3D N,O-Codoped Egg-Box-Like Carbons with Tuned Channels for High Areal Capacitance Supercapacitors
Corresponding Author: Jieshan Qiu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 82
Abstract
Functional carbonaceous materials for supercapacitors (SCs) without using acid for post-treatment remain a substantial challenge. In this paper, we present a less harmful strategy for preparing three-dimensional (3D) N,O-codoped egg-box-like carbons (EBCs). The as-prepared EBCs with opened pores provide plentiful channels for ion fast transport, ensure the effective contact of EBCs electrodes and electrolytes, and enhance the electron conduction. The nitrogen and oxygen atoms doped in EBCs improve the surface wettability of EBC electrodes and provide the pseudocapacitance. Consequently, the EBCs display a prominent areal capacitance of 39.8 μF cm−2 (340 F g−1) at 0.106 mA cm−2 in 6 M KOH electrolyte. The EBC-based symmetric SC manifests a high areal capacitance to 27.6 μF cm−2 (236 F g−1) at 0.1075 mA cm−2, a good rate capability of 18.8 μF cm−2 (160 F g−1) at 215 mA cm−2 and a long-term cycle stability with only 1.9% decay after 50,000 cycles in aqueous electrolyte. Impressively, even in all-solid-state SC, EBC electrode shows a high areal capacitance of 25.0 μF cm−2 (214 F g−1) and energy density of 0.0233 mWh cm−2. This work provides an acid-free process to prepare electrode materials from industrial by-products for advanced energy storage devices.
Article Highlights:
1 A green low-cost route without the acid washing step is used to prepare the N,O-codoped egg-box-like carbons.
2 The obtained carbons possess moderate N, O contents and tuned transfer channels with three-dimensional (3D) egg-box-like structures.
3 The fabricated electrode exhibits high areal capacitance and long-term cycle stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Bo, C.W. Li, H.C. Yang, K. Ostrikov, J.H. Yan, K.F. Cen, Design of supercapacitor electrodes using molecular dynamics simulations. Nano-Micro Lett. 10, 33 (2018). https://doi.org/10.1007/s40820-018-0188-2
- C.G. Hu, Y. Lin, J.W. Connell, H.-M. Cheng, Y. Gogotsi, M.-M. Titirici, L.M. Dai, Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31, 1806128 (2019). https://doi.org/10.1002/adma.201806128
- T. Zhai, S. Sun, X.J. Liu, C.L. Liang, G.M. Wang, H. Xia, Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv. Mater. 30, 1706640 (2018). https://doi.org/10.1002/adma.201706640
- Z.F. Yang, J.R. Tian, Z.F. Yin, C.J. Cui, W.Z. Qian, F. Wei, Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019). https://doi.org/10.1016/j.carbon.2018.10.010
- X.L. Zhao, B.N. Zheng, T.Q. Huang, C. Gao, Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 7, 9399–9404 (2015). https://doi.org/10.1039/c5nr01737h
- B.B. Chang, W.W. Shi, S.C. Han, Y.N. Zhou, Y.X. Liu, S.R. Zhang, B.C. Yang, N-rich porous carbons with a high graphitization degree and multiscale pore network for boosting high-rate supercapacitor with ultrafast charging. Chem. Eng. J. 350, 585–598 (2018). https://doi.org/10.1016/j.cej.2018.06.013
- Z.S. Li, L. Zhang, X. Chen, B.L. Li, H.Q. Wang, Q.Y. Li, Three-dimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application. Electrochim. Acta 296, 8–17 (2019). https://doi.org/10.1016/j.electacta.2018.11.002
- H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, 1705148 (2018). https://doi.org/10.1002/adma.201705148
- Q.F. Meng, K.F. Cai, Y.X. Chen, L.D. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040
- L.L. Zhang, D. Huang, N.T. Hu, C. Yang, M. Li et al., Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J. Power Sources 342, 1–8 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.068
- L.H. Tseng, C.H. Hsiao, D.D. Nguyen, P.Y. Hsieh, C.Y. Lee, N.H. Tai, Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim. Acta 266, 284–292 (2018). https://doi.org/10.1016/j.electacta.2018.02.029
- U. Balasubramani, R. Venkatesh, S. Subramaniam, G. Gopalakrishnan, V. Sundararajan, Alumina/activated carbon nano-composites: synthesis and application in sulphide ion removal from water. J. Hazard. Mater. 340, 241–252 (2017). https://doi.org/10.1016/j.jhazmat.2017.07.006
- B. Xu, H.R. Wang, Q.Z. Zhu, N. Sun, B. Anasori et al., Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater. 12, 128–136 (2018). https://doi.org/10.1016/j.ensm.2017.12.006
- M.Y. Liu, J. Niu, Z.P. Zhang, M.L. Dou, F. Wang, Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51, 366–372 (2018). https://doi.org/10.1016/j.nanoen.2018.06.037
- L. Peng, Y.J. Cai, Y. Luo, G. Yuan, J.Y. Huang et al., Bioinspired highly crumpled porous carbons with multidirectional porosity for high rate performance electrochemical supercapacitors. ACS Sustain. Chem. Eng. 6, 12716–12726 (2018). https://doi.org/10.1021/acssuschemeng.8b01839
- Y. Zhang, Q.T. Ma, H. Li, Y.W. Yang, J.Y. Luo, Robust production of ultrahigh surface area carbon sheets for energy storage. Small 14, 1800133 (2018). https://doi.org/10.1002/smll.201800133
- S.H. Zheng, Z.S. Wu, S. Wang, H. Xiao, F. Zhou, C.L. Sun, X.H. Bao, H.M. Cheng, Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater. 6, 70–97 (2017). https://doi.org/10.1016/j.ensm.2016.10.003
- Z.P. Qiu, Y.S. Wang, X. Bi, T. Zhou, J. Zhou et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.077
- Y. Liu, Z.R. Wang, W. Teng, H.W. Zhu, J.X. Wang et al., A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. J. Mater. Chem. A 6, 3162–3170 (2018). https://doi.org/10.1039/c7ta10106f
- M. Zhang, M. Chen, N. Reddeppa, D.L. Xu, Q.S. Jing, R.H. Zha, Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes. Nanoscale 10, 6549–6557 (2018). https://doi.org/10.1039/c8nr00207j
- J.S. Zhou, L. Hou, S.R. Luan, J.L. Zhu, H.Y. Gou, D. Wang, F.M. Gao, Nitrogen codoped unique carbon with 0.4 nm ultra-micropores for ultrahigh areal capacitance supercapacitors. Small 14, 1801897 (2018). https://doi.org/10.1002/smll.201801897
- S. Zhang, K. Tian, B.-H. Cheng, H. Jiang, Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes. ACS Sustain. Chem. Eng. 5, 6682–6691 (2017). https://doi.org/10.1021/acssuschemeng.7b00920
- C.L. Han, S.P. Wang, J. Wang, M.M. Li, J. Deng, H.R. Li, Y. Wang, Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 7, 1809–1819 (2014). https://doi.org/10.1007/s12274-014-0540-x
- J. Zhang, K. Anderson, D. Britt, Y. Liang, Sustaining biogenic methane release from Illinois coal in a fermentor for one year. Fuel 227, 27–34 (2018). https://doi.org/10.1016/j.fuel.2018.04.061
- J.W. Qi, B.L. Jin, P.Y. Bai, W.D. Zhang, L. Xu, Template-free preparation of anthracite-based nitrogen-doped porous carbons for high-performance supercapacitors and efficient electrocatalysts for the oxygen reduction reaction. RSC Adv. 9, 24344–24356 (2019). https://doi.org/10.1039/C9RA04791C
- L. Li, J.B. Zhang, Z.W. Peng, Y.L. Li, C. Gao et al., High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28, 838–845 (2016). https://doi.org/10.1002/adma.201503333
- J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30, 1704386 (2018). https://doi.org/10.1002/adma.201704386
- J.S. Xia, N. Zhang, S.K. Chong, D. Li, Y. Chen, C.H. Sun, Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem. 20, 694–700 (2018). https://doi.org/10.1039/c7gc03426a
- T. Lv, M.X. Liu, D.Z. Zhu, L.H. Gan, T. Chen, Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 30, 1705489 (2018). https://doi.org/10.1002/adma.201705489
- H.L. Wang, Z.W. Xu, A. Kohandehghan, Z. Li, K. Cui et al., Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7, 5131–5141 (2013). https://doi.org/10.1021/nn400731g
- T.Q. Lin, I.-W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
- Q.L. Zhu, P. Pachfule, P. Strubel, Z.P. Li, R.Q. Zou, Z. Liu, S. Kaskel, Q. Xu, Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Mater. 13, 72–79 (2018). https://doi.org/10.1016/j.ensm.2017.12.027
- X. Li, Y. Tang, J.H. Song, W. Yang, M.S. Wang et al., Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129, 236–244 (2018). https://doi.org/10.1016/j.carbon.2017.11.099
- T. Liu, F. Zhang, Y. Song, Y. Li, Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J. Mater. Chem. A 5, 17151–17173 (2017). https://doi.org/10.1039/c7ta05003h
- Z.Y. Song, D.Z. Zhu, L.C. Li, T. Chen, H. Duan et al., Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. J. Mater. Chem. A 7, 1177–1186 (2019). https://doi.org/10.1039/c8ta10158b
- C.C. Liu, X.J. Yan, F. Hu, G.H. Gao, G.M. Wu, X.W. Yang, Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv. Mater. 30, 1705713 (2018). https://doi.org/10.1002/adma.201705713
- F. Sun, Z.B. Qu, J.H. Gao, H.B. Wu, F. Liu et al., In situ doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance. Adv. Funct. Mater. 28, 180419 (2018). https://doi.org/10.1002/adfm.201804190
- Y.F. Bu, T. Sun, Y.J. Cai, L.Y. Du, O. Zhuo et al., Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 29, 1700470 (2017). https://doi.org/10.1002/adma.201700470
- N.N. Guo, M. Li, Y. Wang, X.K. Sun, F. Wang, R. Yang, Soybean root-derived hierarchical porous carbon as electrode material for high-performance supercapacitors in ionic liquids. ACS Appl. Mater. Interfaces 8, 33626–33634 (2016). https://doi.org/10.1021/acsami.6b11162
- L. Yao, Q. Wu, P.X. Zhang, J.M. Zhang, D.R. Wang et al., Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018). https://doi.org/10.1002/adma.201706054
- L. Zhi, T. Li, H. Yu, S.B. Chen, L.Q. Dang et al., Hierarchical graphene network sandwiched by a thin carbon layer for capacitive energy storage. Carbon 113, 100–107 (2017). https://doi.org/10.1016/j.carbon.2016.11.036
- J. Zhao, Y.F. Jiang, H. Fan, M. Liu, O. Zhuo et al., Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 29, 1604569 (2017). https://doi.org/10.1002/adma.201604569
- J.-G. Wang, H.Z. Liu, X.Y. Zhang, X. Li, X.R. Liu, F.Y. Kang, Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 14, 1703950 (2018). https://doi.org/10.1002/smll.201703950
- D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ. Sci. 7, 728–735 (2014). https://doi.org/10.1039/c3ee42551g
- J.Z. Chen, J.L. Xu, S. Zhou, N. Zhao, C.P. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016). https://doi.org/10.1016/j.nanoen.2016.04.037
- Y.S. Yun, S. Lee, N.R. Kim, M. Kang, C. Leal, K.Y. Park, K. Kang, H.J. Jin, High and rapid alkali cation storage in ultramicroporous carbonaceous materials. J. Power Sources 313, 142–151 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.068
- H.R. An, Y. Li, P. Long, Y. Gao, C.Q. Qin, C. Cao, Y.Y. Feng, W. Feng, Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 312, 146–155 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.057
- M. Wahid, G. Parte, D. Phase, S. Ogale, Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon. J. Mater. Chem. A 3, 1208–1215 (2015). https://doi.org/10.1039/c4ta06068g
- M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh et al., Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem. Soc. Rev. 47, 2680–2721 (2018). https://doi.org/10.1039/c7cs00787f
- F. Yang, S.K. Zhang, Y. Yang, W. Liu, M.N. Qiu, Y. Abbas, Z.P. Wu, D.Z. Wu, Heteroatoms doped carbons derived from crosslinked polyphosphazenes for supercapacitor electrodes. Electrochim. Acta 328, 135064 (2019). https://doi.org/10.1016/j.electacta.2019.135064
- H.Y. Wang, J. Deng, C.M. Xu, Y.Q. Chen, F. Xu, J. Wang, Y. Wang, Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Mater. 7, 216–221 (2017). https://doi.org/10.1016/j.ensm.2017.03.002
- H. Ye, S. Xin, Y.X. Yin, Y.G. Guo, Advanced porous carbon materials for high-efficient lithium metal anodes. Adv. Energy Mater. 7, 1700530 (2017). https://doi.org/10.1002/aenm.201700530
- S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 8, 1702545 (2018). https://doi.org/10.1002/aenm.201702545
- L.X. Feng, K. Wang, X. Zhang, X.Z. Sun, C. Li, X.B. Ge, Y.W. Ma, Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Funct. Mater. 28, 1704463 (2017). https://doi.org/10.1002/adfm.201704463
- A. Mahto, R. Gupta, K.K. Ghara, D.N. Srivastava, P. Maiti et al., Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste. J. Hazard. Mater. 340, 189–201 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.048
- Y.X. Xu, Z.Y. Lin, X.Q. Huang, Y. Liu, Y. Huang, X.F. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7, 4042–4049 (2013). https://doi.org/10.1021/nn4000836
References
Z. Bo, C.W. Li, H.C. Yang, K. Ostrikov, J.H. Yan, K.F. Cen, Design of supercapacitor electrodes using molecular dynamics simulations. Nano-Micro Lett. 10, 33 (2018). https://doi.org/10.1007/s40820-018-0188-2
C.G. Hu, Y. Lin, J.W. Connell, H.-M. Cheng, Y. Gogotsi, M.-M. Titirici, L.M. Dai, Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31, 1806128 (2019). https://doi.org/10.1002/adma.201806128
T. Zhai, S. Sun, X.J. Liu, C.L. Liang, G.M. Wang, H. Xia, Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv. Mater. 30, 1706640 (2018). https://doi.org/10.1002/adma.201706640
Z.F. Yang, J.R. Tian, Z.F. Yin, C.J. Cui, W.Z. Qian, F. Wei, Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019). https://doi.org/10.1016/j.carbon.2018.10.010
X.L. Zhao, B.N. Zheng, T.Q. Huang, C. Gao, Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 7, 9399–9404 (2015). https://doi.org/10.1039/c5nr01737h
B.B. Chang, W.W. Shi, S.C. Han, Y.N. Zhou, Y.X. Liu, S.R. Zhang, B.C. Yang, N-rich porous carbons with a high graphitization degree and multiscale pore network for boosting high-rate supercapacitor with ultrafast charging. Chem. Eng. J. 350, 585–598 (2018). https://doi.org/10.1016/j.cej.2018.06.013
Z.S. Li, L. Zhang, X. Chen, B.L. Li, H.Q. Wang, Q.Y. Li, Three-dimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application. Electrochim. Acta 296, 8–17 (2019). https://doi.org/10.1016/j.electacta.2018.11.002
H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30, 1705148 (2018). https://doi.org/10.1002/adma.201705148
Q.F. Meng, K.F. Cai, Y.X. Chen, L.D. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040
L.L. Zhang, D. Huang, N.T. Hu, C. Yang, M. Li et al., Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J. Power Sources 342, 1–8 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.068
L.H. Tseng, C.H. Hsiao, D.D. Nguyen, P.Y. Hsieh, C.Y. Lee, N.H. Tai, Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim. Acta 266, 284–292 (2018). https://doi.org/10.1016/j.electacta.2018.02.029
U. Balasubramani, R. Venkatesh, S. Subramaniam, G. Gopalakrishnan, V. Sundararajan, Alumina/activated carbon nano-composites: synthesis and application in sulphide ion removal from water. J. Hazard. Mater. 340, 241–252 (2017). https://doi.org/10.1016/j.jhazmat.2017.07.006
B. Xu, H.R. Wang, Q.Z. Zhu, N. Sun, B. Anasori et al., Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater. 12, 128–136 (2018). https://doi.org/10.1016/j.ensm.2017.12.006
M.Y. Liu, J. Niu, Z.P. Zhang, M.L. Dou, F. Wang, Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51, 366–372 (2018). https://doi.org/10.1016/j.nanoen.2018.06.037
L. Peng, Y.J. Cai, Y. Luo, G. Yuan, J.Y. Huang et al., Bioinspired highly crumpled porous carbons with multidirectional porosity for high rate performance electrochemical supercapacitors. ACS Sustain. Chem. Eng. 6, 12716–12726 (2018). https://doi.org/10.1021/acssuschemeng.8b01839
Y. Zhang, Q.T. Ma, H. Li, Y.W. Yang, J.Y. Luo, Robust production of ultrahigh surface area carbon sheets for energy storage. Small 14, 1800133 (2018). https://doi.org/10.1002/smll.201800133
S.H. Zheng, Z.S. Wu, S. Wang, H. Xiao, F. Zhou, C.L. Sun, X.H. Bao, H.M. Cheng, Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater. 6, 70–97 (2017). https://doi.org/10.1016/j.ensm.2016.10.003
Z.P. Qiu, Y.S. Wang, X. Bi, T. Zhou, J. Zhou et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.077
Y. Liu, Z.R. Wang, W. Teng, H.W. Zhu, J.X. Wang et al., A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. J. Mater. Chem. A 6, 3162–3170 (2018). https://doi.org/10.1039/c7ta10106f
M. Zhang, M. Chen, N. Reddeppa, D.L. Xu, Q.S. Jing, R.H. Zha, Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes. Nanoscale 10, 6549–6557 (2018). https://doi.org/10.1039/c8nr00207j
J.S. Zhou, L. Hou, S.R. Luan, J.L. Zhu, H.Y. Gou, D. Wang, F.M. Gao, Nitrogen codoped unique carbon with 0.4 nm ultra-micropores for ultrahigh areal capacitance supercapacitors. Small 14, 1801897 (2018). https://doi.org/10.1002/smll.201801897
S. Zhang, K. Tian, B.-H. Cheng, H. Jiang, Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes. ACS Sustain. Chem. Eng. 5, 6682–6691 (2017). https://doi.org/10.1021/acssuschemeng.7b00920
C.L. Han, S.P. Wang, J. Wang, M.M. Li, J. Deng, H.R. Li, Y. Wang, Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 7, 1809–1819 (2014). https://doi.org/10.1007/s12274-014-0540-x
J. Zhang, K. Anderson, D. Britt, Y. Liang, Sustaining biogenic methane release from Illinois coal in a fermentor for one year. Fuel 227, 27–34 (2018). https://doi.org/10.1016/j.fuel.2018.04.061
J.W. Qi, B.L. Jin, P.Y. Bai, W.D. Zhang, L. Xu, Template-free preparation of anthracite-based nitrogen-doped porous carbons for high-performance supercapacitors and efficient electrocatalysts for the oxygen reduction reaction. RSC Adv. 9, 24344–24356 (2019). https://doi.org/10.1039/C9RA04791C
L. Li, J.B. Zhang, Z.W. Peng, Y.L. Li, C. Gao et al., High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28, 838–845 (2016). https://doi.org/10.1002/adma.201503333
J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 30, 1704386 (2018). https://doi.org/10.1002/adma.201704386
J.S. Xia, N. Zhang, S.K. Chong, D. Li, Y. Chen, C.H. Sun, Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem. 20, 694–700 (2018). https://doi.org/10.1039/c7gc03426a
T. Lv, M.X. Liu, D.Z. Zhu, L.H. Gan, T. Chen, Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 30, 1705489 (2018). https://doi.org/10.1002/adma.201705489
H.L. Wang, Z.W. Xu, A. Kohandehghan, Z. Li, K. Cui et al., Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7, 5131–5141 (2013). https://doi.org/10.1021/nn400731g
T.Q. Lin, I.-W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
Q.L. Zhu, P. Pachfule, P. Strubel, Z.P. Li, R.Q. Zou, Z. Liu, S. Kaskel, Q. Xu, Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Mater. 13, 72–79 (2018). https://doi.org/10.1016/j.ensm.2017.12.027
X. Li, Y. Tang, J.H. Song, W. Yang, M.S. Wang et al., Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129, 236–244 (2018). https://doi.org/10.1016/j.carbon.2017.11.099
T. Liu, F. Zhang, Y. Song, Y. Li, Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J. Mater. Chem. A 5, 17151–17173 (2017). https://doi.org/10.1039/c7ta05003h
Z.Y. Song, D.Z. Zhu, L.C. Li, T. Chen, H. Duan et al., Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. J. Mater. Chem. A 7, 1177–1186 (2019). https://doi.org/10.1039/c8ta10158b
C.C. Liu, X.J. Yan, F. Hu, G.H. Gao, G.M. Wu, X.W. Yang, Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv. Mater. 30, 1705713 (2018). https://doi.org/10.1002/adma.201705713
F. Sun, Z.B. Qu, J.H. Gao, H.B. Wu, F. Liu et al., In situ doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance. Adv. Funct. Mater. 28, 180419 (2018). https://doi.org/10.1002/adfm.201804190
Y.F. Bu, T. Sun, Y.J. Cai, L.Y. Du, O. Zhuo et al., Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 29, 1700470 (2017). https://doi.org/10.1002/adma.201700470
N.N. Guo, M. Li, Y. Wang, X.K. Sun, F. Wang, R. Yang, Soybean root-derived hierarchical porous carbon as electrode material for high-performance supercapacitors in ionic liquids. ACS Appl. Mater. Interfaces 8, 33626–33634 (2016). https://doi.org/10.1021/acsami.6b11162
L. Yao, Q. Wu, P.X. Zhang, J.M. Zhang, D.R. Wang et al., Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018). https://doi.org/10.1002/adma.201706054
L. Zhi, T. Li, H. Yu, S.B. Chen, L.Q. Dang et al., Hierarchical graphene network sandwiched by a thin carbon layer for capacitive energy storage. Carbon 113, 100–107 (2017). https://doi.org/10.1016/j.carbon.2016.11.036
J. Zhao, Y.F. Jiang, H. Fan, M. Liu, O. Zhuo et al., Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 29, 1604569 (2017). https://doi.org/10.1002/adma.201604569
J.-G. Wang, H.Z. Liu, X.Y. Zhang, X. Li, X.R. Liu, F.Y. Kang, Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 14, 1703950 (2018). https://doi.org/10.1002/smll.201703950
D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ. Sci. 7, 728–735 (2014). https://doi.org/10.1039/c3ee42551g
J.Z. Chen, J.L. Xu, S. Zhou, N. Zhao, C.P. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016). https://doi.org/10.1016/j.nanoen.2016.04.037
Y.S. Yun, S. Lee, N.R. Kim, M. Kang, C. Leal, K.Y. Park, K. Kang, H.J. Jin, High and rapid alkali cation storage in ultramicroporous carbonaceous materials. J. Power Sources 313, 142–151 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.068
H.R. An, Y. Li, P. Long, Y. Gao, C.Q. Qin, C. Cao, Y.Y. Feng, W. Feng, Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 312, 146–155 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.057
M. Wahid, G. Parte, D. Phase, S. Ogale, Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon. J. Mater. Chem. A 3, 1208–1215 (2015). https://doi.org/10.1039/c4ta06068g
M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh et al., Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem. Soc. Rev. 47, 2680–2721 (2018). https://doi.org/10.1039/c7cs00787f
F. Yang, S.K. Zhang, Y. Yang, W. Liu, M.N. Qiu, Y. Abbas, Z.P. Wu, D.Z. Wu, Heteroatoms doped carbons derived from crosslinked polyphosphazenes for supercapacitor electrodes. Electrochim. Acta 328, 135064 (2019). https://doi.org/10.1016/j.electacta.2019.135064
H.Y. Wang, J. Deng, C.M. Xu, Y.Q. Chen, F. Xu, J. Wang, Y. Wang, Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Mater. 7, 216–221 (2017). https://doi.org/10.1016/j.ensm.2017.03.002
H. Ye, S. Xin, Y.X. Yin, Y.G. Guo, Advanced porous carbon materials for high-efficient lithium metal anodes. Adv. Energy Mater. 7, 1700530 (2017). https://doi.org/10.1002/aenm.201700530
S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 8, 1702545 (2018). https://doi.org/10.1002/aenm.201702545
L.X. Feng, K. Wang, X. Zhang, X.Z. Sun, C. Li, X.B. Ge, Y.W. Ma, Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Funct. Mater. 28, 1704463 (2017). https://doi.org/10.1002/adfm.201704463
A. Mahto, R. Gupta, K.K. Ghara, D.N. Srivastava, P. Maiti et al., Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste. J. Hazard. Mater. 340, 189–201 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.048
Y.X. Xu, Z.Y. Lin, X.Q. Huang, Y. Liu, Y. Huang, X.F. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7, 4042–4049 (2013). https://doi.org/10.1021/nn4000836