. Xiong, J. Li, M. Dong, Screening fermi-level pinning effect through van der waals contacts to monolayer MoS2. Mater. Today Phys. 16, 100290 (2021). https://doi.org/10.1016/j.mtphys.2020.100290
- A. Ayari, E. Cobas, O. Ogundadegbe, M.S. Fuhrer, Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007). https://doi.org/10.1063/1.2407388
- L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic et al., Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J. Mater. Chem. 21, 11862–11866 (2011). https://doi.org/10.1039/C1JM11192B
- M. Özdemir, C. Çekil, Ö. Atasever, B. Ozdemir, Z. Yarar et al., Electron transport properties of silicene: Intrinsic and dirty cases with screening effects. J. Mol. Struct. 1199, 126878 (2019). https://doi.org/10.1016/j.molstruc.2019.126878
- Z. Wang, Q. Li, F. Besenbacher, M. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28, 10224–10229 (2016). https://doi.org/10.1002/adma.201602889
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547 (1973). https://doi.org/10.1126/science.181.4099.547
- J. Claridge, A. York, A. Brungs, C. Márquez-Alvarez, J. Sloan et al., New catalysts for the conversion of methane to synthesis gas: molybdenum and tungsten carbide. J. Catal. 180, 85–100 (1998). https://doi.org/10.1006/jcat.1998.2260
- J. Kitchin, J. Nørskov, M. Barteau, J. Chen, Trends in the chemical properties of early transition metal carbide surfaces: A density functional study. Catal. Today 105, 66–73 (2005). https://doi.org/10.1016/j.cattod.2005.04.008
- N.C. Frey, A. Bandyopadhyay, H. Kumar, B. Anasori, Y. Gogotsi et al., Surface-engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy. ACS Nano 13, 2831–2839 (2019). https://doi.org/10.1021/acsnano.8b09201
- M. Ashton, K. Mathew, R.G. Hennig, S.B. Sinnott, Predicted surface composition and thermodynamic stability of mxenes in solution. J. Phys. Chem. C 120, 3550–3556 (2016). https://doi.org/10.1021/acs.jpcc.5b11887
- Z. Kan, M. Wen, Q. Meng, C. Hu, X. Li et al., Effects of substrate bias voltage on the microstructure, mechanical properties and tribological behavior of reactive sputtered niobium carbide films. Surf. Coat. Tech. 212, 185–191 (2012). https://doi.org/10.1016/j.surfcoat.2012.09.046
- N. Nedfors, O. Tengstrand, E. Lewin, A. Furlan, P. Eklund et al., Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surf. Coat. Tech. 206, 354–359 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.021
- E.V. Pechen, S.I. Krasnosvobodtsev, N.P. Shabanova, E.V. Ekimov, A.V. Varlashkin et al., Tunneling and critical-magnetic-field study of superconducting NbC thin films. Physica C 235–240, 2511–2512 (1994). https://doi.org/10.1016/0921-4534(94)92476-7
- M.G. Kostenko, A.V. Lukoyanov, A.A. Valeeva, Vacancy ordered structures in a nonstoichiometric niobium carbide NbC0.83. Mendeleev Commun. 29, 707–709 (2019). https://doi.org/10.1016/j.mencom.2019.11.037
- J. Smith, O. Carlson, R. de Avillez, ChemInform abstract: The niobium-carbon system. ChemInform (1987). https://doi.org/10.1002/chin.198736371
- M. Cuppari, S. Santos, Physical properties of the NbC carbide. Metals 6, 250 (2016). https://doi.org/10.3390/met6100250
- V. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth et al., Effects of vacancy ordering on structure and properties of vanadium carbide. J. Alloys Compounds 261, 192–197 (1997). https://doi.org/10.1016/S0925-8388(97)00224-7
- L.W. Shacklette, W.S. Williams, Influence of order–disorder on the electrical resistivity of vanadium carbide. Phys. Rev. B (1973). https://doi.org/10.1103/PhysRevB.7.5041
- X. Chong, Y. Jiang, R. Zhou, J. Feng, Electronic structure, mechanical and thermal properties of V-C binary compounds. RSC Adv. 4, 44959–44971 (2014). https://doi.org/10.1039/C4RA07543A
- V.N. Lipatnikov, A.I. Gusev, P. Ettmayer, W. Lengauer, Phase transformations in non-stoichiometric vanadium carbide. J. Phys. Condensed Matter 11, 163–184 (1999). https://doi.org/10.1088/0953-8984/11/1/014
- X.S. Fan, Z. Yang, Z. Yuduo, H. Che, Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique. Surf. Coat. Tech. 205, 641–646 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.065
- Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu et al., Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3, 1500286 (2016). https://doi.org/10.1002/advs.201500286
- X. Zhao, W. Sun, D. Geng, W. Fu, J. Dan et al., Edge segregated polymorphism in 2D molybdenum carbide. Adv. Mater. 31, 1808343 (2019). https://doi.org/10.1002/adma.201808343
- C. Dai, Y. Chen, X. Jing, L. Xiang, D. Yang et al., Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano 11, 12696–12712 (2017). https://doi.org/10.1021/acsnano.7b07241
- H. Liu, J. Zhu, Z. Lai, R. Zhao, D. He, A first-principles study on structural and electronic properties of Mo2C. Scripta Mater. 60, 949–952 (2009). https://doi.org/10.1016/j.scriptamat.2009.02.010
- M. Tuo, C. Xu, H. Mu, X. Bao, Y. Wang et al., Ultrathin 2D Transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics 5, 1808–1816 (2018). https://doi.org/10.1021/acsphotonics.7b01428
- J. Jeon, H. Choi, S. Choi, J.-H. Park, B.H. Lee et al., Hybrid photodetectors: transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Funct. Mater. 29, 1970329 (2019). https://doi.org/10.1002/adfm.201970329
- H.W. Hugosson, O. Eriksson, U. Jansson, B. Johansson, Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B 63, 134108 (2001). https://doi.org/10.1103/PhysRevB.63.134108
- V.N. Lipatnikov, A.A. Rempel, A.I. Gusev, Atomic ordering and hardness of nonstoichiometric titanium carbide. Int. J. Refract. Met. Hard Mater. 15, 61–64 (1997). https://doi.org/10.1016/S0263-4368(96)00020-0
- X.J. Li, L.L. He, Y.S. Li, Q. Yang, A. Hirose, Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate. Mater. Charact. 123, 227–232 (2017). https://doi.org/10.1016/j.matchar.2016.11.035
- B. Yu, A. Huang, D. Chen, K. Srinivas, X. Zhang et al., In situ construction of Mo2C quantum dots-decorated cnt networks as a multifunctional electrocatalyst for advanced lithium–sulfur batteries. Small 17, 2100460 (2021). https://doi.org/10.1002/smll.202100460
- H. Goretzki, Neutron diffraction studies on titanium-carbon and zirconium-carbon alloys. Phys. Status Solidi B 20, K141–K143 (1967). https://doi.org/10.1002/pssb.19670200260
- B. Ji, S. Fan, X. Ma, K. Hu, L. Wang et al., Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes. Carbon 165, 150–162 (2020). https://doi.org/10.1016/j.carbon.2020.04.041
- N.V. Dzhalabadze, B.G. Éristavi, N.I. Maisuradze, K.K. Tskhovrebashvili, É.R. Kuteliya, Structural transformations in titanium carbide during diamond grinding. Powder Metall. Metal Ceram. 38, 292–296 (1999). https://doi.org/10.1007/BF02675778
- A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
- M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5, 2488–2503 (2017). https://doi.org/10.1039/C7TC00140A
- M. Kuang, W. Huang, C. Hegde, W. Fang, X. Tan et al., Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Mater. Horizons 7, 32–53 (2020). https://doi.org/10.1039/C9MH01094G
- G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/nnano.2014.207
- S. Zada, W. Dai, Z. Kai, H. Lu, X. Meng et al., Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angew. Chem. Int. Ed. 59, 6601–6606 (2020). https://doi.org/10.1002/anie.201916748
- A. Jastrzebska, A. Szuplewska, A. Rozmysłowska-Wojciechowska, J. Mitrzak, T. Wojciechowski et al., Juggling surface charges of 2D niobium carbide MXenes for a reactive oxygen species scavenging and effective targeting of the malignant melanoma cell cycle into programmed cell death. ACS Sustain. Chem. Eng. 8, 7942–7951 (2020). https://doi.org/10.1021/acssuschemeng.0c01609
- J.A. Klug, T. Proslier, J.W. Elam, R.E. Cook, J.M. Hiller et al., Atomic layer deposition of amorphous niobium carbide-based thin film superconductors. J. Phys. Chem. C 115, 25063–25071 (2011). https://doi.org/10.1021/jp207612r
- S. Pisana, P.M. Braganca, E.E. Marinero, B.A. Gurney, Tunable nanoscale graphene magnetometers. Nano Lett. 10, 341–346 (2010). https://doi.org/10.1021/nl903690y
- A.P.M. Barboza, H. Chacham, C.K. Oliveira, T.F.D. Fernandes, E.H.M. Ferreira et al., Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. Nano Lett. 12, 2313–2317 (2012). https://doi.org/10.1021/nl300183e
- J. Yang, M. Naguib, M. Ghidiu, L.-M. Pan, J. Gu et al., Two-dimensional nb-based M4C3 solid solutions (MXenes). J. Am. Ceram. Soc. 99, 660–666 (2016). https://doi.org/10.1111/jace.13922
- L. Verger, C. Xu, V. Natu, H.-M. Cheng, W. Ren et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid St. Mater. Sci. 23, 149–163 (2019). https://doi.org/10.1016/j.cossms.2019.02.001
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502 (2013). https://doi.org/10.1126/science.1241488
- A. Ren, J. Zou, H. Lai, Y. Huang, L. Yuan et al., Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horiz. 7, 1901–1911 (2020). https://doi.org/10.1039/D0MH00537A
- C. Zhang, B. Anasori, A. Seral-Ascaso, S.-H. Park, N. McEvoy et al., Transparent, Flexible, and conductive 2d titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
- M. Radovic, M. Barsoum, M.A.X. Phases, Bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 92, 20–27 (2013)
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Inter. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
- J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund et al., A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Inter. Ed. 55, 5008–5013 (2016). https://doi.org/10.1002/anie.201510432
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Two-dimensional materials: 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 982–982 (2014). https://doi.org/10.1002/adma.201470041
- M. Ghidiu, M. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou et al., Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017). https://doi.org/10.1016/j.apsusc.2017.04.239
- F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen et al., Preparation of high-purity V2C MXene and electrochemical properties as Li-Ion batteries. J. Electrochem. Soc. 164, A709–A713 (2017). https://doi.org/10.1149/2.0641704jes
- J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., MXene materials: effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201670068
- J. Yi, J. Li, S. Huang, L. Hu, L. Miao et al., Ti2CTx MXene-based all-optical modulator. InfoMat 2, 601–609 (2020). https://doi.org/10.1002/inf2.12052
- C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2, 613–638 (2020). https://doi.org/10.1002/inf2.12080
- Q.X. He, B. Wang, L. Wang, Q. Hu, A. Zhou, Two-dimensional vanadium carbide (V2CTx) MXene as supercapacitor electrode in seawater electrolyte. Chin. Chem. Lett. 31, 984–987 (2020). https://doi.org/10.1016/j.cclet.2019.08.025
- E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
- Y. Guan, S. Jiang, Y. Cong, J. Wang, Z. Dong et al., A hydrofluoric acid-free synthesis of 2D vanadium carbide (V2C) MXene for supercapacitor electrodes. 2D Mater. 7, 025010 (2020). https://doi.org/10.1088/2053-1583/ab6706
- Y. Xin, Y.-X. Yu, Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters. Mater. Design 130, 512–520 (2017). https://doi.org/10.1016/j.matdes.2017.05.052
- Z. Wang, Q. Li, Y. Chen, B. Cui, Y. Li et al., The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater. 10, 703–712 (2018). https://doi.org/10.1038/s41427-018-0062-1
- S.-Y. Pang, W.-F. Io, L.-W. Wong, J. Zhao, J. Hao, Efficient energy conversion and storage based on robust fluoride-free self-assembled 1D niobium carbide in 3D nanowire network. Adv. Sci. 7, 1903680 (2020). https://doi.org/10.1002/advs.201903680
- D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/D0TA01798A
- D. Bloom, N. Grant, The system chromium-carbon. JOM 2, 41–46 (1950). https://doi.org/10.1007/BF03398977
- M. Naguib, MXenes: A new family of two-dimensional materials and its application as electrodes for Li-ion batteries. Dissertations Theses Gradworks 45, 787–799 (2015)
- C. Wan, Y.N. Regmi, B.M. Leonard, Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 6407–6410 (2014). https://doi.org/10.1002/anie.201402998
- J. Luo, E. Matios, H. Wang, X. Tao, W. Li, Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2, 1057–1076 (2020). https://doi.org/10.1002/inf2.12118
- O. Mashtalir, M. Naguib, V. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
- Y. Omomo, T. Sasaki, L. Wang, M. Watanabe, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. ChemInform (2003). https://doi.org/10.1002/chin.200324215
- M. Naguib, R. Unocic, B. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 44, 9353 (2015). https://doi.org/10.1039/C5DT01247C
- O. Mashtalir, M.R. Lukatskaya, M.-Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Adv. Mater. 27, 3501–3506 (2015). https://doi.org/10.1002/adma.201500604
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Few-Layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009). https://doi.org/10.1021/nl901829a
- X. Wang, H. Feng, Y. Wu, L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013). https://doi.org/10.1021/ja4013485
- C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015). https://doi.org/10.1038/nmat4374
- C. Xu, L. Chen, Z. Liu, H.-M. Cheng, W. Ren, Bottom-Up synthesis of 2D transition metal carbides and nitrides. 2D Metal Carbides and Nitrides (MXenes) (2019), pp. 89–109
- D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on In situ grown graphene. Adv. Mater. 29, 1700072 (2017). https://doi.org/10.1002/adma.201700072
- D. Geng, X. Zhao, L. Li, P. Song, B. Tian et al., Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 4, 011012 (2016). https://doi.org/10.1088/2053-1583/aa51b7
- C. Zhang, Z. Wang, R. Tu, M. Dong, J. Li et al., Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl. Surf. Sci. 499, 143998 (2019). https://doi.org/10.1016/j.apsusc.2019.143998
- C. Xu, S. Song, Z. Liu, L. Chen, L. Wang et al., Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 11, 5906–5914 (2017). https://doi.org/10.1021/acsnano.7b01638
- C. Zhang, Z. Wang, R. Tu, M. Dong, J. Li et al., Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl. Surf. Sci. 499, 143998 (2020). https://doi.org/10.1016/j.apsusc.2019.143998
- T. Ikenoue, T. Yoshida, M. Miyake, R. Kasada, T. Hirato, Fabrication and mechanical properties of tungsten carbide thin films via mist chemical vapor deposition. J. Alloys Compounds 829, 154567 (2020). https://doi.org/10.1016/j.jallcom.2020.154567
- H.E. Rebenne, D.G. Bhat, Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance. Surf. Coat. Tech. 63, 1–13 (1994). https://doi.org/10.1016/S0257-8972(05)80002-7
- L. Volpe, M. Boudart, Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides. J. Solid State Chem. 59, 332–347 (1985). https://doi.org/10.1016/0022-4596(85)90301-9
- J.B. Claridge, A.P.E. York, A.J. Brungs, M.L.H. Green, Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors. Chem. Mater. 12, 132–142 (2000). https://doi.org/10.1021/cm9911060
- A.T. Peters, Ullmann’s encyclopedia of industrial chemistry: vols A5–A7. VCH Verlagsgesellschaft, Weinheim, FRG, 1986. vols A5 (ISBN 3-527-20105-X; xv + 556 pp). Dyes Pigm. 9, 165–166 (1988). https://doi.org/10.1016/0143-7208(88)80015-9
- V.L.S. Teixeira da Silva, E.I. Ko, M. Schmal, S.T. Oyama, Synthesis of niobium carbide from niobium oxide aerogels. Chem. Mater. 7, 179–184 (1995). https://doi.org/10.1021/cm00049a027
- V.L.S. Teixeira da Silva, M. Schmal, S.T. Oyama, Niobium carbide synthesis from niobium oxide: study of the synthesis conditions, kinetics, and solid-state transformation mechanism. J. Solid State Chem. 123, 168–182 (1996). https://doi.org/10.1006/jssc.1996.0165
- R. Kapoor, S.T. Oyama, Synthesis of high surface area vanadium nitride. J. Solid State Chem. 99, 303–312 (1992). https://doi.org/10.1016/0022-4596(92)90318-P
- J.G. Choi, H.G. Oh, Y.S. Baek, Tantalum carbide hydrodenitrogenation catalysts. J. Ind. Eng. Chem. 4, 94–98 (1998)
- L. Fei, X. Gan, S.M. Ng, H. Wang, M. Xu et al., Observable two-step nucleation mechanism in solid-state formation of tungsten carbide. ACS Nano 13, 681–688 (2019). https://doi.org/10.1021/acsnano.8b07864
- S. Biira, T. Thabethe, H. Bissett, T. Ntsoane, J.B. Malherbe, Investigating the thermal stability of the chemical vapour deposited zirconium carbide layers. J. Alloys Compounds 834, 155003 (2020). https://doi.org/10.1016/j.jallcom.2020.155003
- W. Sun, X. Kuang, H. Liang, X. Xia, Z. Zhang et al., Mechanical properties of tantalum carbide from high-pressure/high-temperature synthesis and first-principles calculations. Phys. Chem. Chem. Phys. 22, 5018–5023 (2020). https://doi.org/10.1039/C9CP06819H
- G. Zou, H. Wang, N. Mara, H. Luo, N. Li et al., Chemical solution deposition of epitaxial carbide films. J. Am. Chem. Soc. 132, 2516–2517 (2010). https://doi.org/10.1021/ja9102315
- R.E. Jilek, E. Bauer, A.K. Burrell, T.M. McCleskey, Q. Jia et al., Preparation of epitaxial uranium dicarbide thin films by polymer-assisted deposition. Chem. Mater. 25, 4373–4377 (2013). https://doi.org/10.1021/cm402655p
- M. Backhaus-Ricoult, Oxidation behavior of SiC-whisker-reinforced alumina-zirconia composites. J. Am. Ceram. Soc. 74, 1793–1802 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07790.x
- E. Lewin, M. Råsander, M. Klintenberg, A. Bergman, O. Eriksson et al., Design of the lattice parameter of embedded nanoparticles. Chem. Phys. Lett. 496, 95–99 (2010). https://doi.org/10.1016/j.cplett.2010.07.013
- D.V. Shtansky, E.A. Levashov, A.N. Sheveiko, J.J. Moore, Synthesis and characterization of Ti-Si-C-N films. Metall. Mater. Trans. A 30, 2439–2447 (1999). https://doi.org/10.1007/s11661-999-0252-0
- Z. Kan, M. Wena, G. Chengb, X. Lia, Q. Meng et al., Reactive magnetron sputtering deposition and characterization of niobium carbide films. Vacuum 99, 233–241 (2014). https://doi.org/10.1016/j.vacuum.2013.06.012
- S.A. Shiryaev, M. Atamanov, M. Guseva, Y. Martynenko, A. Mitin et al., Production and properties of metal-carbon composite coatings with a nanocrystalline structure. Tech. Phys. 47, 238–243 (2002). https://doi.org/10.1134/1.1451974
- D. Yang, Z. Su, Y. Chen, K. Srinivas, J. Gao et al., Electronic modulation of hierarchical spongy nanosheets toward efficient and stable water electrolysis. Small 17, 2006881 (2021). https://doi.org/10.1002/smll.202006881
- J. Wang, S. Liu, Y. Wang, T. Wang, S. Shang et al., Magnetron-sputtering deposited molybdenum carbide MXene thin films as a saturable absorber for passively Q-switched lasers. J. Mater. Chem. C 8, 1608–1613 (2020). https://doi.org/10.1039/C9TC06117G
- R.W. Chorley, P.W. Lednor, Synthetic routes to high surface area non-oxide materials. Adv. Mater. 3, 474–485 (1991). https://doi.org/10.1002/adma.19910031004
- T.P. Nguyen, D.M. Tuan Nguyen, D.L. Tran, H.K. Le, D.-V.N. Vo et al., MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol. Catal. 486, 110850 (2020). https://doi.org/10.1016/j.mcat.2020.110850
- Z. Wang, H.-H. Wu, Q. Li, F. Besenbacher, Y. Li et al., Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv. Sci. 7, 1901382 (2020). https://doi.org/10.1002/advs.201901382
- Z. Wang, Q. Li, H. Xu, C. Dahl-Petersen, Q. Yang et al., Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 49, 634–643 (2018). https://doi.org/10.1016/j.nanoen.2018.04.067
- G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7, 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754
- J. Wan, C. Wang, T. Qian, X. Gu, M. He, First-principles study of vanadium carbides as electrocatalysts for hydrogen and oxygen evolution reactions. RSC Adv. 9, 37467–37473 (2019). https://doi.org/10.1039/c9ra06539c
- L. Tian, S. Min, F. Wang, Z. Zhang, Enhanced photocatalytic hydrogen evolution on TiO2 employing vanadium carbide as an efficient and stable cocatalyst. Int. J. Hydrogen Energy 45, 1878–1889 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.094
- Z. Hu, C. Chen, H. Meng, R. Wang, P. Shen et al., Oxygen reduction electrocatalysis enhanced by nanosized cubic vanadium carbide. Electrochem. Commun. 13, 763–765 (2011). https://doi.org/10.1016/j.elecom.2011.03.004
- L. Guo, Y. Liu, X. Teng, Y. Niu, S. Gong et al., Self-supported vanadium carbide by an electropolymerization-assisted method for efficient hydrogen production. Chemsuschem 13, 3671–3678 (2020). https://doi.org/10.1002/cssc.202000769
- Y. Yoon, A.P. Tiwari, M. Choi, T.G. Novak, W. Song et al., Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: chemical composition controllable phosphorous doped vanadium carbide MXene. Adv. Funct. Mater. 29, 1903443 (2019). https://doi.org/10.1002/adfm.201903443
- C.-F. Du, X. Sun, H. Yu, W. Fang, Y. Jing et al., V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat 2, 950–959 (2020). https://doi.org/10.1002/inf2.12078
- U. Jansson, E. Lewin, Sputter deposition of transition-metal carbide films — a critical review from a chemical perspective. Thin Solid Films 536, 1–24 (2013). https://doi.org/10.1016/j.tsf.2013.02.019
- W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu et al., Highly active, durable, and nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 6, 943 (2013). https://doi.org/10.1039/C2EE23891H
- Z. Chen, T. Guo, Z. Wu, D. Wang, Boron triggers the phase transformation of MoxC (α-MoC1-x/β-Mo2C) for enhanced hydrogen production. Nanotechnology. (2019). https://doi.org/10.1088/1361-6528/ab5a25
- N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
- L. Lin, M. Chen, L. Wu, Synthesis of molybdenum–tungsten bimetallic carbide hollow spheres as pH-Universal electrocatalysts for efficient hydrogen evolution reaction. Adv. Mater. Interfaces 5, 1801302 (2018). https://doi.org/10.1002/admi.201801302
- J. Chen, B. Ren, H. Cui, C. Wang, Constructing pure phase tungsten-based bimetallic carbide nanosheet as an efficient bifunctional electrocatalyst for overall water splitting. Small 16, 1907556 (2020). https://doi.org/10.1002/smll.201907556
- L. Wang, Z. Liu, S. Zhu, M. Shao, B. Yang et al., Tungsten carbide and cobalt modified nickel nanoparticles supported on multiwall carbon nanotubes as highly efficient electrocatalysts for urea oxidation in alkaline electrolyte. ACS Appl. Mater. Interfaces 10, 41338–41343 (2018). https://doi.org/10.1021/acsami.8b14397
- K. Kui, K. Xi, Z. Pu, S. Mu, Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36, 374–380 (2017). https://doi.org/10.1016/j.nanoen.2017.04.057
- W. Huang, H. Meng, Y. Gao, J. Wang, C. Yang et al., Metallic tungsten carbide nanoparticles as a near-infrared-driven photocatalyst. J. Mater. Chem. A 7, 18538–18546 (2019). https://doi.org/10.1039/C9TA03151K
- S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu et al., Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 47, 512–518 (2018). https://doi.org/10.1016/j.nanoen.2018.03.022
- C. Wang, S. Wei, S. Chen, D. Cao, L. Song, Delaminating vanadium carbides for Zinc-ion storage: hydrate precipitation and H+/Zn2+ Co-action mechanism. Small Methods 3, 1900495 (2019). https://doi.org/10.1002/smtd.201900495
- L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang et al., A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014). https://doi.org/10.1039/C3EE42441C
- L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A 3, 8361–8368 (2015). https://doi.org/10.1039/C5TA00139K
- A.D. Handoko, K.D. Fredrickson, B. Anasori, K.W. Convey, L.R. Johnson et al., Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl. Energy Mater. 1, 173–180 (2018). https://doi.org/10.1021/acsaem.7b00054
- Z. Kou, K. Xi, Z. Pu, S. Mu, Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36, 374–380 (2017). https://doi.org/10.1016/j.nanoen.2017.04.057
- D.P. Valencia, L. Yate, W. Aperador, Y. Li, E. Coy, High electrocatalytic response of ultra-refractory ternary alloys of Ta-Hf-C carbide toward hydrogen evolution reaction in acidic media. J. Phys. Chem. C 122, 25433–25440 (2018). https://doi.org/10.1021/acs.jpcc.8b08123
- L. Qiao, A. Zhu, W. Zeng, R. Dong, P. Tan et al., Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. J. Mater. Chem. A 8, 2453–2462 (2020). https://doi.org/10.1039/C9TA10682K
- C.-F. Du, K.N. Dinh, Q. Liang, Y. Zheng, Y. Luo et al., Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 8, 1801127 (2018). https://doi.org/10.1002/aenm.201801127
- D. Das, S. Santra, K.K. Nanda, In situ fabrication of a Nickel/Molybdenum carbide-anchored N-doped graphene/CNT hybrid: an efficient (pre)catalyst for OER and HER. ACS Appl. Mater. Interf. 10, 35025–35038 (2018). https://doi.org/10.1021/acsami.8b09941
- H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo et al., Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew. Chem. Int. Ed. 56, 12566–12570 (2017). https://doi.org/10.1002/anie.201706610
- L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11, 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
- S. Gao, H. Chen, Y. Liu, G.-D. Li, R. Gao et al., Surface-clean, phase-pure multi-metallic carbides for efficient electrocatalytic hydrogen evolution reaction. Inorg. Chem. Front. 6, 940–947 (2019). https://doi.org/10.1039/C8QI01360H
- Y. Yoon, A.P. Tiwari, M. Lee, M. Choi, W. Song et al., Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J. Mater. Chem. A 6, 20869–20877 (2018). https://doi.org/10.1039/C8TA08197B
- X. Zang, W. Chen, X. Zou, J.N. Hohman, L. Yang et al., Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 30, 1805188 (2018). https://doi.org/10.1002/adma.201805188
- A. Mondal, K. Sinha, A. Paul, D.N. Srivastava, A.B. Panda, Large scale synthesis of Mo2C nanoparticle incorporated carbon nanosheet (Mo2C–C) for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 45, 18623–18634 (2020). https://doi.org/10.1016/j.ijhydene.2019.09.051
- Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li et al., Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem 12, 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
- Y. Zhou, R. Ma, P. Li, Y. Chen, Q. Liu et al., Ditungsten carbide nanoparticles encapsulated by ultrathin graphitic layers with excellent hydrogen-evolution electrocatalytic properties. J. Mater. Chem. A 4, 8204–8210 (2016). https://doi.org/10.1039/C6TA01601D
- L. Wang, Z. Li, K. Wang, Q. Dai, C. Lei et al., Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn–H2O cell over a wide pH range. Nano Energy 74, 104850 (2020). https://doi.org/10.1016/j.nanoen.2020.104850
- D.B. Burueva, A.A. Smirnov, O.A. Bulavchenko, I.P. Prosvirin, E.Y. Gerasimov et al., Pairwise parahydrogen addition over molybdenum carbide catalysts. Top. Catal. 63, 2–11 (2020). https://doi.org/10.1007/s11244-019-01211-z
- T. Xiao, A. York, V. Williams, H. Almegren, A. Hanif et al., Preparation of molybdenum carbides using butane and their catalytic performance. Chem. Mater. (2000). https://doi.org/10.1021/cm001157t
- E.B. Deeva, A. Kurlov, P.M. Abdala, D. Lebedev, S.M. Kim et al., In Situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTx: implications for the catalytic activity in the water–gas shift reaction. Chem. Mater. 31, 4505–4513 (2019). https://doi.org/10.1021/acs.chemmater.9b01105
- A. Pajares, H. Prats, A. Romero, F. Viñes, P.R. de la Piscina et al., Critical effect of carbon vacancies on the reverse water gas shift reaction over vanadium carbide catalysts. App. Catal. B-Environ. 267, 118719 (2020). https://doi.org/10.1016/j.apcatb.2020.118719
- E. Lee, A. VahidMohammadi, Y.S. Yoon, M. Beidaghi, D.-J. Kim, Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sensors 4, 1603–1611 (2019). https://doi.org/10.1021/acssensors.9b00303
- L. Zhao, K. Wang, W. Wei, L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407–416 (2019). https://doi.org/10.1002/inf2.12032
- S. Sun, M. Wang, X. Chang, Y. Jiang, D. Zhang et al., W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuators B Chem. 304, 127274 (2020). https://doi.org/10.1016/j.snb.2019.127274
- W. Li, Y. Yang, G. Zhang, Y.-W. Zhang, Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15, 1691–1697 (2015). https://doi.org/10.1021/nl504336h
- H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192 (2020). https://doi.org/10.1126/science.aav5842
- P. Ma, D. Fang, Y. Liu, Y. Shang, Y. Shi et al., MXene-Based materials for electrochemical sodium-ion storage. Adv. Sci. (2021). https://doi.org/10.1002/advs.202003185
- M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013). https://doi.org/10.1021/ja405735d
- Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori et al., Electrochemical and In-situ X-ray diffraction Studies of Ti3C2Tx MXene in Ionic liquid Electrolyte. Electrochem. Commun. (2016). https://doi.org/10.1016/j.elecom.2016.08.023
- J. Zhou, S. Lin, Y. Huang, P. Tong, B. Zhao et al., Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene. Chem. Eng. J. 373, 203–212 (2019). https://doi.org/10.1016/j.cej.2019.05.037
- J. Zhao, J. Wen, L. Bai, J. Xiao, R. Zheng et al., One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton Trans. 48, 14433–14439 (2019). https://doi.org/10.1039/C9DT03260F
- S. Shen, X. Xia, Y. Zhong, S. Deng, D. Xie et al., Implanting niobium carbide into trichoderma spore carbon: a new advanced host for sulfur cathodes. Adv. Mater. 31, 1900009 (2019). https://doi.org/10.1002/adma.201900009
- C. Wenlong, G. Li, K. Zhang, G. Xiao, C. Wang et al., Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 28, 1704865 (2017). https://doi.org/10.1002/adfm.201704865
- A. VahidMohammadi, A. Hadjikhani, S. Shahbazmohamadi, M. Beidaghi, Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 11, 11135–11144 (2017). https://doi.org/10.1021/acsnano.7b05350
- J. Yu, M. Li, X. Wang, Z. Yang, Promising high-performance supercapacitor electrode materials from MnO2 Nanosheets@Bamboo leaf carbon. ACS Omega 5, 16299–16306 (2020). https://doi.org/10.1021/acsomega.0c02169
- Y. Zhao, Q. Fang, X. Zhu, L. Xue, M. Ni et al., Structure reinforced birnessite with an extended potential window for supercapacitors. J. Mater. Chem. A 8, 8969–8978 (2020). https://doi.org/10.1039/D0TA01480J
- Z. Wang, J. Liu, X. Hao, Y. Wang, Y. Chen et al., Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene. New J. Chem. 44, 13377–13381 (2020). https://doi.org/10.1039/D0NJ02105A
- J. Xiao, H. Zhan, X. Wang, Z.-Q. Xu, Z. Xiong et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotech. 15, 683–689 (2020). https://doi.org/10.1038/s41565-020-0704-7
- H. Dong, P. Xiao, N. Jin, B. Wang, Y. Liu et al., Molten salt derived Nb2CTx MXene anode for Li-ion batteries. ChemElectroChem 8, 957–962 (2021). https://doi.org/10.1002/celc.202100142
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- Q. Shan, X. Mu, M. Alhabeb, C.E. Shuck, D. Pang et al., Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochem. Commun. 96, 103–107 (2018). https://doi.org/10.1016/j.elecom.2018.10.012
- G. Lv, J. Wang, Z. Shi, L. Fan, Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Mater. Lett. 219, 45–50 (2018). https://doi.org/10.1016/j.matlet.2018.02.016
- S. Nam, S. Umrao, S. Oh, K.H. Shin, H.S. Park et al., Sonochemical self-growth of functionalized titanium carbide nanorods on Ti3C2 nanosheets for high capacity anode for lithium-ion batteries. Compos. Part B-Eng. 181, 107583 (2020). https://doi.org/10.1016/j.compositesb.2019.107583
- C.E. Ren, M.-Q. Zhao, T. Makaryan, J. Halim, M. Boota et al., Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-Ion storage. ChemElectroChem 3, 689–693 (2016). https://doi.org/10.1002/celc.201600059
- S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen et al., Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 8, 42–48 (2017). https://doi.org/10.1016/j.ensm.2017.03.012
- L. Ma, T. Chen, G. Zhu, Y. Hu, H. Lu et al., Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. J. Mater. Chem. A 4, 15041–15048 (2016). https://doi.org/10.1039/C6TA06692E
- Y.-T. Liu, P. Zhang, N. Sun, B. Anasori, Q.-Z. Zhu et al., Self-Assembly of Transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334
- C. Zhang, S.J. Kim, M. Ghidiu, M.-Q. Zhao, M.W. Barsoum et al., Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv. Funct. Mater. 26, 4143–4151 (2016). https://doi.org/10.1002/adfm.201600682
- H. Zhang, H. Cui, J. Li, Y. Liu, Y. Yang et al., Frogspawn inspired hollow Fe3C@N–C as an efficient sulfur host for high-rate lithium–sulfur batteries. Nanoscale 11, 21532–21541 (2019). https://doi.org/10.1039/C9NR07388D
- F. Zhou, Z. Li, X. Luo, T. Wu, B. Jiang et al., Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li–S batteries. Nano Lett. 18, 1035–1043 (2018). https://doi.org/10.1021/acs.nanolett.7b04505
- T. Chen, M. Li, S. Song, P. Kim, J. Bae, Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor. Nano Energy 71, 104549 (2020). https://doi.org/10.1016/j.nanoen.2020.104549
- X. Zhao, Z. Wang, J. Dong, T. Huang, Q. Zhang et al., Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. J. Power Sources 470, 228356 (2020). https://doi.org/10.1016/j.jpowsour.2020.228356
- H. Zhang, J. Liu, Z. Tian, Y. Ye, Y. Cai et al., A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. Carbon 100, 590–599 (2016). https://doi.org/10.1016/j.carbon.2016.01.047
- X. Wang, H. Li, H. Li, S. Lin, W. Ding et al., 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30, 0190302 (2020). https://doi.org/10.1002/adfm.201910302
- M. Shi, L. Zhao, X. Song, J. Liu, P. Zhang et al., Highly conductive Mo2C nanofibers encapsulated in ultrathin MnO2 nanosheets as a self-supported electrode for high-performance capacitive energy storage. ACS Appl. Mater. Interf. 8, 32460–32467 (2016). https://doi.org/10.1021/acsami.6b10637
- J. Chen, Z. Li, F. Ni, W. Ouyang, X. Fang, Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater. Horizons 7, 1828–1833 (2020). https://doi.org/10.1039/D0MH00394H
- K. Montazeri, M. Currie, L. Verger, P. Dianat, M.W. Barsoum et al., Beyond gold: Spin-Coated Ti3C2-based MXene photodetectors. Adv. Mater. 31, 1903271 (2019). https://doi.org/10.1002/adma.201903271
- Y. Yang, J. Jeon, J.-H. Park, M.S. Jeong, B.H. Lee et al., Plasmonic transition metal carbide electrodes for high-performance inse photodetectors. ACS Nano 13, 8804–8810 (2019). https://doi.org/10.1021/acsnano.9b01941
- A. Ren, J. Zou, H. Lai, Y. Huang, L. Yuan et al., Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horizons 7, 1901–1911 (2020). https://doi.org/10.1039/D0MH00537A
- Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng et al., MXene–Silicon van der waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3, 1700165 (2017). https://doi.org/10.1002/aelm.201700165
- L. Gao, H. Chen, F. Zhang, S. Mei, Y. Zhang et al., Ultrafast relaxation dynamics and nonlinear response of few-layer niobium carbide MXene. Small Methods (2020). https://doi.org/10.1002/smtd.202000250
- J. Jeon, H. Choi, S. Choi, J.-H. Park, B.H. Lee et al., Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Electron. Mater. 29, 1905384 (2019). https://doi.org/10.1002/adfm.201905384
- L. Hao, Y. Du, Z. Wang, Y. Wu, H. Xu et al., Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity. Nanoscale 12, 7358–7365 (2020). https://doi.org/10.1039/D0NR00319K
- H. Xu, L. Hao, H. Liu, S. Dong, Y. Wu et al., Flexible SnSe Photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect. ACS Appl. Mater. Interfaces 12, 35250–35258 (2020). https://doi.org/10.1021/acsami.0c09561
- H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139, 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
- X. Ren, M. Huo, M. Wang, H. Lin, X. Zhang et al., Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano 13, 6438–6454 (2019). https://doi.org/10.1021/acsnano.8b09327
- H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30, 1703284 (2018). https://doi.org/10.1002/adma.201703284
- W. Ren, Z. Liu, C. Xu, C. Wang, S. Song et al., Grain boundaries and tilt angle-dependent transport properties of 2D Mo2C superconductor. Nano Lett. 19, 857–865 (2019). https://doi.org/10.1021/acs.nanolett.8b04065
- S. Jin, T. Su, Q. Hu, A. Zhou, Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C. Mater. Res. Lett. 8, 158–164 (2020). https://doi.org/10.1080/21663831.2020.1724204
- F. Porrati, S. Barth, R. Sachser, O.V. Dobrovolskiy, A. Seybert et al., Crystalline niobium carbide superconducting nanowires prepared by focused ion beam direct writing. ACS Nano 13, 6287–6296 (2019). https://doi.org/10.1021/acsnano.9b00059
- Z. Wang, H.-H. Wu, Q. Li, F. Besenbacher, X.C. Zeng et al., Self-scrolling MoS2 metallic wires. Nanoscale 10, 18178–18185 (2018). https://doi.org/10.1039/C8NR04611E
- M. Hao, C. Xu, Z. Liu, C. Wang, Z. Liu et al., Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Phys. Rev. B 101, 115422 (2020). https://doi.org/10.1103/PhysRevB.101.115422
- Y. Cheng, X. Wu, Z. Zhang, Y. Sun, Y. Zhao et al., Thermo-mechanical correlation in two-dimensional materials. Nanoscale 13, 1425–1442 (2021). https://doi.org/10.1039/D0NR06824A
- G. Zhang, Y.-W. Zhang, Thermal properties of two-dimensional materials. Chin. Phys. B 26, 034401 (2017). https://doi.org/10.1088/1674-1056/26/3/034401
- X. Lu, Q. Zhang, J. Liao, H. Chen, Y. Fan et al., High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)2Te3 Matrix. Adv. Energy Mater. 10, 1902986 (2020). https://doi.org/10.1002/aenm.201902986
- S. Hong, G. Zou, H. Kim, D. Huang, P. Wang et al., Photothermoelectric response of Ti3C2Tx MXene confined ion channels. ACS Nano 14, 9042–9049 (2020). https://doi.org/10.1021/acsnano.0c04099
- J.H. Kim, G.S. Park, Y.-J. Kim, E. Choi, J. Kang et al., Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation. ACS Nano 15, 8860–8869 (2021). https://doi.org/10.1021/acsnano.1c01448
- J. Wang, Z. Zhang, J. Zhu, M. Tian, S. Zheng et al., Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing. Nat. Commun. 11, 3540 (2020). https://doi.org/10.1038/s41467-020-17373-4
- D. Xu, X. Zhu, X. Luo, Y. Guo, Y. Liu et al., MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport. Environ. Sci. Technol. 55, 1270–1278 (2021). https://doi.org/10.1021/acs.est.0c06835
- K. Rajavel, X. Yu, P. Zhu, Y. Hu, R. Sun et al., Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings. ACS Appl. Mater. Interfaces 12, 49737–49747 (2020). https://doi.org/10.1021/acsami.0c12835
- B. Aïssa, A. Sinopoli, A. Ali, Y. Zakaria, A. Zekri et al., Nanoelectromagnetic of a highly conductive 2D transition metal carbide (MXene)/Graphene nanoplatelets composite in the EHF M-band frequency. Carbon 173, 528–539 (2021). https://doi.org/10.1016/j.carbon.2020.11.024
- S. Liu, J. Liu, X. Liu, J. Shang, L. Xu et al., Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021). https://doi.org/10.1038/s41565-020-00818-8
- T.H. Phuong Doan, W.G. Hong, J.-S. Noh, Palladium nanoparticle-decorated multi-layer Ti3C2Tx dual-functioning as a highly sensitive hydrogen gas sensor and hydrogen storage. RSC Adv. 11, 7492–7501 (2021). https://doi.org/10.1039/D0RA10879K
- W. Zhu, S. Panda, C. Lu, Z. Ma, D. Khan et al., Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2. ACS Appl. Mater. Interfaces 12, 50333–50343 (2020). https://doi.org/10.1021/acsami.0c12767
References
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013). https://doi.org/10.1126/science.1226419
A.K.G.K.S. Novoselov, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
L. Lin, B. Deng, J. Sun, H. Peng, Z. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118, 9281–9343 (2018). https://doi.org/10.1021/acs.chemrev.8b00325
Z.-G. Wang, Y.-F. Chen, P.-J. Li, X. Hao, J.-B. Liu et al., Flexible graphene-based electroluminescent devices. ACS Nano 5, 7149–7154 (2011). https://doi.org/10.1021/nn2018649
X. Wang, A. Jones, K. Seyler, V. Tran, Y. Jia et al., Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotech. 10, 517–521 (2014). https://doi.org/10.1038/nnano.2015.71
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum Carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao et al., MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6, 8976–8982 (2018). https://doi.org/10.1021/acssuschemeng.8b01348
P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47, 7426–7451 (2018). https://doi.org/10.1039/C8CS00561C
P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014). https://doi.org/10.1039/C4CS00102H
Z. Wang, J. Liu, X. Hao, Y. Wang, Y. Chen et al., Investigating the stability of molecule doped graphene field effect transistors. New J. Chem. 43, 15275–15279 (2019). https://doi.org/10.1039/C9NJ03537K
Z. Wang, X. Xiong, J. Li, M. Dong, Screening fermi-level pinning effect through van der waals contacts to monolayer MoS2. Mater. Today Phys. 16, 100290 (2021). https://doi.org/10.1016/j.mtphys.2020.100290
A. Ayari, E. Cobas, O. Ogundadegbe, M.S. Fuhrer, Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007). https://doi.org/10.1063/1.2407388
L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic et al., Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J. Mater. Chem. 21, 11862–11866 (2011). https://doi.org/10.1039/C1JM11192B
M. Özdemir, C. Çekil, Ö. Atasever, B. Ozdemir, Z. Yarar et al., Electron transport properties of silicene: Intrinsic and dirty cases with screening effects. J. Mol. Struct. 1199, 126878 (2019). https://doi.org/10.1016/j.molstruc.2019.126878
Z. Wang, Q. Li, F. Besenbacher, M. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28, 10224–10229 (2016). https://doi.org/10.1002/adma.201602889
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547 (1973). https://doi.org/10.1126/science.181.4099.547
J. Claridge, A. York, A. Brungs, C. Márquez-Alvarez, J. Sloan et al., New catalysts for the conversion of methane to synthesis gas: molybdenum and tungsten carbide. J. Catal. 180, 85–100 (1998). https://doi.org/10.1006/jcat.1998.2260
J. Kitchin, J. Nørskov, M. Barteau, J. Chen, Trends in the chemical properties of early transition metal carbide surfaces: A density functional study. Catal. Today 105, 66–73 (2005). https://doi.org/10.1016/j.cattod.2005.04.008
N.C. Frey, A. Bandyopadhyay, H. Kumar, B. Anasori, Y. Gogotsi et al., Surface-engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy. ACS Nano 13, 2831–2839 (2019). https://doi.org/10.1021/acsnano.8b09201
M. Ashton, K. Mathew, R.G. Hennig, S.B. Sinnott, Predicted surface composition and thermodynamic stability of mxenes in solution. J. Phys. Chem. C 120, 3550–3556 (2016). https://doi.org/10.1021/acs.jpcc.5b11887
Z. Kan, M. Wen, Q. Meng, C. Hu, X. Li et al., Effects of substrate bias voltage on the microstructure, mechanical properties and tribological behavior of reactive sputtered niobium carbide films. Surf. Coat. Tech. 212, 185–191 (2012). https://doi.org/10.1016/j.surfcoat.2012.09.046
N. Nedfors, O. Tengstrand, E. Lewin, A. Furlan, P. Eklund et al., Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surf. Coat. Tech. 206, 354–359 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.021
E.V. Pechen, S.I. Krasnosvobodtsev, N.P. Shabanova, E.V. Ekimov, A.V. Varlashkin et al., Tunneling and critical-magnetic-field study of superconducting NbC thin films. Physica C 235–240, 2511–2512 (1994). https://doi.org/10.1016/0921-4534(94)92476-7
M.G. Kostenko, A.V. Lukoyanov, A.A. Valeeva, Vacancy ordered structures in a nonstoichiometric niobium carbide NbC0.83. Mendeleev Commun. 29, 707–709 (2019). https://doi.org/10.1016/j.mencom.2019.11.037
J. Smith, O. Carlson, R. de Avillez, ChemInform abstract: The niobium-carbon system. ChemInform (1987). https://doi.org/10.1002/chin.198736371
M. Cuppari, S. Santos, Physical properties of the NbC carbide. Metals 6, 250 (2016). https://doi.org/10.3390/met6100250
V. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth et al., Effects of vacancy ordering on structure and properties of vanadium carbide. J. Alloys Compounds 261, 192–197 (1997). https://doi.org/10.1016/S0925-8388(97)00224-7
L.W. Shacklette, W.S. Williams, Influence of order–disorder on the electrical resistivity of vanadium carbide. Phys. Rev. B (1973). https://doi.org/10.1103/PhysRevB.7.5041
X. Chong, Y. Jiang, R. Zhou, J. Feng, Electronic structure, mechanical and thermal properties of V-C binary compounds. RSC Adv. 4, 44959–44971 (2014). https://doi.org/10.1039/C4RA07543A
V.N. Lipatnikov, A.I. Gusev, P. Ettmayer, W. Lengauer, Phase transformations in non-stoichiometric vanadium carbide. J. Phys. Condensed Matter 11, 163–184 (1999). https://doi.org/10.1088/0953-8984/11/1/014
X.S. Fan, Z. Yang, Z. Yuduo, H. Che, Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique. Surf. Coat. Tech. 205, 641–646 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.065
Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu et al., Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3, 1500286 (2016). https://doi.org/10.1002/advs.201500286
X. Zhao, W. Sun, D. Geng, W. Fu, J. Dan et al., Edge segregated polymorphism in 2D molybdenum carbide. Adv. Mater. 31, 1808343 (2019). https://doi.org/10.1002/adma.201808343
C. Dai, Y. Chen, X. Jing, L. Xiang, D. Yang et al., Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano 11, 12696–12712 (2017). https://doi.org/10.1021/acsnano.7b07241
H. Liu, J. Zhu, Z. Lai, R. Zhao, D. He, A first-principles study on structural and electronic properties of Mo2C. Scripta Mater. 60, 949–952 (2009). https://doi.org/10.1016/j.scriptamat.2009.02.010
M. Tuo, C. Xu, H. Mu, X. Bao, Y. Wang et al., Ultrathin 2D Transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics 5, 1808–1816 (2018). https://doi.org/10.1021/acsphotonics.7b01428
J. Jeon, H. Choi, S. Choi, J.-H. Park, B.H. Lee et al., Hybrid photodetectors: transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Funct. Mater. 29, 1970329 (2019). https://doi.org/10.1002/adfm.201970329
H.W. Hugosson, O. Eriksson, U. Jansson, B. Johansson, Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B 63, 134108 (2001). https://doi.org/10.1103/PhysRevB.63.134108
V.N. Lipatnikov, A.A. Rempel, A.I. Gusev, Atomic ordering and hardness of nonstoichiometric titanium carbide. Int. J. Refract. Met. Hard Mater. 15, 61–64 (1997). https://doi.org/10.1016/S0263-4368(96)00020-0
X.J. Li, L.L. He, Y.S. Li, Q. Yang, A. Hirose, Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate. Mater. Charact. 123, 227–232 (2017). https://doi.org/10.1016/j.matchar.2016.11.035
B. Yu, A. Huang, D. Chen, K. Srinivas, X. Zhang et al., In situ construction of Mo2C quantum dots-decorated cnt networks as a multifunctional electrocatalyst for advanced lithium–sulfur batteries. Small 17, 2100460 (2021). https://doi.org/10.1002/smll.202100460
H. Goretzki, Neutron diffraction studies on titanium-carbon and zirconium-carbon alloys. Phys. Status Solidi B 20, K141–K143 (1967). https://doi.org/10.1002/pssb.19670200260
B. Ji, S. Fan, X. Ma, K. Hu, L. Wang et al., Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes. Carbon 165, 150–162 (2020). https://doi.org/10.1016/j.carbon.2020.04.041
N.V. Dzhalabadze, B.G. Éristavi, N.I. Maisuradze, K.K. Tskhovrebashvili, É.R. Kuteliya, Structural transformations in titanium carbide during diamond grinding. Powder Metall. Metal Ceram. 38, 292–296 (1999). https://doi.org/10.1007/BF02675778
A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5, 2488–2503 (2017). https://doi.org/10.1039/C7TC00140A
M. Kuang, W. Huang, C. Hegde, W. Fang, X. Tan et al., Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Mater. Horizons 7, 32–53 (2020). https://doi.org/10.1039/C9MH01094G
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/nnano.2014.207
S. Zada, W. Dai, Z. Kai, H. Lu, X. Meng et al., Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angew. Chem. Int. Ed. 59, 6601–6606 (2020). https://doi.org/10.1002/anie.201916748
A. Jastrzebska, A. Szuplewska, A. Rozmysłowska-Wojciechowska, J. Mitrzak, T. Wojciechowski et al., Juggling surface charges of 2D niobium carbide MXenes for a reactive oxygen species scavenging and effective targeting of the malignant melanoma cell cycle into programmed cell death. ACS Sustain. Chem. Eng. 8, 7942–7951 (2020). https://doi.org/10.1021/acssuschemeng.0c01609
J.A. Klug, T. Proslier, J.W. Elam, R.E. Cook, J.M. Hiller et al., Atomic layer deposition of amorphous niobium carbide-based thin film superconductors. J. Phys. Chem. C 115, 25063–25071 (2011). https://doi.org/10.1021/jp207612r
S. Pisana, P.M. Braganca, E.E. Marinero, B.A. Gurney, Tunable nanoscale graphene magnetometers. Nano Lett. 10, 341–346 (2010). https://doi.org/10.1021/nl903690y
A.P.M. Barboza, H. Chacham, C.K. Oliveira, T.F.D. Fernandes, E.H.M. Ferreira et al., Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. Nano Lett. 12, 2313–2317 (2012). https://doi.org/10.1021/nl300183e
J. Yang, M. Naguib, M. Ghidiu, L.-M. Pan, J. Gu et al., Two-dimensional nb-based M4C3 solid solutions (MXenes). J. Am. Ceram. Soc. 99, 660–666 (2016). https://doi.org/10.1111/jace.13922
L. Verger, C. Xu, V. Natu, H.-M. Cheng, W. Ren et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid St. Mater. Sci. 23, 149–163 (2019). https://doi.org/10.1016/j.cossms.2019.02.001
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502 (2013). https://doi.org/10.1126/science.1241488
A. Ren, J. Zou, H. Lai, Y. Huang, L. Yuan et al., Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horiz. 7, 1901–1911 (2020). https://doi.org/10.1039/D0MH00537A
C. Zhang, B. Anasori, A. Seral-Ascaso, S.-H. Park, N. McEvoy et al., Transparent, Flexible, and conductive 2d titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
M. Radovic, M. Barsoum, M.A.X. Phases, Bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 92, 20–27 (2013)
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Inter. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund et al., A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Inter. Ed. 55, 5008–5013 (2016). https://doi.org/10.1002/anie.201510432
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Two-dimensional materials: 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 982–982 (2014). https://doi.org/10.1002/adma.201470041
M. Ghidiu, M. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou et al., Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017). https://doi.org/10.1016/j.apsusc.2017.04.239
F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen et al., Preparation of high-purity V2C MXene and electrochemical properties as Li-Ion batteries. J. Electrochem. Soc. 164, A709–A713 (2017). https://doi.org/10.1149/2.0641704jes
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., MXene materials: effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1600255 (2016). https://doi.org/10.1002/aelm.201670068
J. Yi, J. Li, S. Huang, L. Hu, L. Miao et al., Ti2CTx MXene-based all-optical modulator. InfoMat 2, 601–609 (2020). https://doi.org/10.1002/inf2.12052
C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2, 613–638 (2020). https://doi.org/10.1002/inf2.12080
Q.X. He, B. Wang, L. Wang, Q. Hu, A. Zhou, Two-dimensional vanadium carbide (V2CTx) MXene as supercapacitor electrode in seawater electrolyte. Chin. Chem. Lett. 31, 984–987 (2020). https://doi.org/10.1016/j.cclet.2019.08.025
E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2, 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
Y. Guan, S. Jiang, Y. Cong, J. Wang, Z. Dong et al., A hydrofluoric acid-free synthesis of 2D vanadium carbide (V2C) MXene for supercapacitor electrodes. 2D Mater. 7, 025010 (2020). https://doi.org/10.1088/2053-1583/ab6706
Y. Xin, Y.-X. Yu, Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters. Mater. Design 130, 512–520 (2017). https://doi.org/10.1016/j.matdes.2017.05.052
Z. Wang, Q. Li, Y. Chen, B. Cui, Y. Li et al., The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater. 10, 703–712 (2018). https://doi.org/10.1038/s41427-018-0062-1
S.-Y. Pang, W.-F. Io, L.-W. Wong, J. Zhao, J. Hao, Efficient energy conversion and storage based on robust fluoride-free self-assembled 1D niobium carbide in 3D nanowire network. Adv. Sci. 7, 1903680 (2020). https://doi.org/10.1002/advs.201903680
D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/D0TA01798A
D. Bloom, N. Grant, The system chromium-carbon. JOM 2, 41–46 (1950). https://doi.org/10.1007/BF03398977
M. Naguib, MXenes: A new family of two-dimensional materials and its application as electrodes for Li-ion batteries. Dissertations Theses Gradworks 45, 787–799 (2015)
C. Wan, Y.N. Regmi, B.M. Leonard, Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 6407–6410 (2014). https://doi.org/10.1002/anie.201402998
J. Luo, E. Matios, H. Wang, X. Tao, W. Li, Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2, 1057–1076 (2020). https://doi.org/10.1002/inf2.12118
O. Mashtalir, M. Naguib, V. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
Y. Omomo, T. Sasaki, L. Wang, M. Watanabe, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. ChemInform (2003). https://doi.org/10.1002/chin.200324215
M. Naguib, R. Unocic, B. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 44, 9353 (2015). https://doi.org/10.1039/C5DT01247C
O. Mashtalir, M.R. Lukatskaya, M.-Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Adv. Mater. 27, 3501–3506 (2015). https://doi.org/10.1002/adma.201500604
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Few-Layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009). https://doi.org/10.1021/nl901829a
X. Wang, H. Feng, Y. Wu, L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013). https://doi.org/10.1021/ja4013485
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015). https://doi.org/10.1038/nmat4374
C. Xu, L. Chen, Z. Liu, H.-M. Cheng, W. Ren, Bottom-Up synthesis of 2D transition metal carbides and nitrides. 2D Metal Carbides and Nitrides (MXenes) (2019), pp. 89–109
D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on In situ grown graphene. Adv. Mater. 29, 1700072 (2017). https://doi.org/10.1002/adma.201700072
D. Geng, X. Zhao, L. Li, P. Song, B. Tian et al., Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 4, 011012 (2016). https://doi.org/10.1088/2053-1583/aa51b7
C. Zhang, Z. Wang, R. Tu, M. Dong, J. Li et al., Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl. Surf. Sci. 499, 143998 (2019). https://doi.org/10.1016/j.apsusc.2019.143998
C. Xu, S. Song, Z. Liu, L. Chen, L. Wang et al., Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 11, 5906–5914 (2017). https://doi.org/10.1021/acsnano.7b01638
C. Zhang, Z. Wang, R. Tu, M. Dong, J. Li et al., Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl. Surf. Sci. 499, 143998 (2020). https://doi.org/10.1016/j.apsusc.2019.143998
T. Ikenoue, T. Yoshida, M. Miyake, R. Kasada, T. Hirato, Fabrication and mechanical properties of tungsten carbide thin films via mist chemical vapor deposition. J. Alloys Compounds 829, 154567 (2020). https://doi.org/10.1016/j.jallcom.2020.154567
H.E. Rebenne, D.G. Bhat, Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance. Surf. Coat. Tech. 63, 1–13 (1994). https://doi.org/10.1016/S0257-8972(05)80002-7
L. Volpe, M. Boudart, Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides. J. Solid State Chem. 59, 332–347 (1985). https://doi.org/10.1016/0022-4596(85)90301-9
J.B. Claridge, A.P.E. York, A.J. Brungs, M.L.H. Green, Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors. Chem. Mater. 12, 132–142 (2000). https://doi.org/10.1021/cm9911060
A.T. Peters, Ullmann’s encyclopedia of industrial chemistry: vols A5–A7. VCH Verlagsgesellschaft, Weinheim, FRG, 1986. vols A5 (ISBN 3-527-20105-X; xv + 556 pp). Dyes Pigm. 9, 165–166 (1988). https://doi.org/10.1016/0143-7208(88)80015-9
V.L.S. Teixeira da Silva, E.I. Ko, M. Schmal, S.T. Oyama, Synthesis of niobium carbide from niobium oxide aerogels. Chem. Mater. 7, 179–184 (1995). https://doi.org/10.1021/cm00049a027
V.L.S. Teixeira da Silva, M. Schmal, S.T. Oyama, Niobium carbide synthesis from niobium oxide: study of the synthesis conditions, kinetics, and solid-state transformation mechanism. J. Solid State Chem. 123, 168–182 (1996). https://doi.org/10.1006/jssc.1996.0165
R. Kapoor, S.T. Oyama, Synthesis of high surface area vanadium nitride. J. Solid State Chem. 99, 303–312 (1992). https://doi.org/10.1016/0022-4596(92)90318-P
J.G. Choi, H.G. Oh, Y.S. Baek, Tantalum carbide hydrodenitrogenation catalysts. J. Ind. Eng. Chem. 4, 94–98 (1998)
L. Fei, X. Gan, S.M. Ng, H. Wang, M. Xu et al., Observable two-step nucleation mechanism in solid-state formation of tungsten carbide. ACS Nano 13, 681–688 (2019). https://doi.org/10.1021/acsnano.8b07864
S. Biira, T. Thabethe, H. Bissett, T. Ntsoane, J.B. Malherbe, Investigating the thermal stability of the chemical vapour deposited zirconium carbide layers. J. Alloys Compounds 834, 155003 (2020). https://doi.org/10.1016/j.jallcom.2020.155003
W. Sun, X. Kuang, H. Liang, X. Xia, Z. Zhang et al., Mechanical properties of tantalum carbide from high-pressure/high-temperature synthesis and first-principles calculations. Phys. Chem. Chem. Phys. 22, 5018–5023 (2020). https://doi.org/10.1039/C9CP06819H
G. Zou, H. Wang, N. Mara, H. Luo, N. Li et al., Chemical solution deposition of epitaxial carbide films. J. Am. Chem. Soc. 132, 2516–2517 (2010). https://doi.org/10.1021/ja9102315
R.E. Jilek, E. Bauer, A.K. Burrell, T.M. McCleskey, Q. Jia et al., Preparation of epitaxial uranium dicarbide thin films by polymer-assisted deposition. Chem. Mater. 25, 4373–4377 (2013). https://doi.org/10.1021/cm402655p
M. Backhaus-Ricoult, Oxidation behavior of SiC-whisker-reinforced alumina-zirconia composites. J. Am. Ceram. Soc. 74, 1793–1802 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07790.x
E. Lewin, M. Råsander, M. Klintenberg, A. Bergman, O. Eriksson et al., Design of the lattice parameter of embedded nanoparticles. Chem. Phys. Lett. 496, 95–99 (2010). https://doi.org/10.1016/j.cplett.2010.07.013
D.V. Shtansky, E.A. Levashov, A.N. Sheveiko, J.J. Moore, Synthesis and characterization of Ti-Si-C-N films. Metall. Mater. Trans. A 30, 2439–2447 (1999). https://doi.org/10.1007/s11661-999-0252-0
Z. Kan, M. Wena, G. Chengb, X. Lia, Q. Meng et al., Reactive magnetron sputtering deposition and characterization of niobium carbide films. Vacuum 99, 233–241 (2014). https://doi.org/10.1016/j.vacuum.2013.06.012
S.A. Shiryaev, M. Atamanov, M. Guseva, Y. Martynenko, A. Mitin et al., Production and properties of metal-carbon composite coatings with a nanocrystalline structure. Tech. Phys. 47, 238–243 (2002). https://doi.org/10.1134/1.1451974
D. Yang, Z. Su, Y. Chen, K. Srinivas, J. Gao et al., Electronic modulation of hierarchical spongy nanosheets toward efficient and stable water electrolysis. Small 17, 2006881 (2021). https://doi.org/10.1002/smll.202006881
J. Wang, S. Liu, Y. Wang, T. Wang, S. Shang et al., Magnetron-sputtering deposited molybdenum carbide MXene thin films as a saturable absorber for passively Q-switched lasers. J. Mater. Chem. C 8, 1608–1613 (2020). https://doi.org/10.1039/C9TC06117G
R.W. Chorley, P.W. Lednor, Synthetic routes to high surface area non-oxide materials. Adv. Mater. 3, 474–485 (1991). https://doi.org/10.1002/adma.19910031004
T.P. Nguyen, D.M. Tuan Nguyen, D.L. Tran, H.K. Le, D.-V.N. Vo et al., MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol. Catal. 486, 110850 (2020). https://doi.org/10.1016/j.mcat.2020.110850
Z. Wang, H.-H. Wu, Q. Li, F. Besenbacher, Y. Li et al., Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv. Sci. 7, 1901382 (2020). https://doi.org/10.1002/advs.201901382
Z. Wang, Q. Li, H. Xu, C. Dahl-Petersen, Q. Yang et al., Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 49, 634–643 (2018). https://doi.org/10.1016/j.nanoen.2018.04.067
G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7, 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754
J. Wan, C. Wang, T. Qian, X. Gu, M. He, First-principles study of vanadium carbides as electrocatalysts for hydrogen and oxygen evolution reactions. RSC Adv. 9, 37467–37473 (2019). https://doi.org/10.1039/c9ra06539c
L. Tian, S. Min, F. Wang, Z. Zhang, Enhanced photocatalytic hydrogen evolution on TiO2 employing vanadium carbide as an efficient and stable cocatalyst. Int. J. Hydrogen Energy 45, 1878–1889 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.094
Z. Hu, C. Chen, H. Meng, R. Wang, P. Shen et al., Oxygen reduction electrocatalysis enhanced by nanosized cubic vanadium carbide. Electrochem. Commun. 13, 763–765 (2011). https://doi.org/10.1016/j.elecom.2011.03.004
L. Guo, Y. Liu, X. Teng, Y. Niu, S. Gong et al., Self-supported vanadium carbide by an electropolymerization-assisted method for efficient hydrogen production. Chemsuschem 13, 3671–3678 (2020). https://doi.org/10.1002/cssc.202000769
Y. Yoon, A.P. Tiwari, M. Choi, T.G. Novak, W. Song et al., Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: chemical composition controllable phosphorous doped vanadium carbide MXene. Adv. Funct. Mater. 29, 1903443 (2019). https://doi.org/10.1002/adfm.201903443
C.-F. Du, X. Sun, H. Yu, W. Fang, Y. Jing et al., V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat 2, 950–959 (2020). https://doi.org/10.1002/inf2.12078
U. Jansson, E. Lewin, Sputter deposition of transition-metal carbide films — a critical review from a chemical perspective. Thin Solid Films 536, 1–24 (2013). https://doi.org/10.1016/j.tsf.2013.02.019
W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu et al., Highly active, durable, and nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 6, 943 (2013). https://doi.org/10.1039/C2EE23891H
Z. Chen, T. Guo, Z. Wu, D. Wang, Boron triggers the phase transformation of MoxC (α-MoC1-x/β-Mo2C) for enhanced hydrogen production. Nanotechnology. (2019). https://doi.org/10.1088/1361-6528/ab5a25
N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
L. Lin, M. Chen, L. Wu, Synthesis of molybdenum–tungsten bimetallic carbide hollow spheres as pH-Universal electrocatalysts for efficient hydrogen evolution reaction. Adv. Mater. Interfaces 5, 1801302 (2018). https://doi.org/10.1002/admi.201801302
J. Chen, B. Ren, H. Cui, C. Wang, Constructing pure phase tungsten-based bimetallic carbide nanosheet as an efficient bifunctional electrocatalyst for overall water splitting. Small 16, 1907556 (2020). https://doi.org/10.1002/smll.201907556
L. Wang, Z. Liu, S. Zhu, M. Shao, B. Yang et al., Tungsten carbide and cobalt modified nickel nanoparticles supported on multiwall carbon nanotubes as highly efficient electrocatalysts for urea oxidation in alkaline electrolyte. ACS Appl. Mater. Interfaces 10, 41338–41343 (2018). https://doi.org/10.1021/acsami.8b14397
K. Kui, K. Xi, Z. Pu, S. Mu, Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36, 374–380 (2017). https://doi.org/10.1016/j.nanoen.2017.04.057
W. Huang, H. Meng, Y. Gao, J. Wang, C. Yang et al., Metallic tungsten carbide nanoparticles as a near-infrared-driven photocatalyst. J. Mater. Chem. A 7, 18538–18546 (2019). https://doi.org/10.1039/C9TA03151K
S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu et al., Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 47, 512–518 (2018). https://doi.org/10.1016/j.nanoen.2018.03.022
C. Wang, S. Wei, S. Chen, D. Cao, L. Song, Delaminating vanadium carbides for Zinc-ion storage: hydrate precipitation and H+/Zn2+ Co-action mechanism. Small Methods 3, 1900495 (2019). https://doi.org/10.1002/smtd.201900495
L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang et al., A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7, 387–392 (2014). https://doi.org/10.1039/C3EE42441C
L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A 3, 8361–8368 (2015). https://doi.org/10.1039/C5TA00139K
A.D. Handoko, K.D. Fredrickson, B. Anasori, K.W. Convey, L.R. Johnson et al., Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl. Energy Mater. 1, 173–180 (2018). https://doi.org/10.1021/acsaem.7b00054
Z. Kou, K. Xi, Z. Pu, S. Mu, Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36, 374–380 (2017). https://doi.org/10.1016/j.nanoen.2017.04.057
D.P. Valencia, L. Yate, W. Aperador, Y. Li, E. Coy, High electrocatalytic response of ultra-refractory ternary alloys of Ta-Hf-C carbide toward hydrogen evolution reaction in acidic media. J. Phys. Chem. C 122, 25433–25440 (2018). https://doi.org/10.1021/acs.jpcc.8b08123
L. Qiao, A. Zhu, W. Zeng, R. Dong, P. Tan et al., Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. J. Mater. Chem. A 8, 2453–2462 (2020). https://doi.org/10.1039/C9TA10682K
C.-F. Du, K.N. Dinh, Q. Liang, Y. Zheng, Y. Luo et al., Self-assemble and in situ formation of Ni1−xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater. 8, 1801127 (2018). https://doi.org/10.1002/aenm.201801127
D. Das, S. Santra, K.K. Nanda, In situ fabrication of a Nickel/Molybdenum carbide-anchored N-doped graphene/CNT hybrid: an efficient (pre)catalyst for OER and HER. ACS Appl. Mater. Interf. 10, 35025–35038 (2018). https://doi.org/10.1021/acsami.8b09941
H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo et al., Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew. Chem. Int. Ed. 56, 12566–12570 (2017). https://doi.org/10.1002/anie.201706610
L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11, 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
S. Gao, H. Chen, Y. Liu, G.-D. Li, R. Gao et al., Surface-clean, phase-pure multi-metallic carbides for efficient electrocatalytic hydrogen evolution reaction. Inorg. Chem. Front. 6, 940–947 (2019). https://doi.org/10.1039/C8QI01360H
Y. Yoon, A.P. Tiwari, M. Lee, M. Choi, W. Song et al., Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J. Mater. Chem. A 6, 20869–20877 (2018). https://doi.org/10.1039/C8TA08197B
X. Zang, W. Chen, X. Zou, J.N. Hohman, L. Yang et al., Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 30, 1805188 (2018). https://doi.org/10.1002/adma.201805188
A. Mondal, K. Sinha, A. Paul, D.N. Srivastava, A.B. Panda, Large scale synthesis of Mo2C nanoparticle incorporated carbon nanosheet (Mo2C–C) for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 45, 18623–18634 (2020). https://doi.org/10.1016/j.ijhydene.2019.09.051
Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li et al., Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. Chemsuschem 12, 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
Y. Zhou, R. Ma, P. Li, Y. Chen, Q. Liu et al., Ditungsten carbide nanoparticles encapsulated by ultrathin graphitic layers with excellent hydrogen-evolution electrocatalytic properties. J. Mater. Chem. A 4, 8204–8210 (2016). https://doi.org/10.1039/C6TA01601D
L. Wang, Z. Li, K. Wang, Q. Dai, C. Lei et al., Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn–H2O cell over a wide pH range. Nano Energy 74, 104850 (2020). https://doi.org/10.1016/j.nanoen.2020.104850
D.B. Burueva, A.A. Smirnov, O.A. Bulavchenko, I.P. Prosvirin, E.Y. Gerasimov et al., Pairwise parahydrogen addition over molybdenum carbide catalysts. Top. Catal. 63, 2–11 (2020). https://doi.org/10.1007/s11244-019-01211-z
T. Xiao, A. York, V. Williams, H. Almegren, A. Hanif et al., Preparation of molybdenum carbides using butane and their catalytic performance. Chem. Mater. (2000). https://doi.org/10.1021/cm001157t
E.B. Deeva, A. Kurlov, P.M. Abdala, D. Lebedev, S.M. Kim et al., In Situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTx: implications for the catalytic activity in the water–gas shift reaction. Chem. Mater. 31, 4505–4513 (2019). https://doi.org/10.1021/acs.chemmater.9b01105
A. Pajares, H. Prats, A. Romero, F. Viñes, P.R. de la Piscina et al., Critical effect of carbon vacancies on the reverse water gas shift reaction over vanadium carbide catalysts. App. Catal. B-Environ. 267, 118719 (2020). https://doi.org/10.1016/j.apcatb.2020.118719
E. Lee, A. VahidMohammadi, Y.S. Yoon, M. Beidaghi, D.-J. Kim, Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sensors 4, 1603–1611 (2019). https://doi.org/10.1021/acssensors.9b00303
L. Zhao, K. Wang, W. Wei, L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407–416 (2019). https://doi.org/10.1002/inf2.12032
S. Sun, M. Wang, X. Chang, Y. Jiang, D. Zhang et al., W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuators B Chem. 304, 127274 (2020). https://doi.org/10.1016/j.snb.2019.127274
W. Li, Y. Yang, G. Zhang, Y.-W. Zhang, Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15, 1691–1697 (2015). https://doi.org/10.1021/nl504336h
H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192 (2020). https://doi.org/10.1126/science.aav5842
P. Ma, D. Fang, Y. Liu, Y. Shang, Y. Shi et al., MXene-Based materials for electrochemical sodium-ion storage. Adv. Sci. (2021). https://doi.org/10.1002/advs.202003185
M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013). https://doi.org/10.1021/ja405735d
Z. Lin, P. Rozier, B. Duployer, P.-L. Taberna, B. Anasori et al., Electrochemical and In-situ X-ray diffraction Studies of Ti3C2Tx MXene in Ionic liquid Electrolyte. Electrochem. Commun. (2016). https://doi.org/10.1016/j.elecom.2016.08.023
J. Zhou, S. Lin, Y. Huang, P. Tong, B. Zhao et al., Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene. Chem. Eng. J. 373, 203–212 (2019). https://doi.org/10.1016/j.cej.2019.05.037
J. Zhao, J. Wen, L. Bai, J. Xiao, R. Zheng et al., One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton Trans. 48, 14433–14439 (2019). https://doi.org/10.1039/C9DT03260F
S. Shen, X. Xia, Y. Zhong, S. Deng, D. Xie et al., Implanting niobium carbide into trichoderma spore carbon: a new advanced host for sulfur cathodes. Adv. Mater. 31, 1900009 (2019). https://doi.org/10.1002/adma.201900009
C. Wenlong, G. Li, K. Zhang, G. Xiao, C. Wang et al., Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 28, 1704865 (2017). https://doi.org/10.1002/adfm.201704865
A. VahidMohammadi, A. Hadjikhani, S. Shahbazmohamadi, M. Beidaghi, Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 11, 11135–11144 (2017). https://doi.org/10.1021/acsnano.7b05350
J. Yu, M. Li, X. Wang, Z. Yang, Promising high-performance supercapacitor electrode materials from MnO2 Nanosheets@Bamboo leaf carbon. ACS Omega 5, 16299–16306 (2020). https://doi.org/10.1021/acsomega.0c02169
Y. Zhao, Q. Fang, X. Zhu, L. Xue, M. Ni et al., Structure reinforced birnessite with an extended potential window for supercapacitors. J. Mater. Chem. A 8, 8969–8978 (2020). https://doi.org/10.1039/D0TA01480J
Z. Wang, J. Liu, X. Hao, Y. Wang, Y. Chen et al., Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene. New J. Chem. 44, 13377–13381 (2020). https://doi.org/10.1039/D0NJ02105A
J. Xiao, H. Zhan, X. Wang, Z.-Q. Xu, Z. Xiong et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotech. 15, 683–689 (2020). https://doi.org/10.1038/s41565-020-0704-7
H. Dong, P. Xiao, N. Jin, B. Wang, Y. Liu et al., Molten salt derived Nb2CTx MXene anode for Li-ion batteries. ChemElectroChem 8, 957–962 (2021). https://doi.org/10.1002/celc.202100142
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
Q. Shan, X. Mu, M. Alhabeb, C.E. Shuck, D. Pang et al., Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochem. Commun. 96, 103–107 (2018). https://doi.org/10.1016/j.elecom.2018.10.012
G. Lv, J. Wang, Z. Shi, L. Fan, Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Mater. Lett. 219, 45–50 (2018). https://doi.org/10.1016/j.matlet.2018.02.016
S. Nam, S. Umrao, S. Oh, K.H. Shin, H.S. Park et al., Sonochemical self-growth of functionalized titanium carbide nanorods on Ti3C2 nanosheets for high capacity anode for lithium-ion batteries. Compos. Part B-Eng. 181, 107583 (2020). https://doi.org/10.1016/j.compositesb.2019.107583
C.E. Ren, M.-Q. Zhao, T. Makaryan, J. Halim, M. Boota et al., Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-Ion storage. ChemElectroChem 3, 689–693 (2016). https://doi.org/10.1002/celc.201600059
S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen et al., Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 8, 42–48 (2017). https://doi.org/10.1016/j.ensm.2017.03.012
L. Ma, T. Chen, G. Zhu, Y. Hu, H. Lu et al., Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. J. Mater. Chem. A 4, 15041–15048 (2016). https://doi.org/10.1039/C6TA06692E
Y.-T. Liu, P. Zhang, N. Sun, B. Anasori, Q.-Z. Zhu et al., Self-Assembly of Transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334
C. Zhang, S.J. Kim, M. Ghidiu, M.-Q. Zhao, M.W. Barsoum et al., Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv. Funct. Mater. 26, 4143–4151 (2016). https://doi.org/10.1002/adfm.201600682
H. Zhang, H. Cui, J. Li, Y. Liu, Y. Yang et al., Frogspawn inspired hollow Fe3C@N–C as an efficient sulfur host for high-rate lithium–sulfur batteries. Nanoscale 11, 21532–21541 (2019). https://doi.org/10.1039/C9NR07388D
F. Zhou, Z. Li, X. Luo, T. Wu, B. Jiang et al., Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li–S batteries. Nano Lett. 18, 1035–1043 (2018). https://doi.org/10.1021/acs.nanolett.7b04505
T. Chen, M. Li, S. Song, P. Kim, J. Bae, Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor. Nano Energy 71, 104549 (2020). https://doi.org/10.1016/j.nanoen.2020.104549
X. Zhao, Z. Wang, J. Dong, T. Huang, Q. Zhang et al., Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. J. Power Sources 470, 228356 (2020). https://doi.org/10.1016/j.jpowsour.2020.228356
H. Zhang, J. Liu, Z. Tian, Y. Ye, Y. Cai et al., A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. Carbon 100, 590–599 (2016). https://doi.org/10.1016/j.carbon.2016.01.047
X. Wang, H. Li, H. Li, S. Lin, W. Ding et al., 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30, 0190302 (2020). https://doi.org/10.1002/adfm.201910302
M. Shi, L. Zhao, X. Song, J. Liu, P. Zhang et al., Highly conductive Mo2C nanofibers encapsulated in ultrathin MnO2 nanosheets as a self-supported electrode for high-performance capacitive energy storage. ACS Appl. Mater. Interf. 8, 32460–32467 (2016). https://doi.org/10.1021/acsami.6b10637
J. Chen, Z. Li, F. Ni, W. Ouyang, X. Fang, Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater. Horizons 7, 1828–1833 (2020). https://doi.org/10.1039/D0MH00394H
K. Montazeri, M. Currie, L. Verger, P. Dianat, M.W. Barsoum et al., Beyond gold: Spin-Coated Ti3C2-based MXene photodetectors. Adv. Mater. 31, 1903271 (2019). https://doi.org/10.1002/adma.201903271
Y. Yang, J. Jeon, J.-H. Park, M.S. Jeong, B.H. Lee et al., Plasmonic transition metal carbide electrodes for high-performance inse photodetectors. ACS Nano 13, 8804–8810 (2019). https://doi.org/10.1021/acsnano.9b01941
A. Ren, J. Zou, H. Lai, Y. Huang, L. Yuan et al., Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horizons 7, 1901–1911 (2020). https://doi.org/10.1039/D0MH00537A
Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng et al., MXene–Silicon van der waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3, 1700165 (2017). https://doi.org/10.1002/aelm.201700165
L. Gao, H. Chen, F. Zhang, S. Mei, Y. Zhang et al., Ultrafast relaxation dynamics and nonlinear response of few-layer niobium carbide MXene. Small Methods (2020). https://doi.org/10.1002/smtd.202000250
J. Jeon, H. Choi, S. Choi, J.-H. Park, B.H. Lee et al., Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection. Adv. Electron. Mater. 29, 1905384 (2019). https://doi.org/10.1002/adfm.201905384
L. Hao, Y. Du, Z. Wang, Y. Wu, H. Xu et al., Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity. Nanoscale 12, 7358–7365 (2020). https://doi.org/10.1039/D0NR00319K
H. Xu, L. Hao, H. Liu, S. Dong, Y. Wu et al., Flexible SnSe Photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect. ACS Appl. Mater. Interfaces 12, 35250–35258 (2020). https://doi.org/10.1021/acsami.0c09561
H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139, 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
X. Ren, M. Huo, M. Wang, H. Lin, X. Zhang et al., Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano 13, 6438–6454 (2019). https://doi.org/10.1021/acsnano.8b09327
H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30, 1703284 (2018). https://doi.org/10.1002/adma.201703284
W. Ren, Z. Liu, C. Xu, C. Wang, S. Song et al., Grain boundaries and tilt angle-dependent transport properties of 2D Mo2C superconductor. Nano Lett. 19, 857–865 (2019). https://doi.org/10.1021/acs.nanolett.8b04065
S. Jin, T. Su, Q. Hu, A. Zhou, Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C. Mater. Res. Lett. 8, 158–164 (2020). https://doi.org/10.1080/21663831.2020.1724204
F. Porrati, S. Barth, R. Sachser, O.V. Dobrovolskiy, A. Seybert et al., Crystalline niobium carbide superconducting nanowires prepared by focused ion beam direct writing. ACS Nano 13, 6287–6296 (2019). https://doi.org/10.1021/acsnano.9b00059
Z. Wang, H.-H. Wu, Q. Li, F. Besenbacher, X.C. Zeng et al., Self-scrolling MoS2 metallic wires. Nanoscale 10, 18178–18185 (2018). https://doi.org/10.1039/C8NR04611E
M. Hao, C. Xu, Z. Liu, C. Wang, Z. Liu et al., Transport through a network of two-dimensional NbC superconducting crystals connected via weak links. Phys. Rev. B 101, 115422 (2020). https://doi.org/10.1103/PhysRevB.101.115422
Y. Cheng, X. Wu, Z. Zhang, Y. Sun, Y. Zhao et al., Thermo-mechanical correlation in two-dimensional materials. Nanoscale 13, 1425–1442 (2021). https://doi.org/10.1039/D0NR06824A
G. Zhang, Y.-W. Zhang, Thermal properties of two-dimensional materials. Chin. Phys. B 26, 034401 (2017). https://doi.org/10.1088/1674-1056/26/3/034401
X. Lu, Q. Zhang, J. Liao, H. Chen, Y. Fan et al., High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb)2Te3 Matrix. Adv. Energy Mater. 10, 1902986 (2020). https://doi.org/10.1002/aenm.201902986
S. Hong, G. Zou, H. Kim, D. Huang, P. Wang et al., Photothermoelectric response of Ti3C2Tx MXene confined ion channels. ACS Nano 14, 9042–9049 (2020). https://doi.org/10.1021/acsnano.0c04099
J.H. Kim, G.S. Park, Y.-J. Kim, E. Choi, J. Kang et al., Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation. ACS Nano 15, 8860–8869 (2021). https://doi.org/10.1021/acsnano.1c01448
J. Wang, Z. Zhang, J. Zhu, M. Tian, S. Zheng et al., Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing. Nat. Commun. 11, 3540 (2020). https://doi.org/10.1038/s41467-020-17373-4
D. Xu, X. Zhu, X. Luo, Y. Guo, Y. Liu et al., MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport. Environ. Sci. Technol. 55, 1270–1278 (2021). https://doi.org/10.1021/acs.est.0c06835
K. Rajavel, X. Yu, P. Zhu, Y. Hu, R. Sun et al., Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings. ACS Appl. Mater. Interfaces 12, 49737–49747 (2020). https://doi.org/10.1021/acsami.0c12835
B. Aïssa, A. Sinopoli, A. Ali, Y. Zakaria, A. Zekri et al., Nanoelectromagnetic of a highly conductive 2D transition metal carbide (MXene)/Graphene nanoplatelets composite in the EHF M-band frequency. Carbon 173, 528–539 (2021). https://doi.org/10.1016/j.carbon.2020.11.024
S. Liu, J. Liu, X. Liu, J. Shang, L. Xu et al., Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 16, 331–336 (2021). https://doi.org/10.1038/s41565-020-00818-8
T.H. Phuong Doan, W.G. Hong, J.-S. Noh, Palladium nanoparticle-decorated multi-layer Ti3C2Tx dual-functioning as a highly sensitive hydrogen gas sensor and hydrogen storage. RSC Adv. 11, 7492–7501 (2021). https://doi.org/10.1039/D0RA10879K
W. Zhu, S. Panda, C. Lu, Z. Ma, D. Khan et al., Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2. ACS Appl. Mater. Interfaces 12, 50333–50343 (2020). https://doi.org/10.1021/acsami.0c12767