Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment
Corresponding Author: Kang Liang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 236
Abstract
Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal–organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to “find-and-fetch” target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment.
Highlights:
1 A self-propelled, biocatalytic buoyancy-driven metal–organic framework (MOF) nanobot is developed.
2 The anti-carcinoembryonic antigen antibody functionalized MOF nanobot demonstrates directional vertical motion to “find-and-fetch” cancer cells from mixed cell population.
3 The captured cells can be recovered with full metabolic potential.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Gross, J. Schoendube, S. Zimmermann, M. Steeb, R. Zengerle et al., Technologies for single-cell isolation. Int. J. Mol. Sci. 16, 16897 (2015). https://doi.org/10.3390/ijms160816897
- P. De Coppi, G. Bartsch, M.M. Siddiqui, T. Xu, C.C. Santos et al., Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100 (2007). https://doi.org/10.1038/nbt1274
- M. Tatullo, M. Marrelli, K.M. Shakesheff, L.J. White, Dental pulp stem cells: function, isolation and applications in regenerative medicine. J. Tissue Eng. Regen. Med. 9, 1205 (2015). https://doi.org/10.1002/term.1899
- Z. Li, H. Cai, Z. Li, L. Ren, X. Ma et al., A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact. Mater. 21, 299 (2023). https://doi.org/10.1016/j.bioactmat.2022.08.028
- P. Tan, X. Chen, H. Zhang, Q. Wei, K. Luo, Artificial intelligence aids in development of nanomedicines for cancer management. Semin. Cancer Biol. 89, 61 (2023). https://doi.org/10.1016/j.semcancer.2023.01.005
- C. Kudo Saito, Y. Ozaki, H. Imazeki, H. Hayashi, J. Masuda et al., Targeting oncoimmune drivers of cancer metastasis. Cancers 13, 554 (2021)
- J.W. Kim, E.I. Galanzha, D.A. Zaharoff, R.J. Griffin, V.P. Zharov, Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Mol. Pharm. 10, 813 (2013). https://doi.org/10.1021/mp300577s
- W. Lee, P. Tseng, D. Di Carlo, Microtechnology for cell manipulation and sorting. Springer (2017). https://doi.org/10.1007/978-3-319-44139-9
- A. Dalili, E. Samiei, M. Hoorfar, A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 144, 87 (2018). https://doi.org/10.1039/C8AN01061G
- C.M. Yousuff, E.T.W. Ho, I. Hussain, N.H.B. Hamid, Microfluidic platform for cell isolation and manipulation based on cell properties. Micromachines 8, 15 (2017). https://doi.org/10.3390/mi8010015
- J. Wu, Q. Chen, J.-M. Lin, Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142, 421 (2017). https://doi.org/10.1039/C6AN01939K
- A. Lee, J. Park, M. Lim, V. Sunkara, S.Y. Kim et al., All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity. Anal. Chem. 86, 11349 (2014). https://doi.org/10.1021/ac5035049
- H. Başağaoğlu, J. Blount, S. Succi, C.J. Freitas, Combined effects of fluid type and p shape on ps flow in microfluidic platforms. Microfluid. Nanofluid. 23, 84 (2019). https://doi.org/10.1007/s10404-019-2251-9
- G. Hvichia, Z. Parveen, C. Wagner, M. Janning, J. Quidde et al., A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int. J. Cancer 138, 2894 (2016). https://doi.org/10.1002/ijc.30007
- S.M. McFaul, B.K. Lin, H. Ma, Cell separation based on size and deformability using microfluidic funnel ratchets. Lab Chip 12, 2369 (2012). https://doi.org/10.1039/C2LC21045B
- Y. Zhang, X. Chen, Blood cells separation microfluidic chip based on dielectrophoretic force. J. Braz. Soc. Mech. Sci. Eng. 42, 206 (2020). https://doi.org/10.1007/s40430-020-02284-8
- A. Salmanzadeh, L. Romero, H. Shafiee, R.C. Gallo-Villanueva, M.A. Stremler et al., Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12, 182 (2012). https://doi.org/10.1039/C1LC20701F
- G. Wang, H. Benasutti, J.F. Jones, G. Shi, M. Benchimol et al., Isolation of breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Coll. Surf. B 161, 200 (2018). https://doi.org/10.1016/j.colsurfb.2017.10.060
- S. Siemer, D. Wünsch, A. Khamis, Q. Lu, A. Scherberich et al., Nano meets micro-translational nanotechnology in medicine: nano-based applications for early tumor detection and therapy. Nanomaterials 10, 383 (2020). https://doi.org/10.3390/nano10020383
- J. Chen, Y. Xu, Y. Lu, W. Xing, Isolation and visible detection of tumor-derived exosomes from plasma. Anal. Chem. 90, 14207 (2018). https://doi.org/10.1021/acs.analchem.8b03031
- J. Peng, Q. Zhao, W. Zheng, W. Li, P. Li et al., Peptide-functionalized nanomaterials for the efficient isolation of HER2-positive circulating tumor cells. ACS Appl. Mater. Interfaces 9, 18423 (2017). https://doi.org/10.1021/acsami.7b03905
- J. Li, W. Gao, R. Dong, A. Pei, S. Sattayasamitsathit et al., Nanomotor lithography. Nat. Commun. 5, 5026 (2014). https://doi.org/10.1038/ncomms6026
- J. Sun, M. Mathesh, W. Li, D.A. Wilson, Enzyme-powered nanomotors with controlled size for biomedical applications. ACS Nano 13, 10191 (2019). https://doi.org/10.1021/acsnano.9b03358
- Y. Tu, F. Peng, D.A. Wilson, Motion manipulation of micro- and nanomotors. Adv. Mater. 29, 1701970 (2017). https://doi.org/10.1002/adma.201701970
- Q. Yang, L. Xu, W. Zhong, Q. Yan, Y. Gao et al., Recent advances in motion control of micro/nanomotors. Adv. Intell. Syst. 2, 2000049 (2020). https://doi.org/10.1002/aisy.202000049
- Q. Chi, Z. Wang, F. Tian, J. You, S. Xu, A review of fast bubble-driven micromotors powered by biocompatible fuel: low-concentration fuel, bioactive fluid and enzyme. Micromachines 9, 537 (2018). https://doi.org/10.3390/mi9100537
- X. Ma, X. Wang, K. Hahn, S. Sanchez, Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597 (2016). https://doi.org/10.1021/acsnano.5b08067
- J. Wang, R. Dong, H. Wu, Y. Cai, B. Ren, A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett. 12, 11 (2019). https://doi.org/10.1007/s40820-019-0350-5
- F. Peng, Y. Tu, D.A. Wilson, Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289 (2017). https://doi.org/10.1039/C6CS00885B
- Z. Guo, T. Wang, A. Rawal, J. Hou, Z. Cao et al., Biocatalytic self-propelled submarine-like metal-organic framework microps with pH-triggered buoyancy control for directional vertical motion. Mater. Today 28, 10 (2019). https://doi.org/10.1016/j.mattod.2019.04.022
- Z. Guo, J. Liu, Y. Li, J.A. McDonald, M.Y. Bin Zulkifli et al., Biocatalytic metal-organic framework nanomotors for active water decontamination. Chem. Commun. 56, 14837 (2020). https://doi.org/10.1039/D0CC06429G
- D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sanchez, Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16, 2860 (2016). https://doi.org/10.1021/acs.nanolett.6b00768
- D. Kagan, S. Campuzano, S. Balasubramanian, F. Kuralay, G.-U. Flechsig et al., Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 11, 2083 (2011). https://doi.org/10.1021/nl2005687
- S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396 (2012). https://doi.org/10.1021/nl203717q
- S. Balasubramanian, D. Kagan, C.-M. Jack Hu, S. Campuzano, M.J. Lobo-Castañon et al., Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50, 4161 (2011). https://doi.org/10.1002/anie.201100115
- F. Kuralay, S. Sattayasamitsathit, W. Gao, A. Uygun, A. Katzenberg et al., Self-propelled carbohydrate-sensitive microtransporters with built-in boronic acid recognition for isolating sugars and cells. J. Am. Chem. Soc. 134, 15217 (2012). https://doi.org/10.1021/ja306080t
- H. Xu, M. Medina-Sanchez, O.G. Schmidt, Magnetic micromotors for multiple motile sperm cells capture, transport, and enzymatic release. Angew. Chem. Int. Ed. 59, 15029 (2020). https://doi.org/10.1002/anie.202005657
- B. Chen, Y. Jia, J. Zhao, H. Li, W. Dong et al., Assembled hemoglobin and catalase nanotubes for the treatment of oxidative stress. J. Phys. Chem. C 117, 19751 (2013). https://doi.org/10.1021/jp407164q
- C. Yim, H. Lee, S. Lee, S. Jeon, One-step immobilization of antibodies on ZIF-8/Fe3O4 hybrid nanops for the immunoassay of Staphylococcus aureus. RSC Adv. 7, 1418 (2017). https://doi.org/10.1039/C6RA25527B
- H. Sharma, R. Mutharasan, Half antibody fragments improve biosensor sensitivity without loss of selectivity. Anal. Chem. 85, 2472 (2013). https://doi.org/10.1021/ac3035426
- S. Jeong, J.Y. Park, M.G. Cha, H. Chang, Y.I. Kim et al., Highly robust and optimized conjugation of antibodies to nanops using quantitatively validated protocols. Nanoscale 9, 2548 (2017). https://doi.org/10.1039/C6NR04683E
- K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell et al., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015). https://doi.org/10.1038/ncomms8240
- K. Liang, C.J. Coghlan, S.G. Bell, C. Doonan, P. Falcaro, Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation. Chem. Commun. 52, 473 (2016). https://doi.org/10.1039/C5CC07577G
- A.R. Sousa, M.J. Oliveira, B. Sarmento, Impact of CEA-targeting nanops for drug delivery in colorectal cancer. J. Pharmacol Exp. Ther. 370, 657 (2019). https://doi.org/10.1124/jpet.118.254441
- C.-M.J. Hu, S. Kaushal, H.S.T. Cao, S. Aryal, M. Sartor et al., Half-antibody functionalized lipid−polymer hybrid nanops for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol. Pharm. 7, 914 (2010). https://doi.org/10.1021/mp900316a
- S. Ohtsukasa, S. Okabe, H. Yamashita, T. Iwai, K. Sugihara, Increased expression of CEA and MHC class I in colorectal cancer cell lines exposed to chemotherapy drugs. J. Cancer Res. Clin. Oncol. 129, 719 (2003). https://doi.org/10.1007/s00432-003-0492-0
- C.-X. Zheng, W.H. Zhan, J.-Z. Zhao, D. Zheng, D.-P. Wang et al., Prognostic value of preoperative serum levels of CEA, CA19-9 and CA72-4 in patients with colorectal cancer. World J. Gastroenterol. 7, 431 (2001). https://doi.org/10.3748/wjg.v7.i3.431
- S. Kaushal, M.K. McElroy, G.A. Luiken, M.A. Talamini, A. Moossa et al., Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J. Gastrointest. Surg. 12, 1938 (2008). https://doi.org/10.1007/s11605-008-0581-0
- X. Ni, X. Bai, Y. Mao, Y. Shao, J. Wu et al., The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur. J. Surg. Oncol. 31, 164 (2005). https://doi.org/10.1016/j.ejso.2004.09.007
- Y. Fujita, M. Terashima, Y. Hoshino, S. Ohtani, S. Kashimura et al., Detection of cancer cells disseminated in bone marrow using real-time quantitative RT-PCR of CEA, CK19, and CK20 mRNA in patients with gastric cancer. Gastric Cancer 9, 308 (2006). https://doi.org/10.1007/s10120-006-0398-z
- J. Yong, A.S. Mellick, J. Whitelock, J. Wang, K. Liang, A biomolecular toolbox for precision nanomotors. Adv. Mater. 35, 2205746 (2023). https://doi.org/10.1002/adma.202205746
- R. Alonso, P. Jimenez-Meneses, J. Garcia-Ruperez, M.J. Banuls, A. Maquieira, Thiol-ene click chemistry towards easy microarraying of half-antibodies. Chem. Commun. 54, 6144 (2018). https://doi.org/10.1039/C8CC01369A
- B.N. Lourenco, R.F. Pereira, C.C. Barrias, C. Fischbach, C. Oliveira et al., Engineering modular half-antibody conjugated nanops for targeting CD44v6-expressing cancer cells. Nanomaterials 11, 295 (2021). https://doi.org/10.3390/nano11020295
- Z. Guo, Y. Wu, Z. Xie, J. Shao, J. Liu et al., Self-propelled initiative collision at microelectrodes with vertically mobile micromotors. Angew. Chem. Int. Ed. 61, e202209747 (2022). https://doi.org/10.1002/anie.202209747
- Y. Zheng, H. Zhao, Y. Cai, B. Jurado-Sánchez, R. Dong, Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and application. Nano-Micro Lett. 15, 20 (2023). https://doi.org/10.1007/s40820-022-00988-1
- Y. Ge, M. Liu, L. Liu, Y. Sun, H. Zhang et al., Dual-Fuel-Driven Bactericidal Micromotor. Nano-Micro Lett. 8, 157–164 (2016). https://doi.org/10.1007/s40820-015-0071-3
References
A. Gross, J. Schoendube, S. Zimmermann, M. Steeb, R. Zengerle et al., Technologies for single-cell isolation. Int. J. Mol. Sci. 16, 16897 (2015). https://doi.org/10.3390/ijms160816897
P. De Coppi, G. Bartsch, M.M. Siddiqui, T. Xu, C.C. Santos et al., Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100 (2007). https://doi.org/10.1038/nbt1274
M. Tatullo, M. Marrelli, K.M. Shakesheff, L.J. White, Dental pulp stem cells: function, isolation and applications in regenerative medicine. J. Tissue Eng. Regen. Med. 9, 1205 (2015). https://doi.org/10.1002/term.1899
Z. Li, H. Cai, Z. Li, L. Ren, X. Ma et al., A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact. Mater. 21, 299 (2023). https://doi.org/10.1016/j.bioactmat.2022.08.028
P. Tan, X. Chen, H. Zhang, Q. Wei, K. Luo, Artificial intelligence aids in development of nanomedicines for cancer management. Semin. Cancer Biol. 89, 61 (2023). https://doi.org/10.1016/j.semcancer.2023.01.005
C. Kudo Saito, Y. Ozaki, H. Imazeki, H. Hayashi, J. Masuda et al., Targeting oncoimmune drivers of cancer metastasis. Cancers 13, 554 (2021)
J.W. Kim, E.I. Galanzha, D.A. Zaharoff, R.J. Griffin, V.P. Zharov, Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Mol. Pharm. 10, 813 (2013). https://doi.org/10.1021/mp300577s
W. Lee, P. Tseng, D. Di Carlo, Microtechnology for cell manipulation and sorting. Springer (2017). https://doi.org/10.1007/978-3-319-44139-9
A. Dalili, E. Samiei, M. Hoorfar, A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 144, 87 (2018). https://doi.org/10.1039/C8AN01061G
C.M. Yousuff, E.T.W. Ho, I. Hussain, N.H.B. Hamid, Microfluidic platform for cell isolation and manipulation based on cell properties. Micromachines 8, 15 (2017). https://doi.org/10.3390/mi8010015
J. Wu, Q. Chen, J.-M. Lin, Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142, 421 (2017). https://doi.org/10.1039/C6AN01939K
A. Lee, J. Park, M. Lim, V. Sunkara, S.Y. Kim et al., All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity. Anal. Chem. 86, 11349 (2014). https://doi.org/10.1021/ac5035049
H. Başağaoğlu, J. Blount, S. Succi, C.J. Freitas, Combined effects of fluid type and p shape on ps flow in microfluidic platforms. Microfluid. Nanofluid. 23, 84 (2019). https://doi.org/10.1007/s10404-019-2251-9
G. Hvichia, Z. Parveen, C. Wagner, M. Janning, J. Quidde et al., A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int. J. Cancer 138, 2894 (2016). https://doi.org/10.1002/ijc.30007
S.M. McFaul, B.K. Lin, H. Ma, Cell separation based on size and deformability using microfluidic funnel ratchets. Lab Chip 12, 2369 (2012). https://doi.org/10.1039/C2LC21045B
Y. Zhang, X. Chen, Blood cells separation microfluidic chip based on dielectrophoretic force. J. Braz. Soc. Mech. Sci. Eng. 42, 206 (2020). https://doi.org/10.1007/s40430-020-02284-8
A. Salmanzadeh, L. Romero, H. Shafiee, R.C. Gallo-Villanueva, M.A. Stremler et al., Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12, 182 (2012). https://doi.org/10.1039/C1LC20701F
G. Wang, H. Benasutti, J.F. Jones, G. Shi, M. Benchimol et al., Isolation of breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Coll. Surf. B 161, 200 (2018). https://doi.org/10.1016/j.colsurfb.2017.10.060
S. Siemer, D. Wünsch, A. Khamis, Q. Lu, A. Scherberich et al., Nano meets micro-translational nanotechnology in medicine: nano-based applications for early tumor detection and therapy. Nanomaterials 10, 383 (2020). https://doi.org/10.3390/nano10020383
J. Chen, Y. Xu, Y. Lu, W. Xing, Isolation and visible detection of tumor-derived exosomes from plasma. Anal. Chem. 90, 14207 (2018). https://doi.org/10.1021/acs.analchem.8b03031
J. Peng, Q. Zhao, W. Zheng, W. Li, P. Li et al., Peptide-functionalized nanomaterials for the efficient isolation of HER2-positive circulating tumor cells. ACS Appl. Mater. Interfaces 9, 18423 (2017). https://doi.org/10.1021/acsami.7b03905
J. Li, W. Gao, R. Dong, A. Pei, S. Sattayasamitsathit et al., Nanomotor lithography. Nat. Commun. 5, 5026 (2014). https://doi.org/10.1038/ncomms6026
J. Sun, M. Mathesh, W. Li, D.A. Wilson, Enzyme-powered nanomotors with controlled size for biomedical applications. ACS Nano 13, 10191 (2019). https://doi.org/10.1021/acsnano.9b03358
Y. Tu, F. Peng, D.A. Wilson, Motion manipulation of micro- and nanomotors. Adv. Mater. 29, 1701970 (2017). https://doi.org/10.1002/adma.201701970
Q. Yang, L. Xu, W. Zhong, Q. Yan, Y. Gao et al., Recent advances in motion control of micro/nanomotors. Adv. Intell. Syst. 2, 2000049 (2020). https://doi.org/10.1002/aisy.202000049
Q. Chi, Z. Wang, F. Tian, J. You, S. Xu, A review of fast bubble-driven micromotors powered by biocompatible fuel: low-concentration fuel, bioactive fluid and enzyme. Micromachines 9, 537 (2018). https://doi.org/10.3390/mi9100537
X. Ma, X. Wang, K. Hahn, S. Sanchez, Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597 (2016). https://doi.org/10.1021/acsnano.5b08067
J. Wang, R. Dong, H. Wu, Y. Cai, B. Ren, A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett. 12, 11 (2019). https://doi.org/10.1007/s40820-019-0350-5
F. Peng, Y. Tu, D.A. Wilson, Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46, 5289 (2017). https://doi.org/10.1039/C6CS00885B
Z. Guo, T. Wang, A. Rawal, J. Hou, Z. Cao et al., Biocatalytic self-propelled submarine-like metal-organic framework microps with pH-triggered buoyancy control for directional vertical motion. Mater. Today 28, 10 (2019). https://doi.org/10.1016/j.mattod.2019.04.022
Z. Guo, J. Liu, Y. Li, J.A. McDonald, M.Y. Bin Zulkifli et al., Biocatalytic metal-organic framework nanomotors for active water decontamination. Chem. Commun. 56, 14837 (2020). https://doi.org/10.1039/D0CC06429G
D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sanchez, Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16, 2860 (2016). https://doi.org/10.1021/acs.nanolett.6b00768
D. Kagan, S. Campuzano, S. Balasubramanian, F. Kuralay, G.-U. Flechsig et al., Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 11, 2083 (2011). https://doi.org/10.1021/nl2005687
S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396 (2012). https://doi.org/10.1021/nl203717q
S. Balasubramanian, D. Kagan, C.-M. Jack Hu, S. Campuzano, M.J. Lobo-Castañon et al., Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50, 4161 (2011). https://doi.org/10.1002/anie.201100115
F. Kuralay, S. Sattayasamitsathit, W. Gao, A. Uygun, A. Katzenberg et al., Self-propelled carbohydrate-sensitive microtransporters with built-in boronic acid recognition for isolating sugars and cells. J. Am. Chem. Soc. 134, 15217 (2012). https://doi.org/10.1021/ja306080t
H. Xu, M. Medina-Sanchez, O.G. Schmidt, Magnetic micromotors for multiple motile sperm cells capture, transport, and enzymatic release. Angew. Chem. Int. Ed. 59, 15029 (2020). https://doi.org/10.1002/anie.202005657
B. Chen, Y. Jia, J. Zhao, H. Li, W. Dong et al., Assembled hemoglobin and catalase nanotubes for the treatment of oxidative stress. J. Phys. Chem. C 117, 19751 (2013). https://doi.org/10.1021/jp407164q
C. Yim, H. Lee, S. Lee, S. Jeon, One-step immobilization of antibodies on ZIF-8/Fe3O4 hybrid nanops for the immunoassay of Staphylococcus aureus. RSC Adv. 7, 1418 (2017). https://doi.org/10.1039/C6RA25527B
H. Sharma, R. Mutharasan, Half antibody fragments improve biosensor sensitivity without loss of selectivity. Anal. Chem. 85, 2472 (2013). https://doi.org/10.1021/ac3035426
S. Jeong, J.Y. Park, M.G. Cha, H. Chang, Y.I. Kim et al., Highly robust and optimized conjugation of antibodies to nanops using quantitatively validated protocols. Nanoscale 9, 2548 (2017). https://doi.org/10.1039/C6NR04683E
K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell et al., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015). https://doi.org/10.1038/ncomms8240
K. Liang, C.J. Coghlan, S.G. Bell, C. Doonan, P. Falcaro, Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation. Chem. Commun. 52, 473 (2016). https://doi.org/10.1039/C5CC07577G
A.R. Sousa, M.J. Oliveira, B. Sarmento, Impact of CEA-targeting nanops for drug delivery in colorectal cancer. J. Pharmacol Exp. Ther. 370, 657 (2019). https://doi.org/10.1124/jpet.118.254441
C.-M.J. Hu, S. Kaushal, H.S.T. Cao, S. Aryal, M. Sartor et al., Half-antibody functionalized lipid−polymer hybrid nanops for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol. Pharm. 7, 914 (2010). https://doi.org/10.1021/mp900316a
S. Ohtsukasa, S. Okabe, H. Yamashita, T. Iwai, K. Sugihara, Increased expression of CEA and MHC class I in colorectal cancer cell lines exposed to chemotherapy drugs. J. Cancer Res. Clin. Oncol. 129, 719 (2003). https://doi.org/10.1007/s00432-003-0492-0
C.-X. Zheng, W.H. Zhan, J.-Z. Zhao, D. Zheng, D.-P. Wang et al., Prognostic value of preoperative serum levels of CEA, CA19-9 and CA72-4 in patients with colorectal cancer. World J. Gastroenterol. 7, 431 (2001). https://doi.org/10.3748/wjg.v7.i3.431
S. Kaushal, M.K. McElroy, G.A. Luiken, M.A. Talamini, A. Moossa et al., Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J. Gastrointest. Surg. 12, 1938 (2008). https://doi.org/10.1007/s11605-008-0581-0
X. Ni, X. Bai, Y. Mao, Y. Shao, J. Wu et al., The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur. J. Surg. Oncol. 31, 164 (2005). https://doi.org/10.1016/j.ejso.2004.09.007
Y. Fujita, M. Terashima, Y. Hoshino, S. Ohtani, S. Kashimura et al., Detection of cancer cells disseminated in bone marrow using real-time quantitative RT-PCR of CEA, CK19, and CK20 mRNA in patients with gastric cancer. Gastric Cancer 9, 308 (2006). https://doi.org/10.1007/s10120-006-0398-z
J. Yong, A.S. Mellick, J. Whitelock, J. Wang, K. Liang, A biomolecular toolbox for precision nanomotors. Adv. Mater. 35, 2205746 (2023). https://doi.org/10.1002/adma.202205746
R. Alonso, P. Jimenez-Meneses, J. Garcia-Ruperez, M.J. Banuls, A. Maquieira, Thiol-ene click chemistry towards easy microarraying of half-antibodies. Chem. Commun. 54, 6144 (2018). https://doi.org/10.1039/C8CC01369A
B.N. Lourenco, R.F. Pereira, C.C. Barrias, C. Fischbach, C. Oliveira et al., Engineering modular half-antibody conjugated nanops for targeting CD44v6-expressing cancer cells. Nanomaterials 11, 295 (2021). https://doi.org/10.3390/nano11020295
Z. Guo, Y. Wu, Z. Xie, J. Shao, J. Liu et al., Self-propelled initiative collision at microelectrodes with vertically mobile micromotors. Angew. Chem. Int. Ed. 61, e202209747 (2022). https://doi.org/10.1002/anie.202209747
Y. Zheng, H. Zhao, Y. Cai, B. Jurado-Sánchez, R. Dong, Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and application. Nano-Micro Lett. 15, 20 (2023). https://doi.org/10.1007/s40820-022-00988-1
Y. Ge, M. Liu, L. Liu, Y. Sun, H. Zhang et al., Dual-Fuel-Driven Bactericidal Micromotor. Nano-Micro Lett. 8, 157–164 (2016). https://doi.org/10.1007/s40820-015-0071-3