Injectable Nanorobot-Hydrogel Superstructure for Hemostasis and Anticancer Therapy of Spinal Metastasis
Corresponding Author: Jian Dong
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 259
Abstract
Surgery remains the standard treatment for spinal metastasis. However, uncontrolled intraoperative bleeding poses a significant challenge for adequate surgical resection and compromises surgical outcomes. In this study, we develop a thrombin (Thr)-loaded nanorobot-hydrogel hybrid superstructure by incorporating nanorobots into regenerated silk fibroin nanofibril hydrogels. This superstructure with superior thixotropic properties is injected percutaneously and dispersed into the spinal metastasis of hepatocellular carcinoma (HCC) with easy bleeding characteristics, before spinal surgery in a mouse model. Under near-infrared irradiation, the self-motile nanorobots penetrate into the deep spinal tumor, releasing Thr in a controlled manner. Thr-induced thrombosis effectively blocks the tumor vasculature and reduces bleeding, inhibiting tumor growth and postoperative recurrence with Au nanorod-mediated photothermal therapy. Our minimally invasive treatment platform provides a novel preoperative therapeutic strategy for HCC spinal metastasis effectively controlling intraoperative bleeding and tumor growth, with potentially reduced surgical complications and enhanced operative outcomes.
Highlights:
1 Site-selective superassembly was used to synthesize a nanorobot with bionic rod-shaped head/hollow tail structure, exhibiting strong photothermal effect, high drug loading capacity, precise and controlled drug release, and excellent motility.
2 Injectable regenerated silk fibroin (RSF) nanofibril hydrogels were developed via simple sonication, offering significant production, structural, and performance advantages.
3 Nanorobot/thrombin (Thr)/RSF nanofibril hydrogels reduced intraoperative bleeding of hepatocellular carcinoma (HCC) spinal metastasis, provided starvation embolization, and prevented post-surgery recurrence.
4 Nanorobot/Thr/RSF nanofibril hydrogels inhibited blood supply to residual tumors and reduced neovascularization, inhibiting post-surgery HCC spinal metastasis recurrence.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Allemani, T. Matsuda, V. Di Carlo, R. Harewood, M. Matz et al., Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391, 1023–1075 (2018). https://doi.org/10.1016/S0140-6736(17)33326-3
- D.E. Spratt, W.H. Beeler, F.Y. de Moraes, L.D. Rhines, J.J. Gemmete et al., An integrated multidisciplinary algorithm for the management of spinal metastases: an International Spine Oncology Consortium report. Lancet Oncol. 18, e720–e730 (2017). https://doi.org/10.1016/S1470-2045(17)30612-5
- M.A. MacLean, C.J. Touchette, M. Georgiopoulos, T. Brunette-Clément, F.H. Abduljabbar et al., Systemic considerations for the surgical treatment of spinal metastatic disease: a scoping literature review. Lancet Oncol. 23, e321–e333 (2022). https://doi.org/10.1016/S1470-2045(22)00126-7
- N. Kumar, M.R.D. Ramos, R. Patel, B.W.L. Tan, K.G. Lopez et al., The spinal metastasis invasiveness index: a novel scoring system to assess surgical invasiveness. Spine 46, 478–485 (2021). https://doi.org/10.1097/BRS.0000000000003823
- T. Pauyo, N. Verma, Y. Marwan, A. Aoude, M. Khashan, M.H. Weber, Canadian consensus for the prevention of blood loss in spine surgery. Spine 42(1), e50–e55 (2017). https://doi.org/10.1097/brs.0000000000001686
- Z. Li, L. Guo, P. Zhang, J. Wang, X. Wang et al., A systematic review of perioperative complications in en bloc resection for spinal tumors. Glob. Spine J. 13, 812–822 (2023). https://doi.org/10.1177/21925682221120644
- A.M. Tarawneh, D. Pasku, N.A. Quraishi, Surgical complications and re-operation rates in spinal metastases surgery: a systematic review. Eur. Spine J. 30, 2791–2799 (2021). https://doi.org/10.1007/s00586-020-06647-6
- Y. Chen, B.C. Tai, D. Nayak, N. Kumar, K.H. Chua et al., Blood loss in spinal tumour surgery and surgery for metastatic spinal disease: a meta-analysis. Bone Joint J. 95–B, 683–688 (2013). https://doi.org/10.1302/0301-620X.95B5.31270
- Y.-C. Huang, F.-Y. Tsuang, C.-W. Lee, Y.-H. Lin, Efficacy of preoperative embolization for metastatic spinal tumor surgery using angiographic vascularity assessment. Eur. Radiol. 33, 2638–2646 (2023). https://doi.org/10.1007/s00330-022-09276-3
- O.Q. Groot, N.J. van Steijn, P.T. Ogink, R.J. Pierik, M.E.R. Bongers et al., Preoperative embolization in surgical treatment of spinal metastases originating from non-hypervascular primary tumors: a propensity score matched study using 495 patients. Spine J. 22, 1334–1344 (2022). https://doi.org/10.1016/j.spinee.2022.03.001
- J.K. Houten, S.J. Swiggett, B. Hadid, D.M. Choueka, M.D. Kinon et al., Neurologic complications of preoperative embolization of spinal metastasis: a systemic review of the literature identifying distinct mechanisms of injury. World Neurosurg. 143, 374–388 (2020). https://doi.org/10.1016/j.wneu.2020.08.006
- N. Kumar, B. Tan, A.S. Zaw, H.E. Khine, K. Maharajan et al., The role of preoperative vascular embolization in surgery for metastatic spinal tumours. Eur. Spine J. 25, 3962–3970 (2016). https://doi.org/10.1007/s00586-016-4494-4
- J.B. Larsen, A.M. Hvas, Thrombin: a pivotal player in hemostasis and beyond. Semin. Thromb. Hemost. 47, 759–774 (2021). https://doi.org/10.1055/s-0041-1727116
- X. Wang, H. Zhang, X. Chen, C. Wu, K. Ding et al., Overcoming tumor microenvironment obstacles: current approaches for boosting nanodrug delivery. Acta Biomater. 166, 42–68 (2023). https://doi.org/10.1016/j.actbio.2023.05.043
- S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu et al., Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softmicrorobots. Nat. Mater. 15, 647–653 (2016). https://doi.org/10.1038/nmat4569
- J. Jiang, F. Wang, W. Huang, J. Sun, Y. Ye et al., Mobile mechanical signal generator for macrophage polarization. Exploration (Beijing) 3, 20220147 (2023). https://doi.org/10.1002/EXP.20220147
- L. Li, Z. Yu, J. Liu, M. Yang, G. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 15, 141 (2023). https://doi.org/10.1007/s40820-023-01095-5
- M. Hu, X. Ge, X. Chen, W. Mao, X. Qian et al., Micro/nanorobot: a promising targeted drug delivery system. Pharmaceutics 12, 665 (2020). https://doi.org/10.3390/pharmaceutics12070665
- J. Wang, Y. Dong, P. Ma, Y. Wang, F. Zhang et al., Intelligent micro-/ nanorobots for cancer theragnostic. Adv. Mater. 34, 2201051 (2022). https://doi.org/10.1002/adma.202201051
- Y. Feng, Z. Zhang, W. Tang, Y. Dai, Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. Exploration (Beijing) 3, 20220173 (2023). https://doi.org/10.1002/EXP.20220173
- J.K. Sahoo, O. Hasturk, T. Falcucci, D.L. Kaplan, Silk chemistry and biomedical material designs. Nat. Rev. Chem. 7, 302–318 (2023). https://doi.org/10.1038/s41570-023-00486-x
- S. Indrakumar, S. Ghosh, T.K. Dash, V. Mishra, B. Tandon et al., Silk composite interfacial layer eliminates rebleeding with chitosan-based hemostats. Carbohydr. Polym. 304, 120479 (2023). https://doi.org/10.1016/j.carbpol.2022.120479
- H. Zheng, B. Zuo, Functional silk fibroin hydrogels: preparation, properties and applications. J. Mater. Chem. B 9, 1238–1258 (2021). https://doi.org/10.1039/d0tb02099k
- A.T. Nguyen, Q.L. Huang, Z. Yang, N. Lin, G. Xu et al., Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11, 1039–1054 (2015). https://doi.org/10.1002/smll.201402985
- Y. Zhao, Z.S. Zhu, J. Guan, S.J. Wu, Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater. 125, 57–71 (2021). https://doi.org/10.1016/j.actbio.2021.02.018
- S. Wang, C. Zhang, F. Fang, Y. Fan, J. Yang et al., Beyond traditional light: NIR-II light-activated photosensitizers for cancer therapy. J. Mater. Chem. B 11, 8315–8326 (2023). https://doi.org/10.1039/d3tb00668a
- R. Becker, B. Liedberg, P.-O. Käll, CTAB promoted synthesis of Au nanorods–temperature effects and stability considerations. J. Colloid Interface Sci. 343, 25–30 (2010). https://doi.org/10.1016/j.jcis.2009.10.075
- M. Yan, Q. Chen, T. Liu, X. Li, P. Pei et al., Site-selective superassembly of biomimetic nanorobots enabling deep penetration into tumor with stiff stroma. Nat. Commun. 14, 4628 (2023). https://doi.org/10.1038/s41467-023-40300-2
- Y. Gao, Y. Liu, X. Li, H. Wang, Y. Yang et al., A stable open-shell conjugated diradical polymer with ultra-high photothermal conversion efficiency for NIR-II photo-immunotherapy of metastatic tumor. Nano-Micro Lett. 16, 21 (2023). https://doi.org/10.1007/s40820-023-01219-x
- Y. Liu, F. Li, Z. Guo, Y. Xiao, Y. Zhang et al., Silver nanop-embedded hydrogel as a photothermal platform for combating bacterial infections. Chem. Eng. J. 382, 122990 (2020). https://doi.org/10.1016/j.cej.2019.122990
- M. Zhang, L. Zhang, Y. Chen, L. Li, Z. Su et al., Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanops for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. 8, 8067–8077 (2017). https://doi.org/10.1039/c7sc03521g
- Y. Liu, S. Ling, S. Wang, X. Chen, Z. Shao, Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure. Biomater. Sci. 2, 1338–1342 (2014). https://doi.org/10.1039/C4BM00214H
- X. Zhang, L. Xiao, Z. Ding, Q. Lu, D.L. Kaplan, Engineered tough silk hydrogels through assembling β-sheet rich nanofibers based on a solvent replacement strategy. ACS Nano 16, 10209–10218 (2022). https://doi.org/10.1021/acsnano.2c01616
- D. Yao, M. Li, T. Wang, F. Sun, C. Su et al., Viscoelastic silk fibroin hydrogels with tunable strength. ACS Biomater. Sci. Eng. 7, 636–647 (2021). https://doi.org/10.1021/acsbiomaterials.0c01348
- Z. Ding, M. Zhou, Z. Zhou, W. Zhang, X. Jiang et al., Injectable silk nanofiber hydrogels for sustained release of small-molecule drugs and vascularization. ACS Biomater. Sci. Eng. 5, 4077–4088 (2019). https://doi.org/10.1021/acsbiomaterials.9b00621
- A. Ivashkevich, C.E. Redon, A.J. Nakamura, R.F. Martin, O.A. Martin, Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 327, 123–133 (2012). https://doi.org/10.1016/j.canlet.2011.12.025
- S. Kato, S. Demura, K. Shinmura, N. Yokogawa, T. Shimizu et al., Surgical metastasectomy in the spine: a review . Oncologist 26, e1833–e1843 (2021). https://doi.org/10.1002/onco.13840
- A.J. Lawton, K.A. Lee, A.L. Cheville, M.L. Ferrone, D. Rades et al., Assessment and management of patients with metastatic spinal cord compression: a multidisciplinary review. J. Clin. Oncol. 37, 61–71 (2019). https://doi.org/10.1200/jco.2018.78.1211
- J.M. Orenday-Barraza, M.J. Cavagnaro, M.J. Avila, I.M. Strouse, A. Dowell et al., 10-year trends in the surgical management of patients with spinal metastases: a scoping review. World Neurosurg. 157, 170-186.e3 (2022). https://doi.org/10.1016/j.wneu.2021.10.086
References
C. Allemani, T. Matsuda, V. Di Carlo, R. Harewood, M. Matz et al., Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391, 1023–1075 (2018). https://doi.org/10.1016/S0140-6736(17)33326-3
D.E. Spratt, W.H. Beeler, F.Y. de Moraes, L.D. Rhines, J.J. Gemmete et al., An integrated multidisciplinary algorithm for the management of spinal metastases: an International Spine Oncology Consortium report. Lancet Oncol. 18, e720–e730 (2017). https://doi.org/10.1016/S1470-2045(17)30612-5
M.A. MacLean, C.J. Touchette, M. Georgiopoulos, T. Brunette-Clément, F.H. Abduljabbar et al., Systemic considerations for the surgical treatment of spinal metastatic disease: a scoping literature review. Lancet Oncol. 23, e321–e333 (2022). https://doi.org/10.1016/S1470-2045(22)00126-7
N. Kumar, M.R.D. Ramos, R. Patel, B.W.L. Tan, K.G. Lopez et al., The spinal metastasis invasiveness index: a novel scoring system to assess surgical invasiveness. Spine 46, 478–485 (2021). https://doi.org/10.1097/BRS.0000000000003823
T. Pauyo, N. Verma, Y. Marwan, A. Aoude, M. Khashan, M.H. Weber, Canadian consensus for the prevention of blood loss in spine surgery. Spine 42(1), e50–e55 (2017). https://doi.org/10.1097/brs.0000000000001686
Z. Li, L. Guo, P. Zhang, J. Wang, X. Wang et al., A systematic review of perioperative complications in en bloc resection for spinal tumors. Glob. Spine J. 13, 812–822 (2023). https://doi.org/10.1177/21925682221120644
A.M. Tarawneh, D. Pasku, N.A. Quraishi, Surgical complications and re-operation rates in spinal metastases surgery: a systematic review. Eur. Spine J. 30, 2791–2799 (2021). https://doi.org/10.1007/s00586-020-06647-6
Y. Chen, B.C. Tai, D. Nayak, N. Kumar, K.H. Chua et al., Blood loss in spinal tumour surgery and surgery for metastatic spinal disease: a meta-analysis. Bone Joint J. 95–B, 683–688 (2013). https://doi.org/10.1302/0301-620X.95B5.31270
Y.-C. Huang, F.-Y. Tsuang, C.-W. Lee, Y.-H. Lin, Efficacy of preoperative embolization for metastatic spinal tumor surgery using angiographic vascularity assessment. Eur. Radiol. 33, 2638–2646 (2023). https://doi.org/10.1007/s00330-022-09276-3
O.Q. Groot, N.J. van Steijn, P.T. Ogink, R.J. Pierik, M.E.R. Bongers et al., Preoperative embolization in surgical treatment of spinal metastases originating from non-hypervascular primary tumors: a propensity score matched study using 495 patients. Spine J. 22, 1334–1344 (2022). https://doi.org/10.1016/j.spinee.2022.03.001
J.K. Houten, S.J. Swiggett, B. Hadid, D.M. Choueka, M.D. Kinon et al., Neurologic complications of preoperative embolization of spinal metastasis: a systemic review of the literature identifying distinct mechanisms of injury. World Neurosurg. 143, 374–388 (2020). https://doi.org/10.1016/j.wneu.2020.08.006
N. Kumar, B. Tan, A.S. Zaw, H.E. Khine, K. Maharajan et al., The role of preoperative vascular embolization in surgery for metastatic spinal tumours. Eur. Spine J. 25, 3962–3970 (2016). https://doi.org/10.1007/s00586-016-4494-4
J.B. Larsen, A.M. Hvas, Thrombin: a pivotal player in hemostasis and beyond. Semin. Thromb. Hemost. 47, 759–774 (2021). https://doi.org/10.1055/s-0041-1727116
X. Wang, H. Zhang, X. Chen, C. Wu, K. Ding et al., Overcoming tumor microenvironment obstacles: current approaches for boosting nanodrug delivery. Acta Biomater. 166, 42–68 (2023). https://doi.org/10.1016/j.actbio.2023.05.043
S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu et al., Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softmicrorobots. Nat. Mater. 15, 647–653 (2016). https://doi.org/10.1038/nmat4569
J. Jiang, F. Wang, W. Huang, J. Sun, Y. Ye et al., Mobile mechanical signal generator for macrophage polarization. Exploration (Beijing) 3, 20220147 (2023). https://doi.org/10.1002/EXP.20220147
L. Li, Z. Yu, J. Liu, M. Yang, G. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 15, 141 (2023). https://doi.org/10.1007/s40820-023-01095-5
M. Hu, X. Ge, X. Chen, W. Mao, X. Qian et al., Micro/nanorobot: a promising targeted drug delivery system. Pharmaceutics 12, 665 (2020). https://doi.org/10.3390/pharmaceutics12070665
J. Wang, Y. Dong, P. Ma, Y. Wang, F. Zhang et al., Intelligent micro-/ nanorobots for cancer theragnostic. Adv. Mater. 34, 2201051 (2022). https://doi.org/10.1002/adma.202201051
Y. Feng, Z. Zhang, W. Tang, Y. Dai, Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. Exploration (Beijing) 3, 20220173 (2023). https://doi.org/10.1002/EXP.20220173
J.K. Sahoo, O. Hasturk, T. Falcucci, D.L. Kaplan, Silk chemistry and biomedical material designs. Nat. Rev. Chem. 7, 302–318 (2023). https://doi.org/10.1038/s41570-023-00486-x
S. Indrakumar, S. Ghosh, T.K. Dash, V. Mishra, B. Tandon et al., Silk composite interfacial layer eliminates rebleeding with chitosan-based hemostats. Carbohydr. Polym. 304, 120479 (2023). https://doi.org/10.1016/j.carbpol.2022.120479
H. Zheng, B. Zuo, Functional silk fibroin hydrogels: preparation, properties and applications. J. Mater. Chem. B 9, 1238–1258 (2021). https://doi.org/10.1039/d0tb02099k
A.T. Nguyen, Q.L. Huang, Z. Yang, N. Lin, G. Xu et al., Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11, 1039–1054 (2015). https://doi.org/10.1002/smll.201402985
Y. Zhao, Z.S. Zhu, J. Guan, S.J. Wu, Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater. 125, 57–71 (2021). https://doi.org/10.1016/j.actbio.2021.02.018
S. Wang, C. Zhang, F. Fang, Y. Fan, J. Yang et al., Beyond traditional light: NIR-II light-activated photosensitizers for cancer therapy. J. Mater. Chem. B 11, 8315–8326 (2023). https://doi.org/10.1039/d3tb00668a
R. Becker, B. Liedberg, P.-O. Käll, CTAB promoted synthesis of Au nanorods–temperature effects and stability considerations. J. Colloid Interface Sci. 343, 25–30 (2010). https://doi.org/10.1016/j.jcis.2009.10.075
M. Yan, Q. Chen, T. Liu, X. Li, P. Pei et al., Site-selective superassembly of biomimetic nanorobots enabling deep penetration into tumor with stiff stroma. Nat. Commun. 14, 4628 (2023). https://doi.org/10.1038/s41467-023-40300-2
Y. Gao, Y. Liu, X. Li, H. Wang, Y. Yang et al., A stable open-shell conjugated diradical polymer with ultra-high photothermal conversion efficiency for NIR-II photo-immunotherapy of metastatic tumor. Nano-Micro Lett. 16, 21 (2023). https://doi.org/10.1007/s40820-023-01219-x
Y. Liu, F. Li, Z. Guo, Y. Xiao, Y. Zhang et al., Silver nanop-embedded hydrogel as a photothermal platform for combating bacterial infections. Chem. Eng. J. 382, 122990 (2020). https://doi.org/10.1016/j.cej.2019.122990
M. Zhang, L. Zhang, Y. Chen, L. Li, Z. Su et al., Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanops for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. 8, 8067–8077 (2017). https://doi.org/10.1039/c7sc03521g
Y. Liu, S. Ling, S. Wang, X. Chen, Z. Shao, Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure. Biomater. Sci. 2, 1338–1342 (2014). https://doi.org/10.1039/C4BM00214H
X. Zhang, L. Xiao, Z. Ding, Q. Lu, D.L. Kaplan, Engineered tough silk hydrogels through assembling β-sheet rich nanofibers based on a solvent replacement strategy. ACS Nano 16, 10209–10218 (2022). https://doi.org/10.1021/acsnano.2c01616
D. Yao, M. Li, T. Wang, F. Sun, C. Su et al., Viscoelastic silk fibroin hydrogels with tunable strength. ACS Biomater. Sci. Eng. 7, 636–647 (2021). https://doi.org/10.1021/acsbiomaterials.0c01348
Z. Ding, M. Zhou, Z. Zhou, W. Zhang, X. Jiang et al., Injectable silk nanofiber hydrogels for sustained release of small-molecule drugs and vascularization. ACS Biomater. Sci. Eng. 5, 4077–4088 (2019). https://doi.org/10.1021/acsbiomaterials.9b00621
A. Ivashkevich, C.E. Redon, A.J. Nakamura, R.F. Martin, O.A. Martin, Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 327, 123–133 (2012). https://doi.org/10.1016/j.canlet.2011.12.025
S. Kato, S. Demura, K. Shinmura, N. Yokogawa, T. Shimizu et al., Surgical metastasectomy in the spine: a review . Oncologist 26, e1833–e1843 (2021). https://doi.org/10.1002/onco.13840
A.J. Lawton, K.A. Lee, A.L. Cheville, M.L. Ferrone, D. Rades et al., Assessment and management of patients with metastatic spinal cord compression: a multidisciplinary review. J. Clin. Oncol. 37, 61–71 (2019). https://doi.org/10.1200/jco.2018.78.1211
J.M. Orenday-Barraza, M.J. Cavagnaro, M.J. Avila, I.M. Strouse, A. Dowell et al., 10-year trends in the surgical management of patients with spinal metastases: a scoping review. World Neurosurg. 157, 170-186.e3 (2022). https://doi.org/10.1016/j.wneu.2021.10.086