Laser-Etched Stretchable Graphene–Polymer Composite Array for Sensitive Strain and Viscosity Sensors
Corresponding Author: Ya Yang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 99
Abstract
The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications. Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing. Here, we report a simple method to prepare flexible hydrophobic smart coatings using graphene–polymer films. Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0–200%. By means of experiments and model, we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle. Moreover, the change of drop size was utilized to measure the applied strain and liquid viscosity, enabling a strain sensitivity as high as 1068 μm2/%. The proposed laser-etched stretchable graphene–polymer composite has potential applications in DNA microarrays, biological assays, soft robots, and so on.
Highlights:
1 A simple method to prepare flexible hydrophobic smart coatings was proposed.
2 The change of drop size was utilized to measure the applied strain and liquid viscosity.
3 The prepared composite film exhibits favorable stretchability, high flexibility, and outstanding ability of controlling the drop shape.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces. Nature 388(6641), 431–432 (1997). https://doi.org/10.1038/41233
- L. Feng, S. Li, Y. Li, H. Li, L. Zhang et al., Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14(24), 1857–1860 (2002). https://doi.org/10.1002/adma.200290020
- Y. Wang, H. Zhang, X. Liu, Z. Zhou, Slippery liquid-infused substrates: a versatile preparation, unique anti-wetting and drag-reduction effect on water. J. Mater. Chem. A 4(7), 2524–2529 (2016). https://doi.org/10.1039/C5TA09936F
- H. Wu, X. Chen, X. Gao, M. Zhang, J. Wu, W. Wen, High-throughput generation of durable droplet arrays for single-cell encapsulation, culture, and monitoring. Anal. Chem. 90(7), 4303–4309 (2018). https://doi.org/10.1021/acs.analchem.8b00048
- P. Wang, R. Bian, Q. Meng, H. Liu, L. Jiang, Bioinspired dynamic wetting on multiple fibers. Adv. Mater. 29(45), 1703042 (2017). https://doi.org/10.1002/adma.201703042
- L. Zheng, Y. Wu, X. Chen, A. Yu, L. Xu, Y. Liu, H. Li, Z.L. Wang, Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator. Adv. Funct. Mater. 27(16), 1606408 (2017). https://doi.org/10.1002/adfm.201606408
- A.E. Goodling, S. Nagelberg, B. Kaehr, C.H. Meredith, S.I. Cheon, A.P. Saunders, M. Kolle, L.D. Zarzar, Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566(7745), 523–527 (2019). https://doi.org/10.1038/s41586-019-0946-4
- X. Feng, J. Zhai, L. Jiang, The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Chem. Int. Ed. 44(32), 5115–5118 (2005). https://doi.org/10.1002/anie.200501337
- K.-H. Chu, R. Xiao, E.N. Wang, Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9(5), 413–417 (2010). https://doi.org/10.1038/nmat2726
- Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on mxene with greatly changed interlayer distances. Nat. Commun. 8(1), 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
- C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351(6277), 1071–1074 (2016). https://doi.org/10.1126/science.aac5082
- T. Bu, T. Xiao, Z. Yang, G. Liu, X. Fu et al., Stretchable triboelectric–photonic smart skin for tactile and gesture sensing. Adv. Mater. 30(16), 1800066 (2018). https://doi.org/10.1002/adma.201800066
- Y. Ding, J. Yang, C.R. Tolle, Z. Zhu, Flexible and compressible PEDOT: PSS@ melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl. Mater. Interfaces 10(18), 16077–16086 (2018). https://doi.org/10.1021/acsami.8b00457
- M.-H. Seo, S.-J. Choi, S.H. Park, J.-Y. Yoo et al., Material-independent nanotransfer onto a flexible substrate using mechanical-interlocking structure. ACS Nano 12(5), 4387–4397 (2018). https://doi.org/10.1021/acsnano.8b00159
- H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232
- G. Chen, N. Matsuhisa, Z. Liu, D. Qi, P. Cai et al., Plasticizing silk protein for on-skin stretchable electrodes. Adv. Mater. 30(21), 1800129 (2018). https://doi.org/10.1002/adma.201800129
- C.L. Xu, Y.Z. Wang, Novel dual superlyophobic materials in water-oil systems: under oil magneto-fluid transportation and oil-water separation. J. Mater. Chem. A 6(7), 2935–2941 (2018). https://doi.org/10.1039/C7TA10739K
- X. Zhang, W.Z. Zhu, G. He, P.Y. Zhang, I.P. Parkin, Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie-Baxter state. J. Mater. Chem. A 4(37), 14180–14186 (2016). https://doi.org/10.1039/C6TA06493K
- X. Huang, Y. Sun, S. Soh, Stimuli-responsive surfaces for tunable and reversible control of wettability. Adv. Mater. 27(27), 4062–4068 (2015). https://doi.org/10.1002/adma.201501578
- L. Chao, M. Boban, S.A. Snyder, S.P.R. Kobaku, G. Kwon, G. Mehta, A. Tuteja, Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv. Funct. Mater. 26(33), 6121–6131 (2016). https://doi.org/10.1002/adfm.201601821
- L. Jiang, Z. Tang, R.M. Clinton, V. Breedveld, D.W. Hess, Two-step process to create “roll-off” superamphiphobic paper surfaces. ACS Appl. Mater. Interfaces 9(10), 9195–9203 (2017). https://doi.org/10.1021/acsami.7b00829
- S. Zhao, H. Xia, D. Wu, C. Lv, Q.D. Chen, K. Ariga, L.Q. Liu, H.B. Sun, Mechanical stretch for tunable wetting from topological PDMS film. Soft Matter 9(16), 4236–4240 (2013). https://doi.org/10.1039/C3SM27871A
- K.L. Wilke, D.J. Preston, Z. Lu, E.N. Wang, Toward condensation-resistant omniphobic surfaces. ACS Nano 12(11), 11013–11021 (2018). https://doi.org/10.1021/acsnano.8b05099
- L. Li, Y. Bai, L. Li, S. Wang, T. Zhang, A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29(43), 1702517 (2017). https://doi.org/10.1002/adma.201702517
- L. Zhang, D.-A. Zha, T. Du, S. Mei, Z. Shi, Z. Jin, Formation of superhydrophobic microspheres of poly (vinylidene fluoride-hexafluoropropylene)/graphene composite via gelation. Langmuir 27(14), 8943–8949 (2011). https://doi.org/10.1021/la200982n
- J.T. Han, B.K. Kim, J.S. Woo, J.I. Jang, J.Y. Cho et al., Bioinspired multifunctional superhydrophobic surfaces with carbon-nanotube-based conducting pastes by facile and scalable printing. ACS Appl. Mater. Interfaces 9(8), 7780–7786 (2017). https://doi.org/10.1021/acsami.6b15292
- J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, Superhydrophobic to superhydrophilic wetting control in graphene films. Adv. Mater. 22(19), 2151–2154 (2010). https://doi.org/10.1002/adma.200903696
- H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan et al., Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 22(21), 4421–4425 (2012). https://doi.org/10.1002/adfm.201200888
- L. Qin, L. Wu, B. Kattel, C. Li, Y. Zhang, Y. Hou, J. Wu, W.L. Chan, Using bulk heterojunctions and selective electron trapping to enhance the responsivity of perovskite–graphene photodetectors. Adv. Funct. Mater. 27(47), 1704173 (2017)
- H. Chen, T. Ran, Y. Gan, J. Zhou, Y. Zhang, L. Zhang, D. Zhang, L. Jiang, Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17(10), 935 (2018). https://doi.org/10.1002/adfm.201704173
- J. Wang, L. Sun, M. Zou, W. Gao, C. Liu, L. Shang, Z. Gu, Y. Zhao, Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 3(6), e1700004 (2017). https://doi.org/10.1126/sciadv.1700004
- J.E. Mates, I.S. Bayer, J.M. Palumbo, P.J. Carroll, C.M. Megaridis, Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 6(35), 8874–8882 (2015). https://doi.org/10.1038/ncomms9874
- N. Gao, F. Geyer, D.W. Pilat, S. Wooh, D. Vollmer, H.-J. Butt, R. Berger, How drops start sliding over solid surfaces. Nat. Phys. 14(2), 191–196 (2018). https://doi.org/10.1038/nphys4305
References
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces. Nature 388(6641), 431–432 (1997). https://doi.org/10.1038/41233
L. Feng, S. Li, Y. Li, H. Li, L. Zhang et al., Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14(24), 1857–1860 (2002). https://doi.org/10.1002/adma.200290020
Y. Wang, H. Zhang, X. Liu, Z. Zhou, Slippery liquid-infused substrates: a versatile preparation, unique anti-wetting and drag-reduction effect on water. J. Mater. Chem. A 4(7), 2524–2529 (2016). https://doi.org/10.1039/C5TA09936F
H. Wu, X. Chen, X. Gao, M. Zhang, J. Wu, W. Wen, High-throughput generation of durable droplet arrays for single-cell encapsulation, culture, and monitoring. Anal. Chem. 90(7), 4303–4309 (2018). https://doi.org/10.1021/acs.analchem.8b00048
P. Wang, R. Bian, Q. Meng, H. Liu, L. Jiang, Bioinspired dynamic wetting on multiple fibers. Adv. Mater. 29(45), 1703042 (2017). https://doi.org/10.1002/adma.201703042
L. Zheng, Y. Wu, X. Chen, A. Yu, L. Xu, Y. Liu, H. Li, Z.L. Wang, Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator. Adv. Funct. Mater. 27(16), 1606408 (2017). https://doi.org/10.1002/adfm.201606408
A.E. Goodling, S. Nagelberg, B. Kaehr, C.H. Meredith, S.I. Cheon, A.P. Saunders, M. Kolle, L.D. Zarzar, Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566(7745), 523–527 (2019). https://doi.org/10.1038/s41586-019-0946-4
X. Feng, J. Zhai, L. Jiang, The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Chem. Int. Ed. 44(32), 5115–5118 (2005). https://doi.org/10.1002/anie.200501337
K.-H. Chu, R. Xiao, E.N. Wang, Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9(5), 413–417 (2010). https://doi.org/10.1038/nmat2726
Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on mxene with greatly changed interlayer distances. Nat. Commun. 8(1), 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351(6277), 1071–1074 (2016). https://doi.org/10.1126/science.aac5082
T. Bu, T. Xiao, Z. Yang, G. Liu, X. Fu et al., Stretchable triboelectric–photonic smart skin for tactile and gesture sensing. Adv. Mater. 30(16), 1800066 (2018). https://doi.org/10.1002/adma.201800066
Y. Ding, J. Yang, C.R. Tolle, Z. Zhu, Flexible and compressible PEDOT: PSS@ melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl. Mater. Interfaces 10(18), 16077–16086 (2018). https://doi.org/10.1021/acsami.8b00457
M.-H. Seo, S.-J. Choi, S.H. Park, J.-Y. Yoo et al., Material-independent nanotransfer onto a flexible substrate using mechanical-interlocking structure. ACS Nano 12(5), 4387–4397 (2018). https://doi.org/10.1021/acsnano.8b00159
H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232
G. Chen, N. Matsuhisa, Z. Liu, D. Qi, P. Cai et al., Plasticizing silk protein for on-skin stretchable electrodes. Adv. Mater. 30(21), 1800129 (2018). https://doi.org/10.1002/adma.201800129
C.L. Xu, Y.Z. Wang, Novel dual superlyophobic materials in water-oil systems: under oil magneto-fluid transportation and oil-water separation. J. Mater. Chem. A 6(7), 2935–2941 (2018). https://doi.org/10.1039/C7TA10739K
X. Zhang, W.Z. Zhu, G. He, P.Y. Zhang, I.P. Parkin, Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie-Baxter state. J. Mater. Chem. A 4(37), 14180–14186 (2016). https://doi.org/10.1039/C6TA06493K
X. Huang, Y. Sun, S. Soh, Stimuli-responsive surfaces for tunable and reversible control of wettability. Adv. Mater. 27(27), 4062–4068 (2015). https://doi.org/10.1002/adma.201501578
L. Chao, M. Boban, S.A. Snyder, S.P.R. Kobaku, G. Kwon, G. Mehta, A. Tuteja, Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv. Funct. Mater. 26(33), 6121–6131 (2016). https://doi.org/10.1002/adfm.201601821
L. Jiang, Z. Tang, R.M. Clinton, V. Breedveld, D.W. Hess, Two-step process to create “roll-off” superamphiphobic paper surfaces. ACS Appl. Mater. Interfaces 9(10), 9195–9203 (2017). https://doi.org/10.1021/acsami.7b00829
S. Zhao, H. Xia, D. Wu, C. Lv, Q.D. Chen, K. Ariga, L.Q. Liu, H.B. Sun, Mechanical stretch for tunable wetting from topological PDMS film. Soft Matter 9(16), 4236–4240 (2013). https://doi.org/10.1039/C3SM27871A
K.L. Wilke, D.J. Preston, Z. Lu, E.N. Wang, Toward condensation-resistant omniphobic surfaces. ACS Nano 12(11), 11013–11021 (2018). https://doi.org/10.1021/acsnano.8b05099
L. Li, Y. Bai, L. Li, S. Wang, T. Zhang, A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29(43), 1702517 (2017). https://doi.org/10.1002/adma.201702517
L. Zhang, D.-A. Zha, T. Du, S. Mei, Z. Shi, Z. Jin, Formation of superhydrophobic microspheres of poly (vinylidene fluoride-hexafluoropropylene)/graphene composite via gelation. Langmuir 27(14), 8943–8949 (2011). https://doi.org/10.1021/la200982n
J.T. Han, B.K. Kim, J.S. Woo, J.I. Jang, J.Y. Cho et al., Bioinspired multifunctional superhydrophobic surfaces with carbon-nanotube-based conducting pastes by facile and scalable printing. ACS Appl. Mater. Interfaces 9(8), 7780–7786 (2017). https://doi.org/10.1021/acsami.6b15292
J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, Superhydrophobic to superhydrophilic wetting control in graphene films. Adv. Mater. 22(19), 2151–2154 (2010). https://doi.org/10.1002/adma.200903696
H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan et al., Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 22(21), 4421–4425 (2012). https://doi.org/10.1002/adfm.201200888
L. Qin, L. Wu, B. Kattel, C. Li, Y. Zhang, Y. Hou, J. Wu, W.L. Chan, Using bulk heterojunctions and selective electron trapping to enhance the responsivity of perovskite–graphene photodetectors. Adv. Funct. Mater. 27(47), 1704173 (2017)
H. Chen, T. Ran, Y. Gan, J. Zhou, Y. Zhang, L. Zhang, D. Zhang, L. Jiang, Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17(10), 935 (2018). https://doi.org/10.1002/adfm.201704173
J. Wang, L. Sun, M. Zou, W. Gao, C. Liu, L. Shang, Z. Gu, Y. Zhao, Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 3(6), e1700004 (2017). https://doi.org/10.1126/sciadv.1700004
J.E. Mates, I.S. Bayer, J.M. Palumbo, P.J. Carroll, C.M. Megaridis, Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 6(35), 8874–8882 (2015). https://doi.org/10.1038/ncomms9874
N. Gao, F. Geyer, D.W. Pilat, S. Wooh, D. Vollmer, H.-J. Butt, R. Berger, How drops start sliding over solid surfaces. Nat. Phys. 14(2), 191–196 (2018). https://doi.org/10.1038/nphys4305