All-Weather 3D Self-Folding Fabric for Adaptive Personal Thermoregulation
Corresponding Author: Dahua Shou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 290
Abstract
In the era of global climate change, personal thermoregulation has become critical to addressing the growing demands for thermoadaptability, comfort, health, and work efficiency in dynamic environments. Here, we introduce an innovative three-dimensional (3D) self-folding knitted fabric that achieves dual thermal regulation modes through architectural reconfiguration. In the warming mode, the fabric maintains its natural 3D structure, trapping still air with extremely low thermal conductivity to provide high thermal resistance (0.06 m2 K W−1), effectively minimizing heat loss. In the cooling mode, the fabric transitions to a 2D flat state via stretching, with titanium dioxide (TiO2) and polydimethylsiloxane (PDMS) coatings that enhance solar reflectivity (89.5%) and infrared emissivity (93.5%), achieving a cooling effect of 4.3 °C under sunlight. The fabric demonstrates exceptional durability and washability, enduring over 1000 folding cycles, and is manufactured using scalable and cost-effective knitting techniques. Beyond thermoregulation, it exhibits excellent breathability, sweat management, and flexibility, ensuring wear comfort and tactile feel under diverse conditions. This study presents an innovative solution for next-generation adaptive textiles, addressing the limitations of static thermal fabrics and advancing personal thermal management with wide applications for wearable technology, extreme environments, and sustainable fashion.
Highlights:
1 An innovative 3D self-folding fabric was fabricated by knitting technology to achieve dual thermoregulation modes through architectural reconfiguration between 3D and 2D states.
2 In the warming mode, the fabric retains its natural 3D structure, providing high thermal resistance (0.06 m2 K W⁻1) by trapping still air. In the cooling mode, it transitions to a 2D flat state with coatings of thermal radiative management materials, achieving a cooling effect of 4.3 °C under sunlight by enhancing solar reflectivity and infrared emissivity, while reducing thermal resistance.
3 The fabric demonstrates exceptional durability and washability, enduring over 1000 folding cycles, and is manufactured using scalable and cost-effective knitting techniques.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595
- Z. Ma, D. Zhao, C. She, Y. Yang, R. Yang, Personal thermal management techniques for thermal comfort and building energy saving. Mater. Today Phys. 20, 100465 (2021). https://doi.org/10.1016/j.mtphys.2021.100465
- X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
- Y. Cui, J. Wang, H. Sun, Y. Zhu, R. Zhu et al., Visible transparent wideband microwave meta-absorber with designable digital infrared camouflage. Adv. Opt. Mater. 12(4), 2301712 (2024). https://doi.org/10.1002/adom.202301712
- S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16(1), 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- P.-C. Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng et al., A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3(11), e1700895 (2017). https://doi.org/10.1126/sciadv.1700895
- B. Xiang, R. Zhang, X. Zeng, Y. Luo, Z. Luo, An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 4(5), 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5
- L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17(1), 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
- H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21(9), 3879–3886 (2021). https://doi.org/10.1021/acs.nanolett.1c00400
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- H. Yin, X. Zhou, Z. Zhou, R. Liu, X. Mo et al., Switchable kirigami structures as window envelopes for energy-efficient buildings. Research 6, 0103 (2023). https://doi.org/10.34133/research.0103
- B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14(16), 18877–18883 (2022). https://doi.org/10.1021/acsami.2c01370
- J. Dong, Y. Feng, K. Lin, B. Zhou, F. Su et al., A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv. Funct. Mater. 34(13), 2310774 (2024). https://doi.org/10.1002/adfm.202310774
- N. Cheng, Z. Wang, Y. Lin, X. Li, Y. Zhang et al., Breathable dual-mode leather-like nanotextile for efficient daytime radiative cooling and heating. Adv. Mater. 36(33), 2403223 (2024). https://doi.org/10.1002/adma.202403223
- Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13(1), 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
- A. Butler, C. Argyropoulos, Mechanically tunable radiative cooling for adaptive thermal control. Appl. Therm. Eng. 211, 118527 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118527
- S. Zeng, K. Shen, Y. Liu, A.P. Chooi, A.T. Smith et al., Dynamic thermal radiation modulators via mechanically tunable surface emissivity. Mater. Today 45, 44–53 (2021). https://doi.org/10.1016/j.mattod.2020.12.001
- S. Song, G. Xu, B. Wang, D. Liu, Z. Ren et al., A dynamic mechanical stimulated and thermal-healed infrared modulator based on elastomer matrix with metal layer inspired by squid skin. Mater. Today Chem. 24, 100911 (2022). https://doi.org/10.1016/j.mtchem.2022.100911
- E.M. Leung, M. Colorado Escobar, G.T. Stiubianu, S.R. Jim, A.L. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 (2019). https://doi.org/10.1038/s41467-019-09589-w
- C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359(6383), 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
- K. Bu, X. Huang, X. Li, H. Bao, Consistent assessment of the cooling performance of radiative cooling materials. Adv. Funct. Mater. 33(51), 2307191 (2023). https://doi.org/10.1002/adfm.202307191
- M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. Adv. Sci. 3(7), 1500360 (2016). https://doi.org/10.1002/advs.201500360
- J. Liu, Z. Zhou, J. Zhang, W. Feng, J. Zuo, Advances and challenges in commercializing radiative cooling. Mater. Today Phys. 11, 100161 (2019). https://doi.org/10.1016/j.mtphys.2019.100161
- W. Wang, N. Fernandez, S. Katipamula, K. Alvine, Performance assessment of a photonic radiative cooling system for office buildings. Renew. Energy 118, 265–277 (2018). https://doi.org/10.1016/j.renene.2017.10.062
- H. Yu, J. Lu, J. Yan, T. Bai, Z. Niu et al., Selective emission fabric for indoor and outdoor passive radiative cooling in personal thermal management. Nano-micro Lett. 17(1), 192 (2025). https://doi.org/10.1007/s40820-025-01713-4
- H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
- K. Singal, M.S. Dimitriyev, S.E. Gonzalez, A.P. Cachine, S. Quinn et al., Programming mechanics in knitted materials, stitch by stitch. Nat. Commun. 15, 2622 (2024). https://doi.org/10.1038/s41467-024-46498-z
- K. Mahadevan, A. Stoltzfus, S. Dealey, R. Granberry, 3D knit pneumatic actuators for wearable haptic displays. Extreme Mech. Lett. 65, 102102 (2023). https://doi.org/10.1016/j.eml.2023.102102
- C. Knittel, D. Nicholas, R. Street, C. Schauer, G. Dion, Self-folding textiles through manipulation of knit stitch architecture. Fibers 3(4), 575–587 (2015). https://doi.org/10.3390/fib3040575
- Y. Luo, K. Wu, A. Spielberg, M. Foshey, D. Rus et al., Digital fabrication of pneumatic actuators with integrated sensing by machine knitting, in CHI Conference on Human Factors in Computing Systems. New Orleans LA USA. ACM, (2022), pp. 1–13. https://doi.org/10.1145/3491102.3517577
- R. Mishsra, H. Jamshaid, Technical applications of knitted fabrics. Knitting Science, Technology, Process and Materials. Springer Nature Switzerland, (2024), pp. 181–203. https://doi.org/10.1007/978-3-031-44927-7_8
- Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
- N. Meng, Y. Hu, Y. Zhang, N. Cheng, Y. Lin et al., Highly permeable and liquid-repellent textiles with micro-nano-networks for medical and health protection. Nano-micro Lett. 17(1), 208 (2025). https://doi.org/10.1007/s40820-025-01716-1
- B. Li, M. Wang, S. Ao, K. Lyu, X. Su et al., Knitting-stitching bifacial metafabrics with switchable thermal and moisture transmissibility for multimodal dynamic personal thermoregulation. Mater. Horiz. 12(2), 642–653 (2025). https://doi.org/10.1039/D4MH01015A
- L. Chow, Q. Zhang, X. Huang, J. Zhang, J. Zhou et al., Army ant nest inspired adaptive textile for smart thermal regulation and healthcare monitoring. Adv. Mater. 37(9), 2406798 (2025). https://doi.org/10.1002/adma.202406798
- Z. Zhao, H. Li, Y. Peng, J. Hu, F. Sun, Hierarchically programmed meta-louver fabric for adaptive personal thermal management. Adv. Funct. Mater. 34(44), 2404721 (2024). https://doi.org/10.1002/adfm.202404721
- A.F. Yilmaz, I.A.K. Ahmed, C. Gumus, K. Ozlem, M.S. Cetin et al., Highly stretchable textile knitted interdigital sensor for wearable technology applications. Adv. Sens. Res. 3(2), 2300121 (2024). https://doi.org/10.1002/adsr.202300121
- V. Sanchez, K. Mahadevan, G. Ohlson, M.A. Graule, M.C. Yuen et al., 3D knitting for pneumatic soft robotics. Adv. Funct. Mater. 33(26), 2212541 (2023). https://doi.org/10.1002/adfm.202212541
- A. Wong, W.A. Daoud, H.-H. Liang, Y.S. Szeto, Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Sol. Energy Mater. Sol. Cells 134, 425–437 (2015). https://doi.org/10.1016/j.solmat.2014.12.011
- D. Li, M. Ni, Moisture properties of coolmax fiber blended with regenerated cellulose fibers, in 2009 Second International Conference on Information and Computing Science. May 21–22, 2009, Manchester, UK. IEEE, (2009), pp. 129–131.
- H.A. Kim, Water/moisture vapor permeabilities and thermal wear comfort of the Coolmax®/bamboo/tencel included PET and PP composite yarns and their woven fabrics. J. Text. Inst. 112(12), 1940–1953 (2021). https://doi.org/10.1080/00405000.2020.1853409
- C. Yang, W. Yan, Y. Zhang, Y. Liu, Q. Chen et al., Study on the performance of heat and mass transfer of moisture-conducting fibers for evaporative cooling. Int. J. Heat Mass Transf. 231, 125862 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125862
- K. Luan, A. West, E. DenHartog, M. McCord, Auxetic deformation of the weft-knitted Miura-ori fold. Text. Res. J. 90(5–6), 617–630 (2020). https://doi.org/10.1177/0040517519877468
- C. Amanatides, O. Ghita, K.E. Evans, G. Dion, Characterizing and predicting the self-folding behavior of weft-knit fabrics. Text. Res. J. 92(21–22), 4060–4076 (2022). https://doi.org/10.1177/00405175221099670
References
X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595
Z. Ma, D. Zhao, C. She, Y. Yang, R. Yang, Personal thermal management techniques for thermal comfort and building energy saving. Mater. Today Phys. 20, 100465 (2021). https://doi.org/10.1016/j.mtphys.2021.100465
X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
Y. Cui, J. Wang, H. Sun, Y. Zhu, R. Zhu et al., Visible transparent wideband microwave meta-absorber with designable digital infrared camouflage. Adv. Opt. Mater. 12(4), 2301712 (2024). https://doi.org/10.1002/adom.202301712
S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16(1), 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
P.-C. Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng et al., A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3(11), e1700895 (2017). https://doi.org/10.1126/sciadv.1700895
B. Xiang, R. Zhang, X. Zeng, Y. Luo, Z. Luo, An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 4(5), 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5
L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17(1), 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21(9), 3879–3886 (2021). https://doi.org/10.1021/acs.nanolett.1c00400
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
H. Yin, X. Zhou, Z. Zhou, R. Liu, X. Mo et al., Switchable kirigami structures as window envelopes for energy-efficient buildings. Research 6, 0103 (2023). https://doi.org/10.34133/research.0103
B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14(16), 18877–18883 (2022). https://doi.org/10.1021/acsami.2c01370
J. Dong, Y. Feng, K. Lin, B. Zhou, F. Su et al., A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv. Funct. Mater. 34(13), 2310774 (2024). https://doi.org/10.1002/adfm.202310774
N. Cheng, Z. Wang, Y. Lin, X. Li, Y. Zhang et al., Breathable dual-mode leather-like nanotextile for efficient daytime radiative cooling and heating. Adv. Mater. 36(33), 2403223 (2024). https://doi.org/10.1002/adma.202403223
Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13(1), 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
A. Butler, C. Argyropoulos, Mechanically tunable radiative cooling for adaptive thermal control. Appl. Therm. Eng. 211, 118527 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118527
S. Zeng, K. Shen, Y. Liu, A.P. Chooi, A.T. Smith et al., Dynamic thermal radiation modulators via mechanically tunable surface emissivity. Mater. Today 45, 44–53 (2021). https://doi.org/10.1016/j.mattod.2020.12.001
S. Song, G. Xu, B. Wang, D. Liu, Z. Ren et al., A dynamic mechanical stimulated and thermal-healed infrared modulator based on elastomer matrix with metal layer inspired by squid skin. Mater. Today Chem. 24, 100911 (2022). https://doi.org/10.1016/j.mtchem.2022.100911
E.M. Leung, M. Colorado Escobar, G.T. Stiubianu, S.R. Jim, A.L. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10, 1947 (2019). https://doi.org/10.1038/s41467-019-09589-w
C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359(6383), 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
K. Bu, X. Huang, X. Li, H. Bao, Consistent assessment of the cooling performance of radiative cooling materials. Adv. Funct. Mater. 33(51), 2307191 (2023). https://doi.org/10.1002/adfm.202307191
M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. Adv. Sci. 3(7), 1500360 (2016). https://doi.org/10.1002/advs.201500360
J. Liu, Z. Zhou, J. Zhang, W. Feng, J. Zuo, Advances and challenges in commercializing radiative cooling. Mater. Today Phys. 11, 100161 (2019). https://doi.org/10.1016/j.mtphys.2019.100161
W. Wang, N. Fernandez, S. Katipamula, K. Alvine, Performance assessment of a photonic radiative cooling system for office buildings. Renew. Energy 118, 265–277 (2018). https://doi.org/10.1016/j.renene.2017.10.062
H. Yu, J. Lu, J. Yan, T. Bai, Z. Niu et al., Selective emission fabric for indoor and outdoor passive radiative cooling in personal thermal management. Nano-micro Lett. 17(1), 192 (2025). https://doi.org/10.1007/s40820-025-01713-4
H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
K. Singal, M.S. Dimitriyev, S.E. Gonzalez, A.P. Cachine, S. Quinn et al., Programming mechanics in knitted materials, stitch by stitch. Nat. Commun. 15, 2622 (2024). https://doi.org/10.1038/s41467-024-46498-z
K. Mahadevan, A. Stoltzfus, S. Dealey, R. Granberry, 3D knit pneumatic actuators for wearable haptic displays. Extreme Mech. Lett. 65, 102102 (2023). https://doi.org/10.1016/j.eml.2023.102102
C. Knittel, D. Nicholas, R. Street, C. Schauer, G. Dion, Self-folding textiles through manipulation of knit stitch architecture. Fibers 3(4), 575–587 (2015). https://doi.org/10.3390/fib3040575
Y. Luo, K. Wu, A. Spielberg, M. Foshey, D. Rus et al., Digital fabrication of pneumatic actuators with integrated sensing by machine knitting, in CHI Conference on Human Factors in Computing Systems. New Orleans LA USA. ACM, (2022), pp. 1–13. https://doi.org/10.1145/3491102.3517577
R. Mishsra, H. Jamshaid, Technical applications of knitted fabrics. Knitting Science, Technology, Process and Materials. Springer Nature Switzerland, (2024), pp. 181–203. https://doi.org/10.1007/978-3-031-44927-7_8
Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
N. Meng, Y. Hu, Y. Zhang, N. Cheng, Y. Lin et al., Highly permeable and liquid-repellent textiles with micro-nano-networks for medical and health protection. Nano-micro Lett. 17(1), 208 (2025). https://doi.org/10.1007/s40820-025-01716-1
B. Li, M. Wang, S. Ao, K. Lyu, X. Su et al., Knitting-stitching bifacial metafabrics with switchable thermal and moisture transmissibility for multimodal dynamic personal thermoregulation. Mater. Horiz. 12(2), 642–653 (2025). https://doi.org/10.1039/D4MH01015A
L. Chow, Q. Zhang, X. Huang, J. Zhang, J. Zhou et al., Army ant nest inspired adaptive textile for smart thermal regulation and healthcare monitoring. Adv. Mater. 37(9), 2406798 (2025). https://doi.org/10.1002/adma.202406798
Z. Zhao, H. Li, Y. Peng, J. Hu, F. Sun, Hierarchically programmed meta-louver fabric for adaptive personal thermal management. Adv. Funct. Mater. 34(44), 2404721 (2024). https://doi.org/10.1002/adfm.202404721
A.F. Yilmaz, I.A.K. Ahmed, C. Gumus, K. Ozlem, M.S. Cetin et al., Highly stretchable textile knitted interdigital sensor for wearable technology applications. Adv. Sens. Res. 3(2), 2300121 (2024). https://doi.org/10.1002/adsr.202300121
V. Sanchez, K. Mahadevan, G. Ohlson, M.A. Graule, M.C. Yuen et al., 3D knitting for pneumatic soft robotics. Adv. Funct. Mater. 33(26), 2212541 (2023). https://doi.org/10.1002/adfm.202212541
A. Wong, W.A. Daoud, H.-H. Liang, Y.S. Szeto, Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Sol. Energy Mater. Sol. Cells 134, 425–437 (2015). https://doi.org/10.1016/j.solmat.2014.12.011
D. Li, M. Ni, Moisture properties of coolmax fiber blended with regenerated cellulose fibers, in 2009 Second International Conference on Information and Computing Science. May 21–22, 2009, Manchester, UK. IEEE, (2009), pp. 129–131.
H.A. Kim, Water/moisture vapor permeabilities and thermal wear comfort of the Coolmax®/bamboo/tencel included PET and PP composite yarns and their woven fabrics. J. Text. Inst. 112(12), 1940–1953 (2021). https://doi.org/10.1080/00405000.2020.1853409
C. Yang, W. Yan, Y. Zhang, Y. Liu, Q. Chen et al., Study on the performance of heat and mass transfer of moisture-conducting fibers for evaporative cooling. Int. J. Heat Mass Transf. 231, 125862 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125862
K. Luan, A. West, E. DenHartog, M. McCord, Auxetic deformation of the weft-knitted Miura-ori fold. Text. Res. J. 90(5–6), 617–630 (2020). https://doi.org/10.1177/0040517519877468
C. Amanatides, O. Ghita, K.E. Evans, G. Dion, Characterizing and predicting the self-folding behavior of weft-knit fabrics. Text. Res. J. 92(21–22), 4060–4076 (2022). https://doi.org/10.1177/00405175221099670