Directional Electromagnetic Interference Shielding Based on Step-Wise Asymmetric Conductive Networks
Corresponding Author: Qiang Zheng
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 16
Abstract
Some precision electronics such as signal transmitters need to not only emit effective signal but also be protected from the external electromagnetic (EM) waves. Thus, directional electromagnetic interference (EMI) shielding materials (i.e., when the EM wave is incident from different sides of the sample, the EMI shielding effectiveness (SE) is rather different) are strongly required; unfortunately, no comprehensive literature report is available on this research field. Herein, Ni-coated melamine foams (Ni@MF) were obtained by a facile electroless plating process, and multiwalled carbon nanotube (CNT) papers were prepared via a simple vacuum-assisted self-assembly approach. Then, step-wise asymmetric poly(butylene adipate-co-terephthalate) (PBAT) composites consisting of loose Ni@MF layer and compact CNT layer were successfully fabricated via a facile solution encapsulation approach. The step-wise asymmetric structures and electrical conductivity endow the Ni@MF/CNT/PBAT composites with unprecedented directional EMI shielding performances. When the EM wave is incident from Ni@MF layer or CNT layer, Ni@MF-5/CNT-75/PBAT exhibits the total EMI SE (SET) of 38.3 and 29.5 dB, respectively, which illustrates the ΔSET of 8.8 dB. This work opens a new research window for directional EMI shielding composites with step-wise asymmetric structures, which has promising applications in portable electronics and next-generation communication technologies.
Highlights:
1 Ni@MF/CNT/PBAT composites with step-wise asymmetric structures are fabricated via a facile solution encapsulation approach.
2 The composites exhibit the unprecedented directional electromagnetic interference shielding performances (ΔSET = 8.8 dB), which are further verified by an actual application measurement in a remote controlled toy car system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- B. Yao, W. Hong, T.W. Chen, Z.B. Han, X.W. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
- B. Fu, P. Ren, Z. Guo, Y. Du, Y. Jin et al., Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. B Eng. 215, 108813 (2021). https://doi.org/10.1016/j.compositesb.2021.108813
- J. Guo, H.X. Song, H. Liu, C.J. Luo, Y.R. Ren et al., Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J. Mater. Chem. C 5(22), 5334–5344 (2017). https://doi.org/10.1039/C7TC01502J
- Z. Guo, P. Ren, Z. Zhang, Z. Dai, K. Hui et al., Simultaneous realization of highly efficient electromagnetic interference shielding and human motion detection in carbon fiber felt decorated with silver nanowires and thermoplastic polyurethane. J. Mater. Chem. C 9(21), 6894–6903 (2021). https://doi.org/10.1039/D1TC01099A
- D.H. Yu, Y. Liao, Y.C. Song, S.L. Wang, H.Y. Wan et al., Conductive materials: a super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv Sci 7(12), 2070064 (2020). https://doi.org/10.1002/advs.202070064
- D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 77, 756–774 (2014). https://doi.org/10.1016/j.carbon.2014.05.080
- X.Y. Liu, X.X. Jin, L. Li, J.F. Wang, Y.Y. Yang et al., Air-permeable, multifunctional, dual-energy driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J. Mater. Chem. A 8(25), 12526–12537 (2020). https://doi.org/10.1039/D0TA03048A
- A. Iqba, F. Shahzad, K. Hantanasirisaku, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx(MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- A. Charles, A.N. Rider, S.A. Brown, C.H. Wang, Multifunctional magneto-polymer matrix composites for electromagnetic interference suppression, sensors and actuators. Prog. Mater. Sci. 115, 100705 (2021). https://doi.org/10.1016/j.pmatsci.2020.100705
- Y.Z. Zhang, J.K. El-Demellawi, Q. Jiang, G. Ge, H.F. Liang et al., MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49(20), 7229–7251 (2020). https://doi.org/10.1039/D0CS00022A
- L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F.L. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire Nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski et al., Electrically insulating flexible films with quasi-1D van der Waals fillers as efficient electromagnetic shields in the GHz and sub-THz frequency bands. Adv. Mater. 33(11), 2007286 (2021). https://doi.org/10.1002/adma.202007286
- Y.M. Chen, L. Zhang, Y. Yang, B. Pang, W.H. Xu et al., Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33(11), 2005569 (2021). https://doi.org/10.1002/adma.202005569
- D.W. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59(2), 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
- C.B. Liang, K.P. Ruan, Y.L. Zhang, J.W. Gu, Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl. Mater. Interfaces 12(15), 18023–18031 (2020). https://doi.org/10.1021/acsami.0c04482
- Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang et al., Ultraflexible and mechanically strong double layered aramid nanofiber−Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- H.L. Fu, Z.P. Yang, Y.Y. Zhang, M. Zhu, Y.H. Jia et al., SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding. Carbon 162, 490–496 (2020). https://doi.org/10.1016/j.carbon.2020.02.081
- H.L. Yang, Z. Yu, P. Wu, H.W. Zou, P.B. Liu, Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surf. Sci. 434, 318–325 (2018). https://doi.org/10.1016/j.apsusc.2017.10.191
- B. Shen, Y. Li, D. Yi, W.T. Zhai, X.C. Wei et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016). https://doi.org/10.1016/j.carbon.2016.02.040
- Z.H. Lin, J. Liu, W. Peng, Y.Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
- H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang et al., Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 156, 87–94 (2018). https://doi.org/10.1016/j.compscitech.2017.12.027
- Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
- W.Y. Wang, X. Ma, Y.W. Shao, X.D. Qi, J.H. Yang et al., Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 9(8), 5033–5044 (2021). https://doi.org/10.1039/D0TA11040J
- Y.Y. Zhu, J. Liu, T. Guo, J.J. Wang, X.Z. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- M.C. Vu, P.J. Park, S.R. Bae, S.Y. Kim, Y.M. Kang et al., Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 9(13), 8527–8540 (2021). https://doi.org/10.1039/D0TA12306D
- W. Zhai, C.F. Wang, S. Wang, J.N. Li, Y. Zhao et al., Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring. J. Mater. Chem. A 9(11), 7238–7247 (2021). https://doi.org/10.1039/D0TA10991F
- Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, Y.Y. Meng et al., Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
- K. Wu, C.X. Lei, R. Huang, W.X. Yang, S.G. Chai et al., Design preparation of a unique segregated double network with excellent thermal conductive property. ACS Appl. Mater. Interfaces 9(8), 7637–7647 (2017). https://doi.org/10.1021/acsami.6b16586
- S.Y. Li, X.Y. Li, C.C. Chen, H.Y. Wang, Q.Y. Deng et al., Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Compos. Sci. Technol. 132, 31–37 (2016). https://doi.org/10.1016/j.compscitech.2016.06.010
- Y. Jin, R.A. Gerhardt, Prediction of the percolation threshold and electrical conductivity of self-assembled antimony-doped tin oxide nanoparticles into ordered structures in PMMA/ATO nanocomposites. ACS Appl. Mater. Interfaces 6(24), 22264–22271 (2014). https://doi.org/10.1021/am5061239
- B.W. Yu, Z.Y. Zhao, S.R. Fu, L. Meng, Y.H. Liu et al., Fabrication of PLA/CNC/CNT conductive composites for high electromagnetic interference shielding based on pickering emulsions method. Compos. Part A Appl. Sci. Manuf. 125, 105558 (2019). https://doi.org/10.1016/j.compositesa.2019.105558
- W.C. Yu, T. Wang, Y.H. Liu, Z.G. Wang, L. Xu et al., Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chem. Eng. J. 393, 124644 (2020). https://doi.org/10.1016/j.cej.2020.124644
- R.J. Bian, G.L. He, W.Q. Zhi, S.L. Xiang, T.W. Wang et al., Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019). https://doi.org/10.1039/C8TC04795B
- A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. B Eng. 149, 188–197 (2018). https://doi.org/10.1016/j.compositesb.2018.05.027
- J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang et al., Lightweight Ti3C2Tx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like ‘‘mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
- Q.W. Wei, S.F. Pei, X.T. Qian, H.P. Liu, Z.B. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
- Y. Li, B. Xue, S.D. Yang, Z.L. Cheng, L. Xie et al., Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 410, 128356 (2021). https://doi.org/10.1016/j.cej.2020.128356
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- L. Li, Y.X. Cao, X.Y. Liu, J.F. Wang, Y.Y. Yang et al., Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 12(24), 27350–27360 (2020). https://doi.org/10.1021/acsami.0c05692
- C.X. Lei, Y.Z. Zhang, D.Y. Liu, K. Wu, Q. Fu, Metal-level robust, folding endurance, and highly temperature stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 12(23), 26485–26495 (2020). https://doi.org/10.1021/acsami.0c07387
- Y. Zhang, W.H. Cheng, W.X. Tian, J.Y. Lu, L. Song et al., Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces 12(5), 6371–6382 (2020). https://doi.org/10.1021/acsami.9b18750
- Y.D. Xu, Y.Q. Yang, D.X. Yan, H.J. Duan, G.Z. Zhao et al., Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 10(22), 19143–19152 (2018). https://doi.org/10.1021/acsami.8b05129
- A. Sheng, W. Ren, Y.Q. Yang, D.X. Yan, H.J. Duan et al., Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
- H.J. Duan, H.X. Zhu, J.F. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8(18), 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
- I. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159–187 (2019). https://doi.org/10.1016/j.carbon.2019.06.002
- L.Q. Zhang, B. Yang, J. Teng, J. Lei, D.X. Yan et al., Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. J. Mater. Chem. C 5(12), 3130–3138 (2017). https://doi.org/10.1039/C6TC05516H
- L.Y. Liang, G.J. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- B.Y. Wen, X.J. Wang, Y. Zhang, Ultrathin and anisotropic polyvinyl butyral/Ni-graphite/short-cut carbon fibre film with high electromagnetic shielding performance. Compos. Sci. Technol. 169, 127–134 (2019). https://doi.org/10.1016/j.compscitech.2018.11.013
- J.B. Park, H. Rho, A.N. Cha, H. Bae, S.H. Lee et al., Transparent carbon nanotube web structures with Ni-Pd nanoparticles for electromagnetic interference (EMI) shielding of advanced display devices. Appl. Surf. Sci. 516, 145745 (2020). https://doi.org/10.1016/j.apsusc.2020.145745
- P. Zhang, X. Ding, Y.Y. Wang, Y. Gong, K. Zheng, Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity. Compos. Part A Appl. Sci. Manuf. 117, 56–64 (2019). https://doi.org/10.1016/j.compositesa.2018.11.007
- C. Wang, V. Murugadoss, J. Kong, Z.F. He, X.M. Mai et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
- J. Cao, Z.H. Zhou, Q.C. Song, K.Y. Chen, G.H. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14(6), 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
- C. Xiang, R.H. Guo, S.J. Lin, S.X. Jiang, J.W. Lan et al., Lightweight and ultrathin TiO2-Ti3C2TX/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019). https://doi.org/10.1016/j.cej.2018.10.174
- X.X. Zhou, Y. Wang, C.C. Gong, B. Liu, G. Wei, Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: a comprehensive review. Chem. Eng. J. 402, 126189 (2020). https://doi.org/10.1016/j.cej.2020.126189
- Y. Li, B. Shen, D. Yi, L.H. Zhang, W.T. Zhai et al., The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017). https://doi.org/10.1016/j.compscitech.2016.12.002
References
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
B. Yao, W. Hong, T.W. Chen, Z.B. Han, X.W. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
B. Fu, P. Ren, Z. Guo, Y. Du, Y. Jin et al., Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. B Eng. 215, 108813 (2021). https://doi.org/10.1016/j.compositesb.2021.108813
J. Guo, H.X. Song, H. Liu, C.J. Luo, Y.R. Ren et al., Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J. Mater. Chem. C 5(22), 5334–5344 (2017). https://doi.org/10.1039/C7TC01502J
Z. Guo, P. Ren, Z. Zhang, Z. Dai, K. Hui et al., Simultaneous realization of highly efficient electromagnetic interference shielding and human motion detection in carbon fiber felt decorated with silver nanowires and thermoplastic polyurethane. J. Mater. Chem. C 9(21), 6894–6903 (2021). https://doi.org/10.1039/D1TC01099A
D.H. Yu, Y. Liao, Y.C. Song, S.L. Wang, H.Y. Wan et al., Conductive materials: a super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv Sci 7(12), 2070064 (2020). https://doi.org/10.1002/advs.202070064
D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders. Carbon 77, 756–774 (2014). https://doi.org/10.1016/j.carbon.2014.05.080
X.Y. Liu, X.X. Jin, L. Li, J.F. Wang, Y.Y. Yang et al., Air-permeable, multifunctional, dual-energy driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J. Mater. Chem. A 8(25), 12526–12537 (2020). https://doi.org/10.1039/D0TA03048A
A. Iqba, F. Shahzad, K. Hantanasirisaku, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx(MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
A. Charles, A.N. Rider, S.A. Brown, C.H. Wang, Multifunctional magneto-polymer matrix composites for electromagnetic interference suppression, sensors and actuators. Prog. Mater. Sci. 115, 100705 (2021). https://doi.org/10.1016/j.pmatsci.2020.100705
Y.Z. Zhang, J.K. El-Demellawi, Q. Jiang, G. Ge, H.F. Liang et al., MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49(20), 7229–7251 (2020). https://doi.org/10.1039/D0CS00022A
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F.L. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire Nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski et al., Electrically insulating flexible films with quasi-1D van der Waals fillers as efficient electromagnetic shields in the GHz and sub-THz frequency bands. Adv. Mater. 33(11), 2007286 (2021). https://doi.org/10.1002/adma.202007286
Y.M. Chen, L. Zhang, Y. Yang, B. Pang, W.H. Xu et al., Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33(11), 2005569 (2021). https://doi.org/10.1002/adma.202005569
D.W. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding et al., Electromagnetic interference shielding polymers and nanocomposites-a review. Polym. Rev. 59(2), 280–337 (2019). https://doi.org/10.1080/15583724.2018.1546737
C.B. Liang, K.P. Ruan, Y.L. Zhang, J.W. Gu, Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl. Mater. Interfaces 12(15), 18023–18031 (2020). https://doi.org/10.1021/acsami.0c04482
Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang et al., Ultraflexible and mechanically strong double layered aramid nanofiber−Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
B. Zhou, Z. Zhang, Y.L. Li, G.J. Han, Y.Z. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
H.L. Fu, Z.P. Yang, Y.Y. Zhang, M. Zhu, Y.H. Jia et al., SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding. Carbon 162, 490–496 (2020). https://doi.org/10.1016/j.carbon.2020.02.081
H.L. Yang, Z. Yu, P. Wu, H.W. Zou, P.B. Liu, Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surf. Sci. 434, 318–325 (2018). https://doi.org/10.1016/j.apsusc.2017.10.191
B. Shen, Y. Li, D. Yi, W.T. Zhai, X.C. Wei et al., Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102, 154–160 (2016). https://doi.org/10.1016/j.carbon.2016.02.040
Z.H. Lin, J. Liu, W. Peng, Y.Y. Zhu, Y. Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang et al., Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 156, 87–94 (2018). https://doi.org/10.1016/j.compscitech.2017.12.027
Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
W.Y. Wang, X. Ma, Y.W. Shao, X.D. Qi, J.H. Yang et al., Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 9(8), 5033–5044 (2021). https://doi.org/10.1039/D0TA11040J
Y.Y. Zhu, J. Liu, T. Guo, J.J. Wang, X.Z. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
M.C. Vu, P.J. Park, S.R. Bae, S.Y. Kim, Y.M. Kang et al., Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 9(13), 8527–8540 (2021). https://doi.org/10.1039/D0TA12306D
W. Zhai, C.F. Wang, S. Wang, J.N. Li, Y. Zhao et al., Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring. J. Mater. Chem. A 9(11), 7238–7247 (2021). https://doi.org/10.1039/D0TA10991F
Y.H. Zhan, J. Wang, K.Y. Zhang, Y.C. Li, Y.Y. Meng et al., Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 344, 184–193 (2018). https://doi.org/10.1016/j.cej.2018.03.085
K. Wu, C.X. Lei, R. Huang, W.X. Yang, S.G. Chai et al., Design preparation of a unique segregated double network with excellent thermal conductive property. ACS Appl. Mater. Interfaces 9(8), 7637–7647 (2017). https://doi.org/10.1021/acsami.6b16586
S.Y. Li, X.Y. Li, C.C. Chen, H.Y. Wang, Q.Y. Deng et al., Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Compos. Sci. Technol. 132, 31–37 (2016). https://doi.org/10.1016/j.compscitech.2016.06.010
Y. Jin, R.A. Gerhardt, Prediction of the percolation threshold and electrical conductivity of self-assembled antimony-doped tin oxide nanoparticles into ordered structures in PMMA/ATO nanocomposites. ACS Appl. Mater. Interfaces 6(24), 22264–22271 (2014). https://doi.org/10.1021/am5061239
B.W. Yu, Z.Y. Zhao, S.R. Fu, L. Meng, Y.H. Liu et al., Fabrication of PLA/CNC/CNT conductive composites for high electromagnetic interference shielding based on pickering emulsions method. Compos. Part A Appl. Sci. Manuf. 125, 105558 (2019). https://doi.org/10.1016/j.compositesa.2019.105558
W.C. Yu, T. Wang, Y.H. Liu, Z.G. Wang, L. Xu et al., Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chem. Eng. J. 393, 124644 (2020). https://doi.org/10.1016/j.cej.2020.124644
R.J. Bian, G.L. He, W.Q. Zhi, S.L. Xiang, T.W. Wang et al., Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019). https://doi.org/10.1039/C8TC04795B
A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. B Eng. 149, 188–197 (2018). https://doi.org/10.1016/j.compositesb.2018.05.027
J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
H.L. Xu, X.W. Yin, X.L. Li, M.H. Li, S. Liang et al., Lightweight Ti3C2Tx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like ‘‘mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
Q.W. Wei, S.F. Pei, X.T. Qian, H.P. Liu, Z.B. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
Y. Li, B. Xue, S.D. Yang, Z.L. Cheng, L. Xie et al., Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 410, 128356 (2021). https://doi.org/10.1016/j.cej.2020.128356
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
L. Li, Y.X. Cao, X.Y. Liu, J.F. Wang, Y.Y. Yang et al., Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Appl. Mater. Interfaces 12(24), 27350–27360 (2020). https://doi.org/10.1021/acsami.0c05692
C.X. Lei, Y.Z. Zhang, D.Y. Liu, K. Wu, Q. Fu, Metal-level robust, folding endurance, and highly temperature stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 12(23), 26485–26495 (2020). https://doi.org/10.1021/acsami.0c07387
Y. Zhang, W.H. Cheng, W.X. Tian, J.Y. Lu, L. Song et al., Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces 12(5), 6371–6382 (2020). https://doi.org/10.1021/acsami.9b18750
Y.D. Xu, Y.Q. Yang, D.X. Yan, H.J. Duan, G.Z. Zhao et al., Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 10(22), 19143–19152 (2018). https://doi.org/10.1021/acsami.8b05129
A. Sheng, W. Ren, Y.Q. Yang, D.X. Yan, H.J. Duan et al., Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
H.J. Duan, H.X. Zhu, J.F. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8(18), 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
I. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159–187 (2019). https://doi.org/10.1016/j.carbon.2019.06.002
L.Q. Zhang, B. Yang, J. Teng, J. Lei, D.X. Yan et al., Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. J. Mater. Chem. C 5(12), 3130–3138 (2017). https://doi.org/10.1039/C6TC05516H
L.Y. Liang, G.J. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11(28), 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
B.Y. Wen, X.J. Wang, Y. Zhang, Ultrathin and anisotropic polyvinyl butyral/Ni-graphite/short-cut carbon fibre film with high electromagnetic shielding performance. Compos. Sci. Technol. 169, 127–134 (2019). https://doi.org/10.1016/j.compscitech.2018.11.013
J.B. Park, H. Rho, A.N. Cha, H. Bae, S.H. Lee et al., Transparent carbon nanotube web structures with Ni-Pd nanoparticles for electromagnetic interference (EMI) shielding of advanced display devices. Appl. Surf. Sci. 516, 145745 (2020). https://doi.org/10.1016/j.apsusc.2020.145745
P. Zhang, X. Ding, Y.Y. Wang, Y. Gong, K. Zheng, Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity. Compos. Part A Appl. Sci. Manuf. 117, 56–64 (2019). https://doi.org/10.1016/j.compositesa.2018.11.007
C. Wang, V. Murugadoss, J. Kong, Z.F. He, X.M. Mai et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
J. Cao, Z.H. Zhou, Q.C. Song, K.Y. Chen, G.H. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14(6), 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
C. Xiang, R.H. Guo, S.J. Lin, S.X. Jiang, J.W. Lan et al., Lightweight and ultrathin TiO2-Ti3C2TX/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019). https://doi.org/10.1016/j.cej.2018.10.174
X.X. Zhou, Y. Wang, C.C. Gong, B. Liu, G. Wei, Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: a comprehensive review. Chem. Eng. J. 402, 126189 (2020). https://doi.org/10.1016/j.cej.2020.126189
Y. Li, B. Shen, D. Yi, L.H. Zhang, W.T. Zhai et al., The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017). https://doi.org/10.1016/j.compscitech.2016.12.002