Personal Thermal Management by Radiative Cooling and Heating
Corresponding Author: Dahua Shou
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 153
Abstract
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being. By merely broadening the set-point of indoor temperatures, we could significantly slash energy usage in building heating, ventilation, and air-conditioning systems. In recent years, there has been a surge in advancements in personal thermal management (PTM), aiming to regulate heat and moisture transfer within our immediate surroundings, clothing, and skin. The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering. An emerging research area in PTM is personal radiative thermal management (PRTM), which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation. However, it is less taken into account in traditional textiles, and there currently lies a gap in our knowledge and understanding of PRTM. In this review, we aim to present a thorough analysis of advanced textile materials and technologies for PRTM. Specifically, we will introduce and discuss the underlying radiation heat transfer mechanisms, fabrication methods of textiles, and various indoor/outdoor applications in light of their different regulation functionalities, including radiative cooling, radiative heating, and dual-mode thermoregulation. Furthermore, we will shine a light on the current hurdles, propose potential strategies, and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
Highlights:
1 This review delves into the intricate relationship between thermal models, function-oriented design principles, and practical applications in personal radiative thermal management (PRTM).
2 It provides an in-depth discussion on design strategies for radiative cooling, heating, and dual-mode modulating textiles, offering practical insights for application.
3 It offers a thorough examination of the prospects and challenges of PRTM textiles, proposing potential solutions and future directions for the field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- ASHRAE. Standard 55–2017. “Thermal environmental conditions for human occupancy”. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2017)
- ASHRAE. Standard 55–1992. “Thermal environmental conditions for human occupancy”. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (1992)
- A. Alahmer, M. Omar, Vehicular cabins’ thermal comfort zones; fanger and berkley modeling. Veh. Eng. 1(1), 19–32 (2013)
- Y.K. Axelrod, M.N. Diringer, Temperature management in acute neurologic disorders. Neurol. Clin. 26(2), 585–603 (2008). https://doi.org/10.1016/j.ncl.2008.02.005
- A.P.C. Chan, W. Yi, Heat stress and its impacts on occupational health and performance. Indoor Built Environ. 25, 3–5 (2016). https://doi.org/10.1177/1420326x15622724
- L.T. Biardeau, L.W. Davis, P. Gertler, C. Wolfram, Heat exposure and global air conditioning. Nat. Sustain. 3, 25–28 (2020). https://doi.org/10.1038/s41893-019-0441-9
- T.A. Carleton, S.M. Hsiang, Social and economic impacts of climate. Science 353, aad9837 (2016). https://doi.org/10.1126/science.aad9837
- The Building Technologies Office (BTO) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Buildings energy data book (2011).
- T. Hoyt, E. Arens, H. Zhang, Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 88, 89–96 (2015). https://doi.org/10.1016/j.buildenv.2014.09.010
- A.P. Gagge, A.C. Burton, H.C. Bazett, A practical system of units for the description of the heat exchange of man with his environment. Science 94, 428–430 (1941). https://doi.org/10.1126/science.94.2445.428
- A.H. Woodcock, Moisture transfer in textile systems, part I. Text. Res. J. 32, 628–633 (1962). https://doi.org/10.1177/004051756203200802
- J.D. Hardy, E.F. Dubois, Regulation of heat loss from the human body. Proc. Natl. Acad. Sci. U. S. A. 23, 624–631 (1937). https://doi.org/10.1073/pnas.23.12.624
- M. Rothmaier, M. Weder, A. Meyer-Heim, J. Kesselring, Design and performance of personal cooling garments based on three-layer laminates. Med. Biol. Eng. Comput. 46, 825–832 (2008). https://doi.org/10.1007/s11517-008-0363-6
- M. Zhao, C. Gao, F. Wang, K. Kuklane, I. Holmér et al., A study on local cooling of garments with ventilation fans and openings placed at different torso sites. Int. J. Ind. Ergon. 43, 232–237 (2013). https://doi.org/10.1016/j.ergon.2013.01.001
- C. Al Sayed, L. Vinches, O. Dupuy, W. Douzi, B. Dugue et al., Air/CO2 cooling garment: description and benefits of use for subjects exposed to a hot and humid climate during physical activities. Int. J. Min. Sci. Technol. 29, 899–903 (2019). https://doi.org/10.1016/j.ijmst.2019.02.010
- S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019). https://doi.org/10.1126/sciadv.aaw0536
- G. Bartkowiak, A. Dąbrowska, A. Greszta, Development of smart textile materials with shape memory alloys for application in protective clothing. Materials 13, 689 (2020). https://doi.org/10.3390/ma13030689
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021). https://doi.org/10.1126/science.abi5484
- T. Guo, B. Shang, B. Duan, X. Luo, Design and testing of a liquid cooled garment for hot environments. J. Therm. Biol. 49–50, 47–54 (2015). https://doi.org/10.1016/j.jtherbio.2015.01.003
- J. Wu, R. Hu, S. Zeng, W. Xi, S. Huang et al., Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 12, 19015–19022 (2020). https://doi.org/10.1021/acsami.0c02300
- U. Sajjad, K. Hamid, Tauseef-ur-Rehman, M. Sultan, N. Abbas et al., Personal thermal management—a review on strategies, progress, and prospects. Int. Commun. Heat Mass Transf. 130, 105739 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105739
- Z. Ma, D. Zhao, F. Wang, R. Yang, A novel thermal comfort and energy saving evaluation model for radiative cooling and heating textiles. Energy Build. 258, 111842 (2022). https://doi.org/10.1016/j.enbuild.2022.111842
- R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 (2020). https://doi.org/10.1002/aenm.201903921
- Z. Ma, D. Zhao, C. She, Y. Yang, R. Yang, Personal thermal management techniques for thermal comfort and building energy saving. Mater. Today Phys. 20, 100465 (2021). https://doi.org/10.1016/j.mtphys.2021.100465
- B. Yang, X. Ding, F. Wang, A. Li, A review of intensified conditioning of personal micro-environments: moving closer to the human body. Energy Built Environ. 2, 260–270 (2021). https://doi.org/10.1016/j.enbenv.2020.06.007
- W. Yi, Y. Zhao, A.P.C. Chan, Evaluation of the ventilation unit for personal cooling system (PCS). Int. J. Ind. Ergon. 58, 62–68 (2017). https://doi.org/10.1016/j.ergon.2017.02.009
- L. Li, W.-D. Liu, Q. Liu, Z.-G. Chen, Multifunctional wearable thermoelectrics for personal thermal management. Adv. Funct. Mater. 32, 2200548 (2022). https://doi.org/10.1002/adfm.202200548
- H. Wu, X.-L. Shi, J. Duan, Q. Liu, Z.-G. Chen, Advances in Ag2Se-based thermoelectrics from materials to applications. Energy Environ. Sci. 16, 1870–1906 (2023). https://doi.org/10.1039/d3ee00378g
- H. Wu, X.-L. Shi, Y. Mao, M. Li, W.-D. Liu et al., Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5 via dual-phase engineering. Adv. Energy Mater. 13, 2302551 (2023). https://doi.org/10.1002/aenm.202302551
- J. Mao, G. Chen, Z. Ren, Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021). https://doi.org/10.1038/s41563-020-00852-w
- Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- H. Su, P. Lin, H. Lu, X. Zhao, X. Sheng et al., Janus-type hydroxyapatite-incorporated kevlar Aerogel@Kevlar aerogel supported phase-change material gel toward wearable personal thermal management. ACS Appl. Mater. Interfaces 14, 12617–12629 (2022). https://doi.org/10.1021/acsami.1c23774
- H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano Micro Lett. 15, 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
- J. Wu, M. Wang, L. Dong, C. Zhu, J. Shi et al., Ultraflexible, breathable, and form-stable phase change fibrous membranes by green electrospinning for personal thermal management. ACS Sustain. Chem. Eng. 10, 7873–7882 (2022). https://doi.org/10.1021/acssuschemeng.2c00189
- M.O. Faruk, A. Ahmed, M.A. Jalil, M.T. Islam, A.M. Shamim et al., Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Appl. Mater. Today 23, 101025 (2021). https://doi.org/10.1016/j.apmt.2021.101025
- O.A. Mohamed, S.H. Masood, W. Xu, Nickel-titanium shape memory alloys made by selective laser melting: a review on process optimisation. Adv. Manuf. 10, 24–58 (2022). https://doi.org/10.1007/s40436-021-00376-9
- W.-K. Jung, S.-M. Lee, S.-H. Ahn, J. Park, Development and assessment of a knitted shape memory alloy-based multifunctional elbow brace. J. Ind. Text. 51, 1989S-2009S (2022). https://doi.org/10.1177/15280837211056983
- L. Wang, M. Pan, Y. Lu, W. Song, S. Liu et al., Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort. Mater. Des. 221, 110922 (2022). https://doi.org/10.1016/j.matdes.2022.110922
- H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16, 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
- K. Jin, M. Zhang, J. Wang, Z. Jin, J. Sun et al., Robust highly conductive fabric with fluorine-free healable superhydrophobicity for the efficient deicing of outdoor’s equipment. Colloids Surf. A Physicochem. Eng. Aspects 651, 129639 (2022). https://doi.org/10.1016/j.colsurfa.2022.129639
- P. Yotprayoonsak, N. Anusak, J. Virtanen, V. Kangas, V. Promarak, Facile fabrication of flexible and conductive AuNP/DWCNT fabric with enhanced Joule heating efficiency via spray coating route. Microelectron. Eng. 255, 111718 (2022). https://doi.org/10.1016/j.mee.2022.111718
- J. Tan, Q. Yang, G. Hu, H. Zhang, L. Pei et al., Experimental study on the temperature-sensitive behavior of poly-n-isopropylacrylamide/graphene oxide composites and the flexible conductive cotton fabrics. Polym. Test. 110, 107563 (2022). https://doi.org/10.1016/j.polymertesting.2022.107563
- P. Tang, Z. Deng, Y. Zhang, L.-X. Liu, Z. Wang et al., Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor. Adv. Funct. Mater. 32, 2112156 (2022). https://doi.org/10.1002/adfm.202112156
- L. Yang, L. Pan, H. Xiang, X. Fei, M. Zhu, Organic–inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers. Chem. Mater. 34, 2049–2058 (2022). https://doi.org/10.1021/acs.chemmater.1c02754
- H. Yu, P. Guo, M. Qin, G. Han, L. Chen et al., Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 222, 109406 (2022). https://doi.org/10.1016/j.compscitech.2022.109406
- Y.S. Ju, Thermal management and control of wearable devices. iScience 25, 104587 (2022). https://doi.org/10.1016/j.isci.2022.104587
- X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595
- Z. Duan, M. Wang, X. Dong, J. Liu, X. Zhao, Experimental and numerical investigation of wicking and evaporation performance of fibrous materials for evaporative cooling. Energy Build. 255, 111675 (2022). https://doi.org/10.1016/j.enbuild.2021.111675
- H. Gao, A. Shawn Deaton, R. Barker, A new test method for evaluating the evaporative cooling efficiency of fabrics using a dynamic sweating hot plate. Meas. Sci. Technol. 33, 125601 (2022). https://doi.org/10.1088/1361-6501/ac84f7
- Y. Li, Z. An, X. Liu, R. Zhang, A radiative cooling paper based on ceramic fiber for thermal management of human head. Sol. Energy Mater. Sol. Cells 246, 111918 (2022). https://doi.org/10.1016/j.solmat.2022.111918
- L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 (2018). https://doi.org/10.1002/adma.201802152
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- J. Xu, R. Wan, W. Xu, Z. Ma, X. Cheng et al., Colored radiative cooling coatings using phosphor dyes. Mater. Today Nano 19, 100239 (2022). https://doi.org/10.1016/j.mtnano.2022.100239
- J.P. Bijarniya, J. Sarkar, P. Maiti, Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 133, 110263 (2020). https://doi.org/10.1016/j.rser.2020.110263
- Y. Wang, T. Wang, J. Liang, J. Wu, M. Yang et al., Controllable-morphology polymer blend photonic metafoam for radiative cooling. Mater. Horiz. 10, 5060–5070 (2023). https://doi.org/10.1039/d3mh01008b
- Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
- L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17, 1803–1830 (2023). https://doi.org/10.1021/acsnano.2c10279
- A.S. Farooq, P. Zhang, Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos. Part A Appl. Sci. Manuf. 142, 106249 (2021). https://doi.org/10.1016/j.compositesa.2020.106249
- J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10, nwac208 (2023). https://doi.org/10.1093/nsr/nwac208
- M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
- F.L. Zhu, Q.Q. Feng, Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int. J. Therm. Sci. 165, 106899 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.106899
- M. He, B. Zhao, X. Yue, Y. Chen, F. Qiu et al., Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy 116, 108821 (2023). https://doi.org/10.1016/j.nanoen.2023.108821
- D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan et al., Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019). https://doi.org/10.1063/1.5087281
- A.R. Gentle, G.B. Smith, Radiative heat pumping from the Earth using surface phonon resonant nanops. Nano Lett. 10, 373–379 (2010). https://doi.org/10.1021/nl903271d
- A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). https://doi.org/10.1038/nature13883
- J. Schmetz, Towards a surface radiation climatology: retrieval of downward irradiances from satellites. Atmos. Res. 23, 287–321 (1989). https://doi.org/10.1016/0169-8095(89)90023-9
- W. Wei, Y. Zhu, Q. Li, Z. Cheng, Y. Yao et al., An Al2O3-cellulose acetate-coated textile for human body cooling. Sol. Energy Mater. Sol. Cells 211, 110525 (2020). https://doi.org/10.1016/j.solmat.2020.110525
- J.K. Tong, X. Huang, S.V. Boriskina, J. Loomis, Y. Xu et al., Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon. 2, 769–778 (2015). https://doi.org/10.1021/acsphotonics.5b00140
- P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
- X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019). https://doi.org/10.1126/science.aau1217
- M.I. Iqbal, F. Sun, B. Fei, Q. Xia, X. Wang et al., Knit architecture for water-actuating woolen knitwear and its personalized thermal management. ACS Appl. Mater. Interfaces 13, 6298–6308 (2021). https://doi.org/10.1021/acsami.0c20868
- X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562 (2020). https://doi.org/10.1002/adfm.201907562
- Y. Wang, D. Shou, S. Shang, K.-L. Chiu, S. Jiang, Development of ZrC/T-shaped ZnO whisker coated dual-mode Janus fabric for thermal management. Sol. Energy 233, 196–203 (2022). https://doi.org/10.1016/j.solener.2022.01.012
- L. Cai, A.Y. Song, P. Wu, P.-C. Hsu, Y. Peng et al., Warming up human body by nanoporous metallized polyethylene textile. Nat. Commun. 8, 496 (2017). https://doi.org/10.1038/s41467-017-00614-4
- T. Hoty, K.H. Lee, H. Zhang, E. Arens, T. Webster, Energy savings from extended air temperature setpoints and reductions in room air mixing. in International Conference on Environmental Ergonomics, Boston, 2–7 August, 2009.
- R.M. Silverstein, G.C. Bassler, Spectrometric identification of organic compounds. J. Chem. Educ. 39, 546 (1962). https://doi.org/10.1021/ed039p546
- B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Hoboken, 2004). https://doi.org/10.1002/0470011149
- Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
- L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 1478–1486 (2019). https://doi.org/10.1016/j.joule.2019.03.015
- Y. Ke, F. Wang, P. Xu, B. Yang, On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments. Build. Environ. 145, 85–95 (2018). https://doi.org/10.1016/j.buildenv.2018.09.021
- P.B. Catrysse, A.Y. Song, S. Fan, Photonic structure textile design for localized thermal cooling based on a fiber blending scheme. ACS Photon. 3, 2420–2426 (2016). https://doi.org/10.1021/acsphotonics.6b00644
- H.G. Tompkins, T. Tiwald, C. Bungay, A.E. Hooper, Use of molecular vibrations to analyze very thin films with infrared ellipsometry. J. Phys. Chem. B 108, 3777–3780 (2004). https://doi.org/10.1021/jp035731a
- R. Hu, N. Wang, L. Hou, J. Liu, Z. Cui et al., Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl. Mater. Interfaces 14, 9833–9843 (2022). https://doi.org/10.1021/acsami.1c22974
- V.C. Malshe, A.K. Bendiganavale, Infrared reflective inorganic pigments. Recent Pat. Chem. Eng. 1, 67–79 (2010). https://doi.org/10.2174/1874478810801010067
- F. Bäbler, Reflective pigment compositions go. U.S. Patent 6989056 (2006)
- D. Miao, A. Li, S. Jiang, S. Shang, Fabrication of Ag and AZO/Ag/AZO ceramic films on cotton fabrics for solar control. Ceram. Int. 41, 6312–6317 (2015). https://doi.org/10.1016/j.ceramint.2015.01.057
- P. Jeevanandam, R.S. Mulukutla, M. Phillips, S. Chaudhuri, L.E. Erickson et al., Near infrared reflectance properties of metal oxide nanops. J. Phys. Chem. C 111, 1912–1918 (2007). https://doi.org/10.1021/jp066363o
- B. Kaur, N. Quazi, I. Ivanov, S.N. Bhattacharya, Near-infrared reflective properties of perylene derivatives. Dyes Pigm. 92, 1108–1113 (2012). https://doi.org/10.1016/j.dyepig.2011.06.011
- G.B. Smith, A. Gentle, P.D. Swift, A. Earp, N. Mronga, Coloured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experiments. Sol. Energy Mater. Sol. Cells 79, 179–197 (2003). https://doi.org/10.1016/s0927-0248(02)00410-5
- D. Miao, S. Jiang, J. Liu, X. Ning, S. Shang et al., Fabrication of copper and titanium coated textiles for sunlight management. J. Mater. Sci. Mater. Electron. 28, 9852–9858 (2017). https://doi.org/10.1007/s10854-017-6739-3
- D. Miao, S. Jiang, S. Shang, Z. Chen, Effect of heat treatment on infrared reflection property of Al-doped ZnO films. Sol. Energy Mater. Sol. Cells 127, 163–168 (2014). https://doi.org/10.1016/j.solmat.2014.04.030
- R. Hrynyk, I. Frydrych, E. Irzmańska, A. Stefko, Thermal properties of aluminized and non-aluminized basalt fabrics. Text. Res. J. 83, 1860–1872 (2013). https://doi.org/10.1177/0040517512447517
- F.L. Zhu, Q.Q. Feng, Preparation, thermal properties and permeabilities of aluminum-coated fabrics destined for thermal radiation protective clothing. Fire Mater. 44, 844–853 (2020). https://doi.org/10.1002/fam.2883
- D. Miao, S. Jiang, S. Shang, Z. Chen, Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106, 1–4 (2014). https://doi.org/10.1016/j.vacuum.2014.02.021
- J. Song, J. Qin, J. Qu, Z. Song, W. Zhang et al., The effects of p size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings. Sol. Energy Mater. Sol. Cells 130, 42–50 (2014). https://doi.org/10.1016/j.solmat.2014.06.035
- A. Wong, W.A. Daoud, H.-H. Liang, Y.S. Szeto, Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Sol. Energy Mater. Sol. Cells 134, 425–437 (2015). https://doi.org/10.1016/j.solmat.2014.12.011
- K. Panwar, M. Jassal, A.K. Agrawal, TiO2–SiO2 Janus ps treated cotton fabric for thermal regulation. Surf. Coat. Technol. 309, 897–903 (2017). https://doi.org/10.1016/j.surfcoat.2016.10.066
- H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117, 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
- N.N. Shi, C.C. Tsai, M.J. Carter, J. Mandal, A.C. Overvig et al., Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci. Appl. 7, 37 (2018). https://doi.org/10.1038/s41377-018-0033-x
- X. Shan, L. Liu, Y. Wu, D. Yuan, J. Wang et al., Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 9, e2201190 (2022). https://doi.org/10.1002/advs.202201190
- X. Ao, B. Li, B. Zhao, M. Hu, H. Ren et al., Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the Sun and outer space. Proc. Natl. Acad. Sci. U.S.A. 119, e2120557119 (2022). https://doi.org/10.1073/pnas.2120557119
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3, 1047–1051 (2015). https://doi.org/10.1002/adom.201500119
- Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
- Y.-N. Song, Y. Li, D.-X. Yan, J. Lei, Z.-M. Li, Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos. Part A Appl. Sci. Manuf. 130, 105738 (2020). https://doi.org/10.1016/j.compositesa.2019.105738
- Y.-N. Song, M.-Q. Lei, J. Lei, Z.-M. Li, A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling. Adv. Mater. Technol. 5, 2000287 (2020). https://doi.org/10.1002/admt.202000287
- B. Gu, K. Liang, T. Zhang, F. Qiu, D. Yang et al., Multifunctional laminated membranes with adjustable infrared radiation for personal thermal management applications. Cellulose 27, 8471–8483 (2020). https://doi.org/10.1007/s10570-020-03354-9
- N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015). https://doi.org/10.1126/science.aab3564
- S.Y. Jeong, C.Y. Tso, Y.M. Wong, C.Y.H. Chao, B. Huang, Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. Cells 206, 110296 (2020). https://doi.org/10.1016/j.solmat.2019.110296
- Q. Liu, J. Huang, J. Zhang, Y. Hong, Y. Wan et al., Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Appl. Mater. Interfaces 10, 2026–2032 (2018). https://doi.org/10.1021/acsami.7b16422
- M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
- P.C. Hsu, X. Liu, C. Liu, X. Xie, H.R. Lee et al., Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15, 365–371 (2015). https://doi.org/10.1021/nl5036572
- Z. Yu, Y. Gao, X. Di, H. Luo, Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Adv. 6, 67771–67777 (2016). https://doi.org/10.1039/C6RA13104B
- X. Yue, T. Zhang, D. Yang, F. Qiu, Z. Li et al., Ag nanops coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J. Colloid Interface Sci. 535, 363–370 (2019). https://doi.org/10.1016/j.jcis.2018.10.009
- A. Hazarika, B.K. Deka, D. Kim, H.E. Jeong, Y.B. Park et al., Woven kevlar fiber/polydimethylsiloxane/reduced graphene oxide composite-based personal thermal management with freestanding Cu–Ni core-shell nanowires. Nano Lett. 18, 6731–6739 (2018). https://doi.org/10.1021/acs.nanolett.8b02408
- J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 (2021). https://doi.org/10.1016/j.cej.2020.126898
- A. Hazarika, B.K. Deka, D.C. Kim, A.P. Jaiswal, J. Seo et al., Multidimensional wearable self-powered personal thermal management with scalable solar heating and a triboelectric nanogenerator. Nano Energy 98, 107323 (2022). https://doi.org/10.1016/j.nanoen.2022.107323
- J. Wu, M. Zhang, M. Su, Y. Zhang, J. Liang et al., Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv. Fiber Mater. 4, 1545–1555 (2022). https://doi.org/10.1007/s42765-022-00188-x
- M.C. Larciprete, Y.S. Gloy, R. Li Voti, G. Cesarini, G. Leahu et al., Temperature dependent emissivity of different stainless steel textiles in the infrared range. Int. J. Therm. Sci. 113, 130–135 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.12.001
- J.-S. Roh, Y.-S. Chi, T.J. Kang, Thermal insulation properties of multifunctional metal composite fabrics. Smart Mater. Struct. 18, 025018 (2009). https://doi.org/10.1088/0964-1726/18/2/025018
- L. Fei, Y. Yin, M. Yang, S. Zhang, C. Wang, Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Mater. 42, 636–644 (2021). https://doi.org/10.1016/j.ensm.2021.07.049
- I. Ibrahim, D.H. Seo, A.M. McDonagh, H.K. Shon, L. Tijing, Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 500, 114853 (2021). https://doi.org/10.1016/j.desal.2020.114853
- N. Zhao, Z. Wang, C. Cai, H. Shen, F. Liang et al., Bioinspired materials: from low to high dimensional structure. Adv. Mater. 26, 6994–7017 (2014). https://doi.org/10.1002/adma.201401718
- H. Jia, J. Zhu, Z. Li, X. Cheng, J. Guo, Design and optimization of a photo-thermal energy conversion model based on polar bear hair. Sol. Energy Mater. Sol. Cells 159, 345–351 (2017). https://doi.org/10.1016/j.solmat.2016.09.017
- X. Yue, M. He, T. Zhang, D. Yang, F. Qiu, Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl. Mater. Interfaces 12, 12285–12293 (2020). https://doi.org/10.1021/acsami.9b20865
- E. Pakdel, W. Xie, J. Wang, S. Kashi, J. Sharp et al., Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality. Chem. Eng. J. 433, 133688 (2022). https://doi.org/10.1016/j.cej.2021.133688
- H. Luo, Q. Li, K. Du, Z. Xu, H. Zhu et al., An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy 65, 103998 (2019). https://doi.org/10.1016/j.nanoen.2019.103998
- J. Xu, S. Jiang, Y. Wang, S. Shang, D. Miao et al., Photo-thermal conversion and thermal insulation properties of ZrC coated polyester fabric. Fibres. Polym. 18, 1938–1944 (2017). https://doi.org/10.1007/s12221-017-1237-z
- A.J. Fitzgerald, E. Berry, N.N. Zinovev, G.C. Walker, M.A. Smith et al., An introduction to medical imaging with coherent terahertz frequency radiation. Phys. Med. Biol. 47, R67–R84 (2002). https://doi.org/10.1088/0031-9155/47/7/201
- H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima et al., Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. 228, 724–729 (2003). https://doi.org/10.1177/153537020322800612
- Y. Li, D.-X. Wu, J.-Y. Hu, S.-X. Wang, Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO ps. Colloids Surf. A Physicochem. Eng. Aspects 300, 140–144 (2007). https://doi.org/10.1016/j.colsurfa.2007.01.001
- X. Hu, M. Tian, L. Qu, S. Zhu, G. Han, Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 95, 625–633 (2015). https://doi.org/10.1016/j.carbon.2015.08.099
- K. Qiu, A. Elhassan, T. Tian, X. Yin, J. Yu et al., Highly flexible, efficient, and sandwich-structured infrared radiation heating fabric. ACS Appl. Mater. Interfaces 12, 11016–11025 (2020). https://doi.org/10.1021/acsami.9b23099
- Y. Tao, T. Li, C. Yang, N. Wang, F. Yan et al., The influence of fiber cross-section on fabric far-infrared properties. Polymers 10, 1147 (2018). https://doi.org/10.3390/polym10101147
- P.-C. Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng et al., A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017). https://doi.org/10.1126/sciadv.1700895
- X. Yue, T. Zhang, D. Yang, F. Qiu, G. Wei et al., Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63, 103808 (2019). https://doi.org/10.1016/j.nanoen.2019.06.004
- H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21, 3879–3886 (2021). https://doi.org/10.1021/acs.nanolett.1c00400
- B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14, 18877–18883 (2022). https://doi.org/10.1021/acsami.2c01370
- K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32, 2203789 (2022). https://doi.org/10.1002/adfm.202203789
- L. Phan, R. Kautz, E.M. Leung, K.L. Naughton, Y. Van Dyke et al., Dynamic materials inspired by cephalopods. Chem. Mater. 28, 6804–6816 (2016). https://doi.org/10.1021/acs.chemmater.6b01532
- E. Kreit, L.M. Mäthger, R.T. Hanlon, P.B. Dennis, R.R. Naik et al., Biological versus electronic adaptive coloration: how can one inform the other? J. R. Soc. Interface. 10, 20120601 (2013). https://doi.org/10.1098/rsif.2012.0601
- G.R.R. Bell, A.M. Kuzirian, S.L. Senft, L.M. Mäthger, T.J. Wardill et al., Chromatophore radial muscle fibers anchor in flexible squid skin. Invertebr. Biol. 132, 120–132 (2013). https://doi.org/10.1111/ivb.12016
- M. Suzuki, T. Kimura, H. Ogawa, K. Hotta, K. Oka, Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation. PLoS ONE 6, e18244 (2011). https://doi.org/10.1371/journal.pone.0018244
- J. Rossiter, B. Yap, A. Conn, Biomimetic chromatophores for camouflage and soft active surfaces. Bioinspir. Biomim. 7, 036009 (2012). https://doi.org/10.1088/1748-3182/7/3/036009
- C. Yu, Y. Li, X. Zhang, X. Huang, V. Malyarchuk et al., Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc. Natl. Acad. Sci. U.S.A. 111, 12998–13003 (2014). https://doi.org/10.1073/pnas.1410494111
- C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro et al., Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016). https://doi.org/10.1126/science.aac5082
- C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
- E.M. Leung, M. Colorado Escobar, G.T. Stiubianu, S.R. Jim, A.L. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 (2019). https://doi.org/10.1038/s41467-019-09589-w
- G. Ye, Y. Wan, J. Wu, W. Zhuang, Z. Zhou et al., Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interaction. Nano Energy 97, 107148 (2022). https://doi.org/10.1016/j.nanoen.2022.107148
- A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002). https://doi.org/10.1126/science.1066102
- T. Xie, Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010). https://doi.org/10.1038/nature08863
- T. Bera, E.J. Freeman, J.A. McDonough, R.J. Clements, A. Aladlaan et al., Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts. ACS Appl. Mater. Interfaces 7, 14528–14535 (2015). https://doi.org/10.1021/acsami.5b04208
- Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13, 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
References
ASHRAE. Standard 55–2017. “Thermal environmental conditions for human occupancy”. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2017)
ASHRAE. Standard 55–1992. “Thermal environmental conditions for human occupancy”. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (1992)
A. Alahmer, M. Omar, Vehicular cabins’ thermal comfort zones; fanger and berkley modeling. Veh. Eng. 1(1), 19–32 (2013)
Y.K. Axelrod, M.N. Diringer, Temperature management in acute neurologic disorders. Neurol. Clin. 26(2), 585–603 (2008). https://doi.org/10.1016/j.ncl.2008.02.005
A.P.C. Chan, W. Yi, Heat stress and its impacts on occupational health and performance. Indoor Built Environ. 25, 3–5 (2016). https://doi.org/10.1177/1420326x15622724
L.T. Biardeau, L.W. Davis, P. Gertler, C. Wolfram, Heat exposure and global air conditioning. Nat. Sustain. 3, 25–28 (2020). https://doi.org/10.1038/s41893-019-0441-9
T.A. Carleton, S.M. Hsiang, Social and economic impacts of climate. Science 353, aad9837 (2016). https://doi.org/10.1126/science.aad9837
The Building Technologies Office (BTO) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Buildings energy data book (2011).
T. Hoyt, E. Arens, H. Zhang, Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 88, 89–96 (2015). https://doi.org/10.1016/j.buildenv.2014.09.010
A.P. Gagge, A.C. Burton, H.C. Bazett, A practical system of units for the description of the heat exchange of man with his environment. Science 94, 428–430 (1941). https://doi.org/10.1126/science.94.2445.428
A.H. Woodcock, Moisture transfer in textile systems, part I. Text. Res. J. 32, 628–633 (1962). https://doi.org/10.1177/004051756203200802
J.D. Hardy, E.F. Dubois, Regulation of heat loss from the human body. Proc. Natl. Acad. Sci. U. S. A. 23, 624–631 (1937). https://doi.org/10.1073/pnas.23.12.624
M. Rothmaier, M. Weder, A. Meyer-Heim, J. Kesselring, Design and performance of personal cooling garments based on three-layer laminates. Med. Biol. Eng. Comput. 46, 825–832 (2008). https://doi.org/10.1007/s11517-008-0363-6
M. Zhao, C. Gao, F. Wang, K. Kuklane, I. Holmér et al., A study on local cooling of garments with ventilation fans and openings placed at different torso sites. Int. J. Ind. Ergon. 43, 232–237 (2013). https://doi.org/10.1016/j.ergon.2013.01.001
C. Al Sayed, L. Vinches, O. Dupuy, W. Douzi, B. Dugue et al., Air/CO2 cooling garment: description and benefits of use for subjects exposed to a hot and humid climate during physical activities. Int. J. Min. Sci. Technol. 29, 899–903 (2019). https://doi.org/10.1016/j.ijmst.2019.02.010
S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019). https://doi.org/10.1126/sciadv.aaw0536
G. Bartkowiak, A. Dąbrowska, A. Greszta, Development of smart textile materials with shape memory alloys for application in protective clothing. Materials 13, 689 (2020). https://doi.org/10.3390/ma13030689
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021). https://doi.org/10.1126/science.abi5484
T. Guo, B. Shang, B. Duan, X. Luo, Design and testing of a liquid cooled garment for hot environments. J. Therm. Biol. 49–50, 47–54 (2015). https://doi.org/10.1016/j.jtherbio.2015.01.003
J. Wu, R. Hu, S. Zeng, W. Xi, S. Huang et al., Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 12, 19015–19022 (2020). https://doi.org/10.1021/acsami.0c02300
U. Sajjad, K. Hamid, Tauseef-ur-Rehman, M. Sultan, N. Abbas et al., Personal thermal management—a review on strategies, progress, and prospects. Int. Commun. Heat Mass Transf. 130, 105739 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105739
Z. Ma, D. Zhao, F. Wang, R. Yang, A novel thermal comfort and energy saving evaluation model for radiative cooling and heating textiles. Energy Build. 258, 111842 (2022). https://doi.org/10.1016/j.enbuild.2022.111842
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 (2020). https://doi.org/10.1002/aenm.201903921
Z. Ma, D. Zhao, C. She, Y. Yang, R. Yang, Personal thermal management techniques for thermal comfort and building energy saving. Mater. Today Phys. 20, 100465 (2021). https://doi.org/10.1016/j.mtphys.2021.100465
B. Yang, X. Ding, F. Wang, A. Li, A review of intensified conditioning of personal micro-environments: moving closer to the human body. Energy Built Environ. 2, 260–270 (2021). https://doi.org/10.1016/j.enbenv.2020.06.007
W. Yi, Y. Zhao, A.P.C. Chan, Evaluation of the ventilation unit for personal cooling system (PCS). Int. J. Ind. Ergon. 58, 62–68 (2017). https://doi.org/10.1016/j.ergon.2017.02.009
L. Li, W.-D. Liu, Q. Liu, Z.-G. Chen, Multifunctional wearable thermoelectrics for personal thermal management. Adv. Funct. Mater. 32, 2200548 (2022). https://doi.org/10.1002/adfm.202200548
H. Wu, X.-L. Shi, J. Duan, Q. Liu, Z.-G. Chen, Advances in Ag2Se-based thermoelectrics from materials to applications. Energy Environ. Sci. 16, 1870–1906 (2023). https://doi.org/10.1039/d3ee00378g
H. Wu, X.-L. Shi, Y. Mao, M. Li, W.-D. Liu et al., Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5 via dual-phase engineering. Adv. Energy Mater. 13, 2302551 (2023). https://doi.org/10.1002/aenm.202302551
J. Mao, G. Chen, Z. Ren, Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021). https://doi.org/10.1038/s41563-020-00852-w
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
H. Su, P. Lin, H. Lu, X. Zhao, X. Sheng et al., Janus-type hydroxyapatite-incorporated kevlar Aerogel@Kevlar aerogel supported phase-change material gel toward wearable personal thermal management. ACS Appl. Mater. Interfaces 14, 12617–12629 (2022). https://doi.org/10.1021/acsami.1c23774
H. Liu, F. Zhou, X. Shi, K. Sun, Y. Kou et al., A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano Micro Lett. 15, 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
J. Wu, M. Wang, L. Dong, C. Zhu, J. Shi et al., Ultraflexible, breathable, and form-stable phase change fibrous membranes by green electrospinning for personal thermal management. ACS Sustain. Chem. Eng. 10, 7873–7882 (2022). https://doi.org/10.1021/acssuschemeng.2c00189
M.O. Faruk, A. Ahmed, M.A. Jalil, M.T. Islam, A.M. Shamim et al., Functional textiles and composite based wearable thermal devices for Joule heating: progress and perspectives. Appl. Mater. Today 23, 101025 (2021). https://doi.org/10.1016/j.apmt.2021.101025
O.A. Mohamed, S.H. Masood, W. Xu, Nickel-titanium shape memory alloys made by selective laser melting: a review on process optimisation. Adv. Manuf. 10, 24–58 (2022). https://doi.org/10.1007/s40436-021-00376-9
W.-K. Jung, S.-M. Lee, S.-H. Ahn, J. Park, Development and assessment of a knitted shape memory alloy-based multifunctional elbow brace. J. Ind. Text. 51, 1989S-2009S (2022). https://doi.org/10.1177/15280837211056983
L. Wang, M. Pan, Y. Lu, W. Song, S. Liu et al., Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort. Mater. Des. 221, 110922 (2022). https://doi.org/10.1016/j.matdes.2022.110922
H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16, 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
K. Jin, M. Zhang, J. Wang, Z. Jin, J. Sun et al., Robust highly conductive fabric with fluorine-free healable superhydrophobicity for the efficient deicing of outdoor’s equipment. Colloids Surf. A Physicochem. Eng. Aspects 651, 129639 (2022). https://doi.org/10.1016/j.colsurfa.2022.129639
P. Yotprayoonsak, N. Anusak, J. Virtanen, V. Kangas, V. Promarak, Facile fabrication of flexible and conductive AuNP/DWCNT fabric with enhanced Joule heating efficiency via spray coating route. Microelectron. Eng. 255, 111718 (2022). https://doi.org/10.1016/j.mee.2022.111718
J. Tan, Q. Yang, G. Hu, H. Zhang, L. Pei et al., Experimental study on the temperature-sensitive behavior of poly-n-isopropylacrylamide/graphene oxide composites and the flexible conductive cotton fabrics. Polym. Test. 110, 107563 (2022). https://doi.org/10.1016/j.polymertesting.2022.107563
P. Tang, Z. Deng, Y. Zhang, L.-X. Liu, Z. Wang et al., Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor. Adv. Funct. Mater. 32, 2112156 (2022). https://doi.org/10.1002/adfm.202112156
L. Yang, L. Pan, H. Xiang, X. Fei, M. Zhu, Organic–inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers. Chem. Mater. 34, 2049–2058 (2022). https://doi.org/10.1021/acs.chemmater.1c02754
H. Yu, P. Guo, M. Qin, G. Han, L. Chen et al., Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 222, 109406 (2022). https://doi.org/10.1016/j.compscitech.2022.109406
Y.S. Ju, Thermal management and control of wearable devices. iScience 25, 104587 (2022). https://doi.org/10.1016/j.isci.2022.104587
X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595
Z. Duan, M. Wang, X. Dong, J. Liu, X. Zhao, Experimental and numerical investigation of wicking and evaporation performance of fibrous materials for evaporative cooling. Energy Build. 255, 111675 (2022). https://doi.org/10.1016/j.enbuild.2021.111675
H. Gao, A. Shawn Deaton, R. Barker, A new test method for evaluating the evaporative cooling efficiency of fabrics using a dynamic sweating hot plate. Meas. Sci. Technol. 33, 125601 (2022). https://doi.org/10.1088/1361-6501/ac84f7
Y. Li, Z. An, X. Liu, R. Zhang, A radiative cooling paper based on ceramic fiber for thermal management of human head. Sol. Energy Mater. Sol. Cells 246, 111918 (2022). https://doi.org/10.1016/j.solmat.2022.111918
L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 (2018). https://doi.org/10.1002/adma.201802152
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
J. Xu, R. Wan, W. Xu, Z. Ma, X. Cheng et al., Colored radiative cooling coatings using phosphor dyes. Mater. Today Nano 19, 100239 (2022). https://doi.org/10.1016/j.mtnano.2022.100239
J.P. Bijarniya, J. Sarkar, P. Maiti, Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 133, 110263 (2020). https://doi.org/10.1016/j.rser.2020.110263
Y. Wang, T. Wang, J. Liang, J. Wu, M. Yang et al., Controllable-morphology polymer blend photonic metafoam for radiative cooling. Mater. Horiz. 10, 5060–5070 (2023). https://doi.org/10.1039/d3mh01008b
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17, 1803–1830 (2023). https://doi.org/10.1021/acsnano.2c10279
A.S. Farooq, P. Zhang, Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos. Part A Appl. Sci. Manuf. 142, 106249 (2021). https://doi.org/10.1016/j.compositesa.2020.106249
J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10, nwac208 (2023). https://doi.org/10.1093/nsr/nwac208
M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
F.L. Zhu, Q.Q. Feng, Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int. J. Therm. Sci. 165, 106899 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.106899
M. He, B. Zhao, X. Yue, Y. Chen, F. Qiu et al., Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy 116, 108821 (2023). https://doi.org/10.1016/j.nanoen.2023.108821
D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan et al., Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019). https://doi.org/10.1063/1.5087281
A.R. Gentle, G.B. Smith, Radiative heat pumping from the Earth using surface phonon resonant nanops. Nano Lett. 10, 373–379 (2010). https://doi.org/10.1021/nl903271d
A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). https://doi.org/10.1038/nature13883
J. Schmetz, Towards a surface radiation climatology: retrieval of downward irradiances from satellites. Atmos. Res. 23, 287–321 (1989). https://doi.org/10.1016/0169-8095(89)90023-9
W. Wei, Y. Zhu, Q. Li, Z. Cheng, Y. Yao et al., An Al2O3-cellulose acetate-coated textile for human body cooling. Sol. Energy Mater. Sol. Cells 211, 110525 (2020). https://doi.org/10.1016/j.solmat.2020.110525
J.K. Tong, X. Huang, S.V. Boriskina, J. Loomis, Y. Xu et al., Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photon. 2, 769–778 (2015). https://doi.org/10.1021/acsphotonics.5b00140
P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019). https://doi.org/10.1126/science.aau1217
M.I. Iqbal, F. Sun, B. Fei, Q. Xia, X. Wang et al., Knit architecture for water-actuating woolen knitwear and its personalized thermal management. ACS Appl. Mater. Interfaces 13, 6298–6308 (2021). https://doi.org/10.1021/acsami.0c20868
X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562 (2020). https://doi.org/10.1002/adfm.201907562
Y. Wang, D. Shou, S. Shang, K.-L. Chiu, S. Jiang, Development of ZrC/T-shaped ZnO whisker coated dual-mode Janus fabric for thermal management. Sol. Energy 233, 196–203 (2022). https://doi.org/10.1016/j.solener.2022.01.012
L. Cai, A.Y. Song, P. Wu, P.-C. Hsu, Y. Peng et al., Warming up human body by nanoporous metallized polyethylene textile. Nat. Commun. 8, 496 (2017). https://doi.org/10.1038/s41467-017-00614-4
T. Hoty, K.H. Lee, H. Zhang, E. Arens, T. Webster, Energy savings from extended air temperature setpoints and reductions in room air mixing. in International Conference on Environmental Ergonomics, Boston, 2–7 August, 2009.
R.M. Silverstein, G.C. Bassler, Spectrometric identification of organic compounds. J. Chem. Educ. 39, 546 (1962). https://doi.org/10.1021/ed039p546
B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, Hoboken, 2004). https://doi.org/10.1002/0470011149
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3, 1478–1486 (2019). https://doi.org/10.1016/j.joule.2019.03.015
Y. Ke, F. Wang, P. Xu, B. Yang, On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments. Build. Environ. 145, 85–95 (2018). https://doi.org/10.1016/j.buildenv.2018.09.021
P.B. Catrysse, A.Y. Song, S. Fan, Photonic structure textile design for localized thermal cooling based on a fiber blending scheme. ACS Photon. 3, 2420–2426 (2016). https://doi.org/10.1021/acsphotonics.6b00644
H.G. Tompkins, T. Tiwald, C. Bungay, A.E. Hooper, Use of molecular vibrations to analyze very thin films with infrared ellipsometry. J. Phys. Chem. B 108, 3777–3780 (2004). https://doi.org/10.1021/jp035731a
R. Hu, N. Wang, L. Hou, J. Liu, Z. Cui et al., Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl. Mater. Interfaces 14, 9833–9843 (2022). https://doi.org/10.1021/acsami.1c22974
V.C. Malshe, A.K. Bendiganavale, Infrared reflective inorganic pigments. Recent Pat. Chem. Eng. 1, 67–79 (2010). https://doi.org/10.2174/1874478810801010067
F. Bäbler, Reflective pigment compositions go. U.S. Patent 6989056 (2006)
D. Miao, A. Li, S. Jiang, S. Shang, Fabrication of Ag and AZO/Ag/AZO ceramic films on cotton fabrics for solar control. Ceram. Int. 41, 6312–6317 (2015). https://doi.org/10.1016/j.ceramint.2015.01.057
P. Jeevanandam, R.S. Mulukutla, M. Phillips, S. Chaudhuri, L.E. Erickson et al., Near infrared reflectance properties of metal oxide nanops. J. Phys. Chem. C 111, 1912–1918 (2007). https://doi.org/10.1021/jp066363o
B. Kaur, N. Quazi, I. Ivanov, S.N. Bhattacharya, Near-infrared reflective properties of perylene derivatives. Dyes Pigm. 92, 1108–1113 (2012). https://doi.org/10.1016/j.dyepig.2011.06.011
G.B. Smith, A. Gentle, P.D. Swift, A. Earp, N. Mronga, Coloured paints based on iron oxide and silicon oxide coated flakes of aluminium as the pigment, for energy efficient paint: optical and thermal experiments. Sol. Energy Mater. Sol. Cells 79, 179–197 (2003). https://doi.org/10.1016/s0927-0248(02)00410-5
D. Miao, S. Jiang, J. Liu, X. Ning, S. Shang et al., Fabrication of copper and titanium coated textiles for sunlight management. J. Mater. Sci. Mater. Electron. 28, 9852–9858 (2017). https://doi.org/10.1007/s10854-017-6739-3
D. Miao, S. Jiang, S. Shang, Z. Chen, Effect of heat treatment on infrared reflection property of Al-doped ZnO films. Sol. Energy Mater. Sol. Cells 127, 163–168 (2014). https://doi.org/10.1016/j.solmat.2014.04.030
R. Hrynyk, I. Frydrych, E. Irzmańska, A. Stefko, Thermal properties of aluminized and non-aluminized basalt fabrics. Text. Res. J. 83, 1860–1872 (2013). https://doi.org/10.1177/0040517512447517
F.L. Zhu, Q.Q. Feng, Preparation, thermal properties and permeabilities of aluminum-coated fabrics destined for thermal radiation protective clothing. Fire Mater. 44, 844–853 (2020). https://doi.org/10.1002/fam.2883
D. Miao, S. Jiang, S. Shang, Z. Chen, Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106, 1–4 (2014). https://doi.org/10.1016/j.vacuum.2014.02.021
J. Song, J. Qin, J. Qu, Z. Song, W. Zhang et al., The effects of p size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings. Sol. Energy Mater. Sol. Cells 130, 42–50 (2014). https://doi.org/10.1016/j.solmat.2014.06.035
A. Wong, W.A. Daoud, H.-H. Liang, Y.S. Szeto, Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Sol. Energy Mater. Sol. Cells 134, 425–437 (2015). https://doi.org/10.1016/j.solmat.2014.12.011
K. Panwar, M. Jassal, A.K. Agrawal, TiO2–SiO2 Janus ps treated cotton fabric for thermal regulation. Surf. Coat. Technol. 309, 897–903 (2017). https://doi.org/10.1016/j.surfcoat.2016.10.066
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117, 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
N.N. Shi, C.C. Tsai, M.J. Carter, J. Mandal, A.C. Overvig et al., Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci. Appl. 7, 37 (2018). https://doi.org/10.1038/s41377-018-0033-x
X. Shan, L. Liu, Y. Wu, D. Yuan, J. Wang et al., Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling. Adv. Sci. 9, e2201190 (2022). https://doi.org/10.1002/advs.202201190
X. Ao, B. Li, B. Zhao, M. Hu, H. Ren et al., Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the Sun and outer space. Proc. Natl. Acad. Sci. U.S.A. 119, e2120557119 (2022). https://doi.org/10.1073/pnas.2120557119
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3, 1047–1051 (2015). https://doi.org/10.1002/adom.201500119
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
Y.-N. Song, Y. Li, D.-X. Yan, J. Lei, Z.-M. Li, Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Compos. Part A Appl. Sci. Manuf. 130, 105738 (2020). https://doi.org/10.1016/j.compositesa.2019.105738
Y.-N. Song, M.-Q. Lei, J. Lei, Z.-M. Li, A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling. Adv. Mater. Technol. 5, 2000287 (2020). https://doi.org/10.1002/admt.202000287
B. Gu, K. Liang, T. Zhang, F. Qiu, D. Yang et al., Multifunctional laminated membranes with adjustable infrared radiation for personal thermal management applications. Cellulose 27, 8471–8483 (2020). https://doi.org/10.1007/s10570-020-03354-9
N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015). https://doi.org/10.1126/science.aab3564
S.Y. Jeong, C.Y. Tso, Y.M. Wong, C.Y.H. Chao, B. Huang, Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. Cells 206, 110296 (2020). https://doi.org/10.1016/j.solmat.2019.110296
Q. Liu, J. Huang, J. Zhang, Y. Hong, Y. Wan et al., Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Appl. Mater. Interfaces 10, 2026–2032 (2018). https://doi.org/10.1021/acsami.7b16422
M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
P.C. Hsu, X. Liu, C. Liu, X. Xie, H.R. Lee et al., Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15, 365–371 (2015). https://doi.org/10.1021/nl5036572
Z. Yu, Y. Gao, X. Di, H. Luo, Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Adv. 6, 67771–67777 (2016). https://doi.org/10.1039/C6RA13104B
X. Yue, T. Zhang, D. Yang, F. Qiu, Z. Li et al., Ag nanops coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J. Colloid Interface Sci. 535, 363–370 (2019). https://doi.org/10.1016/j.jcis.2018.10.009
A. Hazarika, B.K. Deka, D. Kim, H.E. Jeong, Y.B. Park et al., Woven kevlar fiber/polydimethylsiloxane/reduced graphene oxide composite-based personal thermal management with freestanding Cu–Ni core-shell nanowires. Nano Lett. 18, 6731–6739 (2018). https://doi.org/10.1021/acs.nanolett.8b02408
J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 (2021). https://doi.org/10.1016/j.cej.2020.126898
A. Hazarika, B.K. Deka, D.C. Kim, A.P. Jaiswal, J. Seo et al., Multidimensional wearable self-powered personal thermal management with scalable solar heating and a triboelectric nanogenerator. Nano Energy 98, 107323 (2022). https://doi.org/10.1016/j.nanoen.2022.107323
J. Wu, M. Zhang, M. Su, Y. Zhang, J. Liang et al., Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv. Fiber Mater. 4, 1545–1555 (2022). https://doi.org/10.1007/s42765-022-00188-x
M.C. Larciprete, Y.S. Gloy, R. Li Voti, G. Cesarini, G. Leahu et al., Temperature dependent emissivity of different stainless steel textiles in the infrared range. Int. J. Therm. Sci. 113, 130–135 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.12.001
J.-S. Roh, Y.-S. Chi, T.J. Kang, Thermal insulation properties of multifunctional metal composite fabrics. Smart Mater. Struct. 18, 025018 (2009). https://doi.org/10.1088/0964-1726/18/2/025018
L. Fei, Y. Yin, M. Yang, S. Zhang, C. Wang, Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Mater. 42, 636–644 (2021). https://doi.org/10.1016/j.ensm.2021.07.049
I. Ibrahim, D.H. Seo, A.M. McDonagh, H.K. Shon, L. Tijing, Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 500, 114853 (2021). https://doi.org/10.1016/j.desal.2020.114853
N. Zhao, Z. Wang, C. Cai, H. Shen, F. Liang et al., Bioinspired materials: from low to high dimensional structure. Adv. Mater. 26, 6994–7017 (2014). https://doi.org/10.1002/adma.201401718
H. Jia, J. Zhu, Z. Li, X. Cheng, J. Guo, Design and optimization of a photo-thermal energy conversion model based on polar bear hair. Sol. Energy Mater. Sol. Cells 159, 345–351 (2017). https://doi.org/10.1016/j.solmat.2016.09.017
X. Yue, M. He, T. Zhang, D. Yang, F. Qiu, Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management. ACS Appl. Mater. Interfaces 12, 12285–12293 (2020). https://doi.org/10.1021/acsami.9b20865
E. Pakdel, W. Xie, J. Wang, S. Kashi, J. Sharp et al., Superhydrophobic natural melanin-coated cotton with excellent UV protection and personal thermal management functionality. Chem. Eng. J. 433, 133688 (2022). https://doi.org/10.1016/j.cej.2021.133688
H. Luo, Q. Li, K. Du, Z. Xu, H. Zhu et al., An ultra-thin colored textile with simultaneous solar and passive heating abilities. Nano Energy 65, 103998 (2019). https://doi.org/10.1016/j.nanoen.2019.103998
J. Xu, S. Jiang, Y. Wang, S. Shang, D. Miao et al., Photo-thermal conversion and thermal insulation properties of ZrC coated polyester fabric. Fibres. Polym. 18, 1938–1944 (2017). https://doi.org/10.1007/s12221-017-1237-z
A.J. Fitzgerald, E. Berry, N.N. Zinovev, G.C. Walker, M.A. Smith et al., An introduction to medical imaging with coherent terahertz frequency radiation. Phys. Med. Biol. 47, R67–R84 (2002). https://doi.org/10.1088/0031-9155/47/7/201
H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima et al., Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. 228, 724–729 (2003). https://doi.org/10.1177/153537020322800612
Y. Li, D.-X. Wu, J.-Y. Hu, S.-X. Wang, Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO ps. Colloids Surf. A Physicochem. Eng. Aspects 300, 140–144 (2007). https://doi.org/10.1016/j.colsurfa.2007.01.001
X. Hu, M. Tian, L. Qu, S. Zhu, G. Han, Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 95, 625–633 (2015). https://doi.org/10.1016/j.carbon.2015.08.099
K. Qiu, A. Elhassan, T. Tian, X. Yin, J. Yu et al., Highly flexible, efficient, and sandwich-structured infrared radiation heating fabric. ACS Appl. Mater. Interfaces 12, 11016–11025 (2020). https://doi.org/10.1021/acsami.9b23099
Y. Tao, T. Li, C. Yang, N. Wang, F. Yan et al., The influence of fiber cross-section on fabric far-infrared properties. Polymers 10, 1147 (2018). https://doi.org/10.3390/polym10101147
P.-C. Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng et al., A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017). https://doi.org/10.1126/sciadv.1700895
X. Yue, T. Zhang, D. Yang, F. Qiu, G. Wei et al., Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63, 103808 (2019). https://doi.org/10.1016/j.nanoen.2019.06.004
H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21, 3879–3886 (2021). https://doi.org/10.1021/acs.nanolett.1c00400
B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14, 18877–18883 (2022). https://doi.org/10.1021/acsami.2c01370
K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32, 2203789 (2022). https://doi.org/10.1002/adfm.202203789
L. Phan, R. Kautz, E.M. Leung, K.L. Naughton, Y. Van Dyke et al., Dynamic materials inspired by cephalopods. Chem. Mater. 28, 6804–6816 (2016). https://doi.org/10.1021/acs.chemmater.6b01532
E. Kreit, L.M. Mäthger, R.T. Hanlon, P.B. Dennis, R.R. Naik et al., Biological versus electronic adaptive coloration: how can one inform the other? J. R. Soc. Interface. 10, 20120601 (2013). https://doi.org/10.1098/rsif.2012.0601
G.R.R. Bell, A.M. Kuzirian, S.L. Senft, L.M. Mäthger, T.J. Wardill et al., Chromatophore radial muscle fibers anchor in flexible squid skin. Invertebr. Biol. 132, 120–132 (2013). https://doi.org/10.1111/ivb.12016
M. Suzuki, T. Kimura, H. Ogawa, K. Hotta, K. Oka, Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation. PLoS ONE 6, e18244 (2011). https://doi.org/10.1371/journal.pone.0018244
J. Rossiter, B. Yap, A. Conn, Biomimetic chromatophores for camouflage and soft active surfaces. Bioinspir. Biomim. 7, 036009 (2012). https://doi.org/10.1088/1748-3182/7/3/036009
C. Yu, Y. Li, X. Zhang, X. Huang, V. Malyarchuk et al., Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc. Natl. Acad. Sci. U.S.A. 111, 12998–13003 (2014). https://doi.org/10.1073/pnas.1410494111
C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro et al., Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016). https://doi.org/10.1126/science.aac5082
C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
E.M. Leung, M. Colorado Escobar, G.T. Stiubianu, S.R. Jim, A.L. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 (2019). https://doi.org/10.1038/s41467-019-09589-w
G. Ye, Y. Wan, J. Wu, W. Zhuang, Z. Zhou et al., Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interaction. Nano Energy 97, 107148 (2022). https://doi.org/10.1016/j.nanoen.2022.107148
A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002). https://doi.org/10.1126/science.1066102
T. Xie, Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010). https://doi.org/10.1038/nature08863
T. Bera, E.J. Freeman, J.A. McDonough, R.J. Clements, A. Aladlaan et al., Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts. ACS Appl. Mater. Interfaces 7, 14528–14535 (2015). https://doi.org/10.1021/acsami.5b04208
Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13, 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1