Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications
Corresponding Author: Jun Den
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 246
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Highlights:
1 A large-scale metabolic adaptation in M1-polarized macrophages compared with M2 macrophages, along with multiple altered metabolite parameters that can serve as potential targets, have been discussed.
2 Nanomaterial-based repurposing of macrophage metabolism and its applications are systematically summarized and illustrated using representative examples.
3 Potential challenges, additional information about future research objectives, and priorities of nanomaterial-based macrophage immunotherapy are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Sadtler, A. Singh, M.T. Wolf, X. Wang, D.M. Pardoll et al., Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 16040–16056 (2016). https://doi.org/10.1038/natrevmats.2016.40
- R. Sridharan, A.R. Cameron, D.J. Kelly, C.J. Kearney, F.J. O’Brien, Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater. Today 18(6), 313–325 (2015). https://doi.org/10.1016/j.mattod.2015.01.019
- T.A. Wynn, A. Chawla, J.W. Pollard, Macrophage biology in development, homeostasis and disease. Nature 496(7446), 445–455 (2013). https://doi.org/10.1038/nature12034
- L. Parisi, E. Gini, D. Baci, M. Tremolati, M. Fanuli et al., Macrophage polarization in chronic inflammatory diseases: Killers or builders? J. Immunol. Res. 2018, 8917804 (2018). https://doi.org/10.1155/2018/8917804
- D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008). https://doi.org/10.1038/nri2448
- A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12), 677–686 (2004). https://doi.org/10.1016/j.it.2004.09.015
- J.J. O’Shea, P.J. Murray, Cytokine signaling modules in inflammatory responses. Immunity 28(4), 477–487 (2008). https://doi.org/10.1016/j.immuni.2008.03.002
- A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini, M. Taghadosi, S.A. Esmaeili et al., Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233(9), 6425–6440 (2018). https://doi.org/10.1002/jcp.26429
- S. Gordon, F.O. Martinez, Alternative activation of macrophages: mechanism and functions. Immunity 32(5), 593–604 (2010). https://doi.org/10.1016/j.immuni.2010.05.007
- W. Xu, X. Zhao, M.R. Daha, C. van Kooten, Reversible differentiation of pro- and anti-inflammatory macrophages. Mol. Immunol. 53(3), 179–186 (2013). https://doi.org/10.1016/j.molimm.2012.07.005
- E.L. Mills, B. Kelly, A. Logan, A.S.H. Costa, M. Varma et al., Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(2), 457-470.e413 (2016). https://doi.org/10.1016/j.cell.2016.08.064
- D.G. Ryan, L.A.J. O’Neill, Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020). https://doi.org/10.1146/annurev-immunol-081619-104850
- E.L. Mills, B. Kelly, L.A.J. O’Neill, Mitochondria are the powerhouses of immunity. Nat. Immunol. 18(5), 488–498 (2017). https://doi.org/10.1038/ni.3704
- J. Van den Bossche, L.A. O’Neill, D. Menon, Macrophage immunometabolism: where are we (going)? Trends Immunol. 38(6), 395–406 (2017). https://doi.org/10.1016/j.it.2017.03.001
- E.L. Mills, L.A. O’Neill, Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46(1), 13–21 (2016). https://doi.org/10.1002/eji.201445427
- A.K. Jha, S.C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova et al., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3), 419–430 (2015). https://doi.org/10.1016/j.immuni.2015.02.005
- A.M. Kabat, E.J. Pearce, Inflammation by way of macrophage metabolism. Science 356(6337), 488–489 (2017). https://doi.org/10.1126/science.aan2691
- I. Vitale, G. Manic, L.M. Coussens, G. Kroemer, L. Galluzzi, Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30(1), 36–50 (2019). https://doi.org/10.1016/j.cmet.2019.06.001
- J. Li, X. Jiang, H. Li, M. Gelinsky, Z. Gu, Tailoring materials for modulation of macrophage fate. Adv. Mater. 33(12), e2004172 (2021). https://doi.org/10.1002/adma.202004172
- L. Zhang, X. Chen, P. Cai, H. Sun, S. Shen et al., Reprogramming mitochondrial metabolism in synovial macrophages of early osteoarthritis by a camouflaged meta-defensome. Adv. Mater. 34(30), e2202715 (2022). https://doi.org/10.1002/adma.202202715
- L. Wang, D. Wang, T. Zhang, Y. Ma, X. Tong et al., The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome. Front. Immunol. 14, 1117548 (2023). https://doi.org/10.3389/fimmu.2023.1117548
- S. Cai, M. Zhao, B. Zhou, A. Yoshii, D. Bugg et al., Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J. Clin. Invest. 133(4), e159498 (2023). https://doi.org/10.1172/JCI159498
- S.A. Eming, P.J. Murray, E.J. Pearce, Metabolic orchestration of the wound healing response. Cell Metab. 33(9), 1726–1743 (2021). https://doi.org/10.1016/j.cmet.2021.07.017
- A. Castegna, R. Gissi, A. Menga, M. Montopoli, M. Favia et al., Pharmacological targets of metabolism in disease: opportunities from macrophages. Pharmacol. Ther. 210, 107521 (2020). https://doi.org/10.1016/j.pharmthera.2020.107521
- P. Hou, J. Fang, Z. Liu, Y. Shi, M. Agostini et al., Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 14(10), 691 (2023). https://doi.org/10.1038/s41419-023-06206-z
- W.K.E. Ip, N. Hoshi, D.S. Shouval, S. Snapper, R. Medzhitov, Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356(6337), 513–519 (2017). https://doi.org/10.1126/science.aal3535
- R.A. Franklin, W. Liao, A. Sarkar, M.V. Kim, M.R. Bivona et al., The cellular and molecular origin of tumor-associated macrophages. Science 344(6186), 921–925 (2014). https://doi.org/10.1126/science.1252510
- M. Li, Y. Yang, L. Xiong, P. Jiang, J. Wang et al., Metabolism, metabolites, and macrophages in cancer. J. Hematol. Oncol. 16(1), 80 (2023). https://doi.org/10.1186/s13045-023-01478-6
- D. Kim, Y.W. Wu, Q.Y. Li, Y.K. Oh, Nanop-mediated lipid metabolic reprogramming of T cells in tumor microenvironments for immunometabolic therapy. Nano-Micro Lett. 13(1), 31 (2021). https://doi.org/10.1007/s40820-020-00555-6
- T. Hou, T. Wang, W. Mu, R. Yang, S. Liang et al., Nanop-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nano-Micro Lett. 13(1), 6 (2020). https://doi.org/10.1007/s40820-020-00531-0
- J. Mao, L. Chen, Z. Cai, S. Qian, Z. Liu et al., Advanced biomaterials for regulating polarization of macrophages in wound healing. Adv. Funct. Mater. 32(12), 2111003 (2021). https://doi.org/10.1002/adfm.202111003
- E. Peled, A. Sosnik, Amphiphilic galactomannan nanops trigger the alternative activation of murine macrophages. J. Control. Release 339, 473–483 (2021). https://doi.org/10.1016/j.jconrel.2021.10.017
- J. Tang, S. Baxter, A. Menon, A. Alaarg, B.L. Sanchez-Gaytan et al., Immune cell screening of a nanop library improves atherosclerosis therapy. Proc. Natl. Acad. Sci. U.S.A. 113(44), E6731–E6740 (2016). https://doi.org/10.1073/pnas.1609629113
- H.J. Jeong, R.J. Yoo, J.K. Kim, M.H. Kim, S.H. Park et al., Macrophage cell tracking pet imaging using mesoporous silica nanops via in vivo bioorthogonal F-18 labeling. Biomaterials 199, 32–39 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.043
- S.B. Lee, H.W. Lee, T.D. Singh, Y. Li, S.K. Kim et al., Visualization of macrophage recruitment to inflammation lesions using highly sensitive and stable radionuclide-embedded gold nanops as a nuclear bio-imaging platform. Theranostics 7(4), 926–934 (2017). https://doi.org/10.7150/thno.17131
- J. Toczek, P. Boodagh, N. Sanzida, M. Ghim, M. Salarian et al., Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. Theranostics 11(12), 5876–5888 (2021). https://doi.org/10.7150/thno.55106
- Z. Guo, L. Yang, M. Chen, X. Wen, H. Liu et al., Molecular imaging of advanced atherosclerotic plaques with folate receptor-targeted 2D nanoprobes. Nano Res. 13(1), 173–182 (2019). https://doi.org/10.1007/s12274-019-2592-4
- H. Deng, X. Li, J. Ju, X. Mo, G. Ge et al., Multifunctional nanoprobes for macrophage imaging. Biomaterials 290, 121824 (2022). https://doi.org/10.1016/j.biomaterials.2022.121824
- A. Ramesh, N. Deshpande, V. Malik, A. Nguyen, M. Malhotra et al., Activatable nanoreporters for real-time tracking of macrophage phenotypic states associated with disease progression. Small 19(41), e2300978 (2023). https://doi.org/10.1002/smll.202300978
- X. Liu, X. Xie, J. Jiang, M. Lin, E. Zheng et al., Use of nanoformulation to target macrophages for disease treatment. Adv. Funct. Mater. 31(38), 2104487 (2021). https://doi.org/10.1002/adfm.202104487
- Y. Zhu, S. Hideyoshi, H. Jiang, Y. Matsumura, J.L. Dziki et al., Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications. Acta Biomater. 73, 112–126 (2018). https://doi.org/10.1016/j.actbio.2018.04.003
- H. Yao, F. Wang, H. Chong, J. Wang, Y. Bai et al., A curcumin-modified coordination polymers with ROS scavenging and macrophage phenotype regulating properties for efficient ulcerative colitis treatment. Adv. Sci. 10(19), e2300601 (2023). https://doi.org/10.1002/advs.202300601
- L. Hou, X. Gong, J. Yang, H. Zhang, W. Yang et al., Hybrid-membrane-decorated prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv. Mater. 34(14), e2200389 (2022). https://doi.org/10.1002/adma.202200389
- P.K. Langston, M. Shibata, T. Horng, Metabolism supports macrophage activation. Front. Immunol. 8, 61 (2017). https://doi.org/10.3389/fimmu.2017.00061
- D.E. Lackey, J.M. Olefsky, Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12(1), 15–28 (2016). https://doi.org/10.1038/nrendo.2015.189
- O. Osborn, J.M. Olefsky, The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18(3), 363–374 (2012). https://doi.org/10.1038/nm.2627
- G.J. Koelwyn, E.M. Corr, E. Erbay, K.J. Moore, Regulation of macrophage immunometabolism in atherosclerosis. Nat. Immunol. 19(6), 526–537 (2018). https://doi.org/10.1038/s41590-018-0113-3
- V. Kumar, Targeting macrophage immunometabolism: dawn in the darkness of sepsis. Int. Immunopharmacol. 58, 173–185 (2018). https://doi.org/10.1016/j.intimp.2018.03.005
- S. Galvan-Pena, L.A. O’Neill, Metabolic reprograming in macrophage polarization. Front. Immunol. 5, 420 (2014). https://doi.org/10.3389/fimmu.2014.00420
- M. Xie, Y. Yu, R. Kang, S. Zhu, L. Yang et al., PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016). https://doi.org/10.1038/ncomms13280
- E.M. Palsson-McDermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy et al., Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21(2), 347 (2015). https://doi.org/10.1016/j.cmet.2015.01.017
- K. Mehla, P.K. Singh, Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5(12), 822–834 (2019). https://doi.org/10.1016/j.trecan.2019.10.007
- L.A. O’Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16(9), 553–565 (2016). https://doi.org/10.1038/nri.2016.70
- B.J. Altman, Z.E. Stine, C.V. Dang, From krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16(11), 749 (2016). https://doi.org/10.1038/nrc.2016.114
- M. Trauelsen, T.K. Hiron, D. Lin, J.E. Petersen, B. Breton et al., Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GRP91-mediated gq signaling. Cell Rep. 35(11), 109246 (2021). https://doi.org/10.1016/j.celrep.2021.109246
- M. de Castro Fonseca, C.J. Aguiar, J.A. da Rocha Franco, R.N. Gingold, M.F. Leite, GRP91: expanding the frontiers of Krebs cycle intermediates. Cell Commun. Signal 14, 3 (2016). https://doi.org/10.1186/s12964-016-0126-1
- T. Reimann, D. Buscher, R.A. Hipskind, S. Krautwald, M.L. Lohmann-Matthes et al., Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. J. Immunol. 153(12), 5740–5749 (1994). https://doi.org/10.4049/jimmunol.153.12.5740
- M. Rath, I. Muller, P. Kropf, E.I. Closs, M. Munder, Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front. Immunol. 5, 532 (2014). https://doi.org/10.3389/fimmu.2014.00532
- J.E. Qualls, C. Subramanian, W. Rafi, A.M. Smith, L. Balouzian et al., Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 12(3), 313–323 (2012). https://doi.org/10.1016/j.chom.2012.07.012
- B. Beltran, A. Mathur, M.R. Duchen, J.D. Erusalimsky, S. Moncada, The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. U.S.A. 97(26), 14602–14607 (2000). https://doi.org/10.1073/pnas.97.26.14602
- J. Van den Bossche, J. Baardman, N.A. Otto, S. van der Velden, A.E. Neele et al., Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 17(3), 684–696 (2016). https://doi.org/10.1016/j.celrep.2016.09.008
- E.L. Pearce, E.J. Pearce, Metabolic pathways in immune cell activation and quiescence. Immunity 38(4), 633–643 (2013). https://doi.org/10.1016/j.immuni.2013.04.005
- M. Hesse, M. Modolell, A.C. La Flamme, M. Schito, J.M. Fuentes et al., Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167(11), 6533–6544 (2001). https://doi.org/10.4049/jimmunol.167.11.6533
- J. Van den Bossche, W.H. Lamers, E.S. Koehler, J.M. Geuns, L. Alhonen et al., Pivotal advance: arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. J. Leukoc. Biol. 91(5), 685–699 (2012). https://doi.org/10.1189/jlb.0911453
- N. Sukhbaatar, T. Weichhart, Iron regulation: macrophages in control. Pharmaceuticals 11(4), 137 (2018). https://doi.org/10.3390/ph11040137
- D.J. Kosman, Redox cycling in iron uptake, efflux, and trafficking. J. Biol. Chem. 285(35), 26729–26735 (2010). https://doi.org/10.1074/jbc.R110.113217
- M.P. Soares, I. Hamza, Macrophages and iron metabolism. Immunity 44(3), 492–504 (2016). https://doi.org/10.1016/j.immuni.2016.02.016
- E. Nemeth, M.S. Tuttle, J. Powelson, M.B. Vaughn, A. Donovan et al., Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704), 2090–2093 (2004). https://doi.org/10.1126/science.1104742
- X.B. Liu, N.B. Nguyen, K.D. Marquess, F. Yang, D.J. Haile, Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol. Dis. 35(1), 47–56 (2005). https://doi.org/10.1016/j.bcmd.2005.04.006
- G. Cairo, S. Recalcati, A. Mantovani, M. Locati, Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 32(6), 241–247 (2011). https://doi.org/10.1016/j.it.2011.03.007
- M. Pereira, T.D. Chen, N. Buang, A. Olona, J.H. Ko et al., Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo. Cell Rep. 28(2), 498-511.e495 (2019). https://doi.org/10.1016/j.celrep.2019.06.039
- A.B. Parekh, J.W. Putney Jr., Store-operated calcium channels. Physiol. Rev. 85(2), 757–810 (2005). https://doi.org/10.1152/physrev.00057.2003
- S. Feske, H. Wulff, E.Y. Skolnik, Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291–353 (2015). https://doi.org/10.1146/annurev-immunol-032414-112212
- C. Giorgi, S. Marchi, P. Pinton, The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19(11), 713–730 (2018). https://doi.org/10.1038/s41580-018-0052-8
- P. He, F. Liu, M. Li, M. Ren, X. Wang et al., Mitochondrial calcium ion nanogluttons alleviate periodontitis via controlling mPTPs. Adv. Healthc. Mater. 12(15), e2203106 (2023). https://doi.org/10.1002/adhm.202203106
- O. Krenkel, F. Tacke, Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17(5), 306–321 (2017). https://doi.org/10.1038/nri.2017.11
- D. Vats, L. Mukundan, J.I. Odegaard, L. Zhang, K.L. Smith et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4(1), 13–24 (2006). https://doi.org/10.1016/j.cmet.2006.05.011
- J.T. Hou, K.K. Yu, K. Sunwoo, W.Y. Kim, S. Koo et al., Fluorescent imaging of reactive oxygen and nitrogen species associated with pathophysiological processes. Chem 6(4), 832–866 (2020). https://doi.org/10.1016/j.chempr.2019.12.005
- L.A. O’Neill, E.J. Pearce, Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213(1), 15–23 (2016). https://doi.org/10.1084/jem.20151570
- E. Rendra, V. Riabov, D.M. Mossel, T. Sevastyanova, M.C. Harmsen et al., Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224(2), 242–253 (2019). https://doi.org/10.1016/j.imbio.2018.11.010
- L. Formentini, F. Santacatterina, C. Nunez de Arenas, K. Stamatakis, D. Lopez-Martinez et al., Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep. 19(6), 1202–1213 (2017). https://doi.org/10.1016/j.celrep.2017.04.036
- A.P. West, I.E. Brodsky, C. Rahner, D.K. Woo, H. Erdjument-Bromage et al., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344), 476–480 (2011). https://doi.org/10.1038/nature09973
- M. Hori, K. Nishida, Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc. Res. 81(3), 457–464 (2009). https://doi.org/10.1093/cvr/cvn335
- X. Li, Y. Liu, X. Qi, S. Xiao, Z. Xu et al., Sensitive activatable nanoprobes for real-time ratiometric magnetic resonance imaging of reactive oxygen species and ameliorating inflammation in vivo. Adv. Mater. 34(19), e2109004 (2022). https://doi.org/10.1002/adma.202109004
- B.X. Ma, H. Xu, W.H. Zhuang, Y.N. Wang, G.C. Li et al., Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation. ACS Nano 14(5), 5862–5873 (2020). https://doi.org/10.1021/acsnano.0c01012
- H. Wang, D. Yu, B. Li, Z. Liu, J. Ren et al., Ultrasensitive magnetic resonance imaging of systemic reactive oxygen species in vivo for early diagnosis of sepsis using activatable nanoprobes. Chem. Sci. 10(13), 3770–3778 (2019). https://doi.org/10.1039/c8sc04961k
- B.A. Berkowitz, Oxidative stress measured in vivo without an exogenous contrast agent using quest MRI. J. Magn. Reson. 291, 94–100 (2018). https://doi.org/10.1016/j.jmr.2018.01.013
- E.M. Espinoza, J.J. Roise, I.C. Li, R. Das, N. Murthy, Advances in imaging reactive oxygen species. J. Nucl. Med. 62(4), 457–461 (2021). https://doi.org/10.2967/jnumed.120.245415
- B.J. Crielaard, C.J. Rijcken, L. Quan, S. van der Wal, I. Altintas et al., Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew. Chem. Int. Ed. 51(29), 7254–7258 (2012). https://doi.org/10.1002/anie.201202713
- G. Yang, M. Fan, J. Zhu, C. Ling, L. Wu et al., A multifunctional anti-inflammatory drug that can specifically target activated macrophages, massively deplete intracellular H2O2, and produce large amounts CO for a highly efficient treatment of osteoarthritis. Biomaterials 255, 120155 (2020). https://doi.org/10.1016/j.biomaterials.2020.120155
- A. Bellahcene, M.J. Nokin, V. Castronovo, C. Schalkwijk, Methylglyoxal-derived stress: an emerging biological factor involved in the onset and progression of cancer. Semin. Cancer Biol. 49, 64–74 (2018). https://doi.org/10.1016/j.semcancer.2017.05.010
- Z. Mao, M. Ye, W. Hu, X. Ye, Y. Wang et al., Design of a ratiometric two-photon probe for imaging of hypochlorous acid (HClO) in wounded tissues. Chem. Sci. 9(28), 6035–6040 (2018). https://doi.org/10.1039/c8sc01697f
- M. Yao, Y. Lu, L. Shi, Y. Huang, Q. Zhang et al., A ROS-responsive, self-immolative and self-reporting hydrogen sulfide donor with multiple biological activities for the treatment of myocardial infarction. Bioact. Mater. 9, 168–182 (2022). https://doi.org/10.1016/j.bioactmat.2021.07.011
- H. Feng, Z. Zhang, Q. Meng, H. Jia, Y. Wang et al., Rapid response fluorescence probe enabled in vivo diagnosis and assessing treatment response of hypochlorous acid-mediated rheumatoid arthritis. Adv. Sci. 5(8), 1800397 (2018). https://doi.org/10.1002/advs.201800397
- R. Zhang, J. Zhao, G. Han, Z. Liu, C. Liu et al., Real-time discrimination and versatile profiling of spontaneous reactive oxygen species in living organisms with a single fluorescent probe. J. Am. Chem. Soc. 138(11), 3769–3778 (2016). https://doi.org/10.1021/jacs.5b12848
- C. Zhao, Z. Li, J. Chen, L. Su, J. Wang et al., Site-specific biomimicry of antioxidative melanin formation and its application for acute liver injury therapy and imaging. Adv. Mater. 33(34), e2102391 (2021). https://doi.org/10.1002/adma.202102391
- C. Zhao, J. Chen, J. Ye, Z. Li, L. Su et al., Structural transformative antioxidants for dual-responsive anti-inflammatory delivery and photoacoustic inflammation imaging. Angew. Chem. Int. Ed. 60(26), 14458–14466 (2021). https://doi.org/10.1002/anie.202100873
- X. Ai, Z. Wang, H. Cheong, Y. Wang, R. Zhang et al., Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat. Commun. 10(1), 1087 (2019). https://doi.org/10.1038/s41467-019-09001-7
- Z. Lei, F. Zhang, Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem. Int. Ed. 60(30), 16294–16308 (2021). https://doi.org/10.1002/anie.202007040
- C. Chu, J. Yu, E. Ren, S. Ou, Y. Zhang et al., Multimodal photoacoustic imaging-guided regression of corneal neovascularization: a non-invasive and safe strategy. Adv. Sci. 7(14), 2000346 (2020). https://doi.org/10.1002/advs.202000346
- Y. Ni, H. Liu, D. Dai, X. Mu, J. Xu et al., Chromogenic, fluorescent, and redox sensors for multichannel imaging and detection of hydrogen peroxide in living cell systems. Anal. Chem. 90(17), 10152–10158 (2018). https://doi.org/10.1021/acs.analchem.7b04435
- R. Singh, W. Zhang, X. Liu, B. Zhang, S. Kumar, Waveflex biosensor: MXene-Immobilized W-shaped fiber-based LSPR sensor for highly selective tyramine detection. Opt. Laser technol. 171, 110357 (2024). https://doi.org/10.1016/j.optlastec.2023.110357
- H.C. Gomes, X. Liu, A. Fernandes, C. Moreirinha, R. Singh et al., Laser-induced graphene-based fabry-pérot cavity label-free immunosensors for the quantification of cortisol. Sens. Actuators Rep. 7, 100186 (2024). https://doi.org/10.1016/j.snr.2024.100186
- R. Singh, W. Zhang, X. Liu, B. Zhang, S. Kumar, Humanoid-shaped waveflex biosensor for the detection of food contamination. Biomed. Opt. Express 14(9), 4660–4676 (2023). https://doi.org/10.1364/boe.500311
- G. Zhang, R. Singh, B. Zhang, S. Kumar, G. Li, Waveflex biosensor based on S-tapered and waist-expanded technique for detection of glycosylated hemoglobin. Biomed. Opt. Express 14(11), 6100–6113 (2023). https://doi.org/10.1364/boe.505864
- G. Li, X. Li, R. Singh, G. Zhang, B. Zhang et al., Slide-type waveflex biosensor based on signal enhancement technology for alpha-fetoprotein detection. Opt. Lett. 48(18), 4745–4748 (2023). https://doi.org/10.1364/OL.501864
- R. Singh, S. Kumar, S. Bera, S.K. Bhunia, Trends in using fluorescent mxene quantum dots for selective detection and bioimaging applications: a review. ACS Appl. Nano Mater. 6(21), 19526–19550 (2023). https://doi.org/10.1021/acsanm.3c04491
- R. Singh, Z. Wang, C. Marques, R. Min, B. Zhang et al., Alanine aminotransferase detection using TIT assisted four tapered fiber structure-based LSPR sensor: from healthcare to marine life. Biosens. Bioelectron. 236, 115424 (2023). https://doi.org/10.1016/j.bios.2023.115424
- A.M. Cameron, A. Castoldi, D.E. Sanin, L.J. Flachsmann, C.S. Field et al., Inflammatory macrophage dependence on NAD(+) salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat. Immunol. 20(4), 420–432 (2019). https://doi.org/10.1038/s41590-019-0336-y
- R.M. Palmer, A.G. Ferrige, S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122), 524–526 (1987). https://doi.org/10.1038/327524a0
- E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi et al., Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 127(11), 3684–3685 (2005). https://doi.org/10.1021/ja042967z
- Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126(10), 3357–3367 (2004). https://doi.org/10.1021/ja037944j
- H. Kojima, Y. Urano, K. Kikuchi, T. Higuchi, Y. Hirata et al., Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. 38(21), 3209–3212 (1999). https://doi.org/10.1002/(sici)1521-3773(19991102)38:21%3c3209::aid-anie3209%3e3.0.co;2-6
- M.M. Sadek, M.B.A. Olia, C.J. Nowell, N. Barlow, C.H. Schiesser et al., Characterisation of a novel coumarin-based fluorescent probe for monitoring nitric oxide production in macrophages. Bioorgan. Med. Chem. 25(20), 5743–5748 (2017). https://doi.org/10.1016/j.bmc.2017.08.054
- E.Y. Zhou, H.J. Knox, C.J. Reinhardt, G. Partipilo, M.J. Nilges et al., Near-infrared photoactivatable nitric oxide donors with integrated photoacoustic monitoring. J. Am. Chem. Soc. 140(37), 11686–11697 (2018). https://doi.org/10.1021/jacs.8b05514
- Z. Mao, H. Jiang, Z. Li, C. Zhong, W. Zhang et al., An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide. Chem. Sci. 8(6), 4533–4538 (2017). https://doi.org/10.1039/c7sc00416h
- J. Miao, Y. Huo, Q. Liu, Z. Li, H. Shi et al., A new class of fast-response and highly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats. Biomaterials 107, 33–43 (2016). https://doi.org/10.1016/j.biomaterials.2016.08.032
- Y. Huo, J. Miao, Y. Li, Y. Shi, H. Shi et al., Aromatic primary monoamine-based fast-response and highly specific fluorescent probes for imaging the biological signaling molecule nitric oxide in living cells and organisms. J. Mater. Chem. B 5(13), 2483–2490 (2017). https://doi.org/10.1039/c6tb03382b
- T.W. Shiue, Y.H. Chen, C.M. Wu, G. Singh, H.Y. Chen et al., Nitric oxide turn-on fluorescent probe based on deamination of aromatic primary monoamines. Inorg. Chem. 51(9), 5400–5408 (2012). https://doi.org/10.1021/ic300379u
- A. Fernandez, M. Vendrell, Smart fluorescent probes for imaging macrophage activity. Chem. Soc. Rev. 45(5), 1182–1196 (2016). https://doi.org/10.1039/c5cs00567a
- P. Yuan, X. Xu, D. Hu, Y. Chen, J. Fan et al., Highly sensitive imaging of tumor metastasis based on the targeting and polarization of M2-like macrophages. J. Am. Chem. Soc. 145(14), 7941–7951 (2023). https://doi.org/10.1021/jacs.2c13218
- Y. Huo, J. Miao, J. Fang, H. Shi, J. Wang et al., Aromatic secondary amine-functionalized fluorescent NO probes: improved detection sensitivity for NO and potential applications in cancer immunotherapy studies. Chem. Sci. 10(1), 145–152 (2019). https://doi.org/10.1039/c8sc03694b
- A. Ramesh, S. Kumar, A. Brouillard, D. Nandi, A. Kulkarni, A nitric oxide (NO) nanoreporter for noninvasive real-time imaging of macrophage immunotherapy. Adv. Mater. 32(24), e2000648 (2020). https://doi.org/10.1002/adma.202000648
- R. Radi, Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 288(37), 26464–26472 (2013). https://doi.org/10.1074/jbc.R113.472936
- J. Kim, J. Park, H. Lee, Y. Choi, Y. Kim, A boronate-based fluorescent probe for the selective detection of cellular peroxynitrite. Chem. Commun. 50(66), 9353–9356 (2014). https://doi.org/10.1039/c4cc02943g
- J. Peng, A. Samanta, X. Zeng, S. Han, L. Wang et al., Real-time in vivo hepatotoxicity monitoring through chromophore-conjugated photon-upconverting nanoprobes. Angew. Chem. Int. Ed. 56(15), 4165–4169 (2017). https://doi.org/10.1002/anie.201612020
- C. Wang, W. Fan, Z. Zhang, Y. Wen, L. Xiong et al., Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy. Adv. Mater. 31(49), e1904329 (2019). https://doi.org/10.1002/adma.201904329
- L. Wu, Y. Ishigaki, W. Zeng, T. Harimoto, B. Yin et al., Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat. Commun. 12(1), 6145 (2021). https://doi.org/10.1038/s41467-021-26380-y
- Y. Wang, Y. Zhang, Z. Wang, J. Zhang, R.R. Qiao et al., Optical/MRI dual-modality imaging of M1 macrophage polarization in atherosclerotic plaque with marco-targeted upconversion luminescence probe. Biomaterials 219, 119378 (2019). https://doi.org/10.1016/j.biomaterials.2019.119378
- L. Yuan, W. Lin, Y. Yang, H. Chen, A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J. Am. Chem. Soc. 134(2), 1200–1211 (2012). https://doi.org/10.1021/ja209292b
- M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr. Biol. 24(10), R453–R462 (2014). https://doi.org/10.1016/j.cub.2014.03.034
- G. Morris, M. Gevezova, V. Sarafian, M. Maes, Redox regulation of the immune response. Cell. Mol. Immunol. 19(10), 1079–1101 (2022). https://doi.org/10.1038/s41423-022-00902-0
- J.S. Arthur, S.C. Ley, Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13(9), 679–692 (2013). https://doi.org/10.1038/nri3495
- H. Kamata, S. Honda, S. Maeda, L.F. Chang, H. Hirata et al., Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5), 649–661 (2005). https://doi.org/10.1016/j.cell.2004.12.041
- C. Wu, W. Zhao, X. Zhang, X. Chen, Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophages by suppression of NF-kappaB and iNOS signaling pathways. Acta. Pharm. Sin. B 5(4), 323–329 (2015). https://doi.org/10.1016/j.apsb.2015.01.010
- C. Bogdan, Nitric oxide and the immune response. Nat. Immunol. 2(10), 907–916 (2001). https://doi.org/10.1038/ni1001-907
- V. Toshchakov, B.W. Jones, P.Y. Perera, K. Thomas, M.J. Cody et al., TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3(4), 392–398 (2002). https://doi.org/10.1038/ni774
- J.S. Ma, W.J. Kim, J.J. Kim, T.J. Kim, S.K. Ye et al., Gold nanops attenuate LPS-induced NO production through the inhibition of NF-kappab and IFN-beta/STAT1 pathways in RAW264.7 cells. Nitric Oxide 23(3), 214–219 (2010). https://doi.org/10.1016/j.niox.2010.06.005
- E. Butturini, D. Boriero, A. Carcereri de Prati, S. Mariotto, STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch. Biochem. Biophys. 669, 22–30 (2019). https://doi.org/10.1016/j.abb.2019.05.011
- B. Everts, E. Amiel, G.J. van der Windt, T.C. Freitas, R. Chott et al., Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120(7), 1422–1431 (2012). https://doi.org/10.1182/blood-2012-03-419747
- Q. Zhang, D. Dehaini, Y. Zhang, J. Zhou, X. Chen et al., Neutrophil membrane-coated nanops inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13(12), 1182–1190 (2018). https://doi.org/10.1038/s41565-018-0254-4
- W. Yang, Y. Tao, Y. Wu, X. Zhao, W. Ye et al., Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 10(1), 1076 (2019). https://doi.org/10.1038/s41467-019-09046-8
- A. Gombozhapova, Y. Rogovskaya, V. Shurupov, M. Rebenkova, J. Kzhyshkowska et al., Macrophage activation and polarization in post-infarction cardiac remodeling. J. Biomed. Sci. 24(1), 13 (2017). https://doi.org/10.1186/s12929-017-0322-3
- E.H. Choo, J.H. Lee, E.H. Park, H.E. Park, N.C. Jung et al., Infarcted myocardium-primed dendritic cells improve remodeling and cardiac function after myocardial infarction by modulating the regulatory T cell and macrophage polarization. Circulation 135(15), 1444–1457 (2017). https://doi.org/10.1161/CIRCULATIONAHA.116.023106
- Y. Liu, K. Ai, X. Ji, D. Askhatova, R. Du et al., Comprehensive insights into the multi-antioxidative mechanisms of melanin nanops and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 139(2), 856–862 (2017). https://doi.org/10.1021/jacs.6b11013
- X. Bao, J. Zhao, J. Sun, M. Hu, X. Yang, Polydopamine nanops as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 12(9), 8882–8892 (2018). https://doi.org/10.1021/acsnano.8b04022
- C. Zhang, X. Wang, J. Du, Z. Gu, Y. Zhao, Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment. Adv. Sci. 8(3), 2002797 (2021). https://doi.org/10.1002/advs.202002797
- L. Zhang, Q.C. Yang, S. Wang, Y. Xiao, S.C. Wan et al., Engineering multienzyme-mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity. Adv. Mater. 34(13), e2108174 (2022). https://doi.org/10.1002/adma.202108174
- J. Zhang, B. Gao, B. Ye, Z. Sun, Z. Qian et al., Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv. Mater. 35(11), e2208571 (2023). https://doi.org/10.1002/adma.202208571
- T. Liu, B. Xiao, F. Xiang, J. Tan, Z. Chen et al., Ultrasmall copper-based nanops for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11(1), 2788 (2020). https://doi.org/10.1038/s41467-020-16544-7
- Y. Peng, D. He, X. Ge, Y. Lu, Y. Chai et al., Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater. 6(10), 3109–3124 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.006
- M. Soh, D.W. Kang, H.G. Jeong, D. Kim, D.Y. Kim et al., Ceria-Zirconia nanops as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem. Int. Ed. 56(38), 11399–11403 (2017). https://doi.org/10.1002/anie.201704904
- S.I. Han, S.W. Lee, M.G. Cho, J.M. Yoo, M.H. Oh et al., Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv. Mater. 32(31), e2001566 (2020). https://doi.org/10.1002/adma.202001566
- X. Zhou, Q. Zhou, Z. He, Y. Xiao, Y. Liu et al., ROS balance autoregulating core-shell CeO2@ZIF-8/Au nanoplatform for wound repair. Nano-Micro Lett. 16(1), 156 (2024). https://doi.org/10.1007/s40820-024-01353-0
- J. Kim, H.Y. Kim, S.Y. Song, S.H. Go, H.S. Sohn et al., Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanops for rheumatoid arthritis treatment. ACS Nano 13(3), 3206–3217 (2019). https://doi.org/10.1021/acsnano.8b08785
- J. Mu, C. Li, Y. Shi, G. Liu, J. Zou et al., Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nat. Commun. 13(1), 2513 (2022). https://doi.org/10.1038/s41467-022-29772-w
- X.D. Zhang, X.K. Chen, Y.L. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
- Y.J. Li, S.J.Y. Gao, S.R. Shi, D.X. Xiao, S.L. Peng et al., Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity. Nano-Micro Lett. 13(1), 186 (2021). https://doi.org/10.1007/s40820-021-00711-6
- F. Zhou, M. Li, M. Chen, M. Chen, X. Chen et al., Redox homeostasis strategy for inflammatory macrophage reprogramming in rheumatoid arthritis based on ceria oxide nanozyme-complexed biopolymeric micelles. ACS Nano 17(5), 4358–4372 (2023). https://doi.org/10.1021/acsnano.2c09127
- Y. Guo, Q. Sun, F.G. Wu, Y. Dai, X. Chen, Polyphenol-containing nanops: synthesis, properties, and therapeutic delivery. Adv. Mater. 33(22), e2007356 (2021). https://doi.org/10.1002/adma.202007356
- M.S. Petronek, J.M. Stolwijk, S.D. Murray, E.J. Steinbach, Y. Zakharia et al., Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biol. 42, 101864 (2021). https://doi.org/10.1016/j.redox.2021.101864
- W.L. Wan, Y.J. Lin, H.L. Chen, C.C. Huang, P.C. Shih et al., In situ nanoreactor for photosynthesizing H2 gas to mitigate oxidative stress in tissue inflammation. J. Am. Chem. Soc. 139(37), 12923–12926 (2017). https://doi.org/10.1021/jacs.7b07492
- B. Zhao, L. Zeng, D. Chen, S. Xie, Z. Jin et al., NIR-photocatalytic regulation of arthritic synovial microenvironment. Sci. Adv. 8(40), eabq0959 (2022). https://doi.org/10.1126/sciadv.abq0959
- G. Yang, J.S. Ni, Y. Li, M. Zha, Y. Tu et al., Acceptor engineering for optimized ROS generation facilitates reprogramming macrophages to M1 phenotype in photodynamic immunotherapy. Angew. Chem. Int. Ed. 60(10), 5386–5393 (2021). https://doi.org/10.1002/anie.202013228
- M.W. Cleeter, J.M. Cooper, V.M. Darley-Usmar, S. Moncada, A.H. Schapira, Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345(1), 50–54 (1994). https://doi.org/10.1016/0014-5793(94)00424-2
- S. Theivendran, Z. Gu, J. Tang, Y. Yang, H. Song et al., Nanostructured organosilica nitric oxide donors intrinsically regulate macrophage polarization with antitumor effect. ACS Nano 16(7), 10943–10957 (2022). https://doi.org/10.1021/acsnano.2c03348
- M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
- K. Sridhar, B.S. Inbaraj, B.H. Chen, Recent advances on nanop based strategies for improving carotenoid stability and biological activity. Antioxidants 10(5), 713 (2021). https://doi.org/10.3390/antiox10050713
- D. Zhong, Z. Du, M. Zhou, Algae: a natural active material for biomedical applications. View 2(4), 20200189 (2021). https://doi.org/10.1002/viw.20200189
- H. Chen, Y. Guo, Z. Zhang, W. Mao, C. Shen et al., Symbiotic algae-bacteria dressing for producing hydrogen to accelerate diabetic wound healing. Nano Lett. 22(1), 229–237 (2022). https://doi.org/10.1021/acs.nanolett.1c03693
- W. Geng, X. Liu, B. Tao, Y. He, K. Li et al., Nitric oxide scavenging and hydrogen sulfide production synergistically treat rheumatoid arthritis. Adv. Healthc. Mater. 12(4), 2202380 (2023). https://doi.org/10.1002/adhm.202202380
- Y. Yan, A. Lu, Y. Dou, Z. Zhang, X.Y. Wang et al., Nanomedicines reprogram synovial macrophages by scavenging nitric oxide and silencing CA9 in progressive osteoarthritis. Adv. Sci. 10(11), 2207490 (2023). https://doi.org/10.1002/advs.202207490
- F. Zhou, J. Mei, S. Yang, X. Han, H. Li et al., Modified ZIF-8 nanops attenuate osteoarthritis by reprogramming the metabolic pathway of synovial macrophages. ACS Appl. Mater. Interfaces 12(2), 2009–2022 (2020). https://doi.org/10.1021/acsami.9b16327
- M. He, L. Sun, X. Fu, S.P. McDonough, C.C. Chu, Biodegradable amino acid-based poly(ester amine) with tunable immunomodulating properties and their in vitro and in vivo wound healing studies in diabetic rats’ wounds. Acta Biomater. 84, 114–132 (2019). https://doi.org/10.1016/j.actbio.2018.11.053
- X. Li, X. Wang, Q. Liu, J. Yan, D. Pan et al., ROS-responsive boronate-stabilized polyphenol-poloxamer 188 assembled dexamethasone nanodrug for macrophage repolarization in osteoarthritis treatment. Adv. Healthc. Mater. 10(20), 2100883 (2021). https://doi.org/10.1002/adhm.202100883
- L. Valls-Lacalle, I. Barba, E. Miro-Casas, J.J. Alburquerque-Bejar, M. Ruiz-Meana et al., Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc. Res. 109(3), 374–384 (2016). https://doi.org/10.1093/cvr/cvv279
- L. Davenport Huyer, S. Mandla, Y. Wang, S.B. Campbell, B. Yee et al., Macrophage immunomodulation through new polymers that recapitulate functional effects of itaconate as a power house of innate immunity. Adv. Funct. Mater. 31(6), 2003341 (2020). https://doi.org/10.1002/adfm.202003341
- J.R. Nakkala, Y. Yao, Z. Zhai, Y. Duan, D. Zhang et al., Dimethyl itaconate-loaded nanofibers rewrite macrophage polarization, reduce inflammation, and enhance repair of myocardic infarction. Small 17(17), 2006992 (2021). https://doi.org/10.1002/smll.202006992
- F. Zhu, L. Zi, P. Yang, Y. Wei, R. Zhong et al., Efficient iron and ROS nanoscavengers for brain protection after intracerebral hemorrhage. ACS Appl. Mater. Interfaces 13(8), 9729–9738 (2021). https://doi.org/10.1021/acsami.1c00491
- X. Dong, P. Wu, L. Yan, K. Liu, W. Wei et al., Oriented nanofibrous P(MMD-co-LA)/deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials 280, 121288 (2022). https://doi.org/10.1016/j.biomaterials.2021.121288
- J. Han, Y.S. Kim, M.Y. Lim, H.Y. Kim, S. Kong et al., Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair. ACS Nano 12(2), 1959–1977 (2018). https://doi.org/10.1021/acsnano.7b09107
- Y. Li, X. Teng, C. Yang, Y. Wang, L. Wang et al., Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy. Angew. Chem. Int. Ed. 60(10), 5083–5090 (2021). https://doi.org/10.1002/anie.202010391
- L. Chen, L. Zhang, H. Zhang, X. Sun, D. Liu et al., Programmable immune activating electrospun fibers for skin regeneration. Bioactive. Mater. 6(10), 3218–3230 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.022
- T.T. Tang, B. Wang, M. Wu, Z.L. Li, Y. Feng et al., Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci. Adv. 6(33), eaaz0748 (2020). https://doi.org/10.1126/sciadv.aaz0748
- H. Kang, K. Zhang, D.S.H. Wong, F. Han, B. Li et al., Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization. Biomaterials 178, 681–696 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.007
- X. Lei, G. Tan, Y. Wang, L. Chen, Y. Cao et al., Mitochondrial calcium nanoregulators reverse the macrophage proinflammatory phenotype through restoring mitochondrial calcium homeostasis for the treatment of osteoarthritis. Int. J. Nanomedicine 18, 1469–1489 (2023). https://doi.org/10.2147/IJN.S402170
- J. Wu, M. Wang, Y. Wu, J. Liu, W. Zhi et al., Coupling BCP ceramics with micro-vibration stimulation field for cascade amplification from immune activation to bone regeneration. Adv. Funct. Mater. 33, 2215079 (2023). https://doi.org/10.1002/adfm.202215079
- N. Feng, L. Liang, M. Fan, Y. Du, C. Chen et al., Treating autoimmune inflammatory diseases with an siERN1-nanoprodrug that mediates macrophage polarization and blocks Toll-like receptor signaling. ACS Nano 15(10), 15874–15891 (2021). https://doi.org/10.1021/acsnano.1c03726
- N. Li, Q. Du, Z. Jing, L. Xue, W. He et al., Study of the effects of Au@ZIF-8 on metabolism in mouse RAW 264.7 macrophages. Biomater. Adv. 138, 212800 (2022). https://doi.org/10.1016/j.bioadv.2022.212800
- H. Gu, Y. Zhu, J. Yang, R. Jiang, Y. Deng et al., Liver-inspired polyetherketoneketone scaffolds simulate regenerative signals and mobilize anti-inflammatory reserves to reprogram macrophage metabolism for boosted osteoporotic osseointegration. Adv. Sci. 10(25), e2302136 (2023). https://doi.org/10.1002/advs.202302136
- Y. Sang, Q. Deng, F. Cao, Z. Liu, Y. You et al., Remodeling macrophages by an iron nanotrap for tumor growth suppression. ACS Nano 15(12), 19298–19309 (2021). https://doi.org/10.1021/acsnano.1c05392
- Y. Yang, Q. Tian, S. Wu, Y. Li, K. Yang et al., Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanops for cancer iron therapy. Biomaterials 271, 120739 (2021). https://doi.org/10.1016/j.biomaterials.2021.120739
- C.X. Li, Y. Zhang, X. Dong, L. Zhang, M.D. Liu et al., Artificially reprogrammed macrophages as tumor-tropic immunosuppression-resistant biologics to realize therapeutics production and immune activation. Adv. Mater. 31(15), e1807211 (2019). https://doi.org/10.1002/adma.201807211
- M.H. Oh, I.H. Sun, L. Zhao, R.D. Leone, I.M. Sun et al., Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130(7), 3865–3884 (2020). https://doi.org/10.1172/jci131859
- X.B. Shulan Han, Y. Zou, L. Wang, Y. Li, L. Yang et al., D-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci. Adv. 9(29), eadg2697 (2023). https://doi.org/10.1126/sciadv.adg2697
- J. Zhao, Z. Tian, S. Zhao, D. Feng, Z. Guo et al., Insights into the effect of catalytic intratumoral lactate depletion on metabolic reprogramming and immune activation for antitumoral activity. Adv. Sci. 10(4), e2204808 (2023). https://doi.org/10.1002/advs.202204808
- Z.Y. Han, C. Zhang, J.X. An, Y.Z. Wang, J.Y. Qiao et al., Metabolic regulation of tumor microenvironment with biohybrid bacterial bioreactor for enhanced cancer chemo-immunotherapy. Adv. Funct. Mater. 33, 2302728 (2023). https://doi.org/10.1002/adfm.202302728
- G.M. Tannahill, A.M. Curtis, J. Adamik, E.M. Palsson-McDermott, A.F. McGettrick et al., Succinate is an inflammatory signal that induces IL-1β through HIF-1alpha. Nature 496(7444), 238–242 (2013). https://doi.org/10.1038/nature11986
- M.P. Murphy, L.A.J. O’Neill, Krebs cycle reimagined: The emerging roles of succinate and itaconate as signal transducers. Cell 174(4), 780–784 (2018). https://doi.org/10.1016/j.cell.2018.07.030
- E.T. Chouchani, V.R. Pell, E. Gaude, D. Aksentijevic, S.Y. Sundier et al., Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527), 431–435 (2014). https://doi.org/10.1038/nature13909
- C.L. Strelko, W. Lu, F.J. Dufort, T.N. Seyfried, T.C. Chiles et al., Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133(41), 16386–16389 (2011). https://doi.org/10.1021/ja2070889
- A. Michelucci, T. Cordes, J. Ghelfi, A. Pailot, N. Reiling et al., Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. U.S.A. 110(19), 7820–7825 (2013). https://doi.org/10.1073/pnas.1218599110
- W. Qin, K. Qin, Y. Zhang, W. Jia, Y. Chen et al., S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol. 15(10), 983–991 (2019). https://doi.org/10.1038/s41589-019-0323-5
- W. Qin, Y. Zhang, H. Tang, D. Liu, Y. Chen et al., Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages. J. Am. Chem. Soc. 142(25), 10894–10898 (2020). https://doi.org/10.1021/jacs.9b11962
- P. Sun, Z. Zhang, B. Wang, C. Liu, C. Chen et al., A genetically encoded fluorescent biosensor for detecting itaconate with subcellular resolution in living macrophages. Nat. Commun. 13(1), 6562 (2022). https://doi.org/10.1038/s41467-022-34306-5
- A. Hooftman, L.A.J. O’Neill, The immunomodulatory potential of the metabolite itaconate. Trends Immunol. 40(8), 687–698 (2019). https://doi.org/10.1016/j.it.2019.05.007
- V. Lampropoulou, A. Sergushichev, M. Bambouskova, S. Nair, E.E. Vincent et al., Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24(1), 158–166 (2016). https://doi.org/10.1016/j.cmet.2016.06.004
- L.A.J. O’Neill, M.N. Artyomov, Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19(5), 273–281 (2019). https://doi.org/10.1038/s41577-019-0128-5
- E.L. Mills, D.G. Ryan, H.A. Prag, D. Dikovskaya, D. Menon et al., Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556(7699), 113–117 (2018). https://doi.org/10.1038/nature25986
- M. Bambouskova, L. Gorvel, V. Lampropoulou, A. Sergushichev, E. Loginicheva et al., Electrophilic properties of itaconate and derivatives regulate the Ikappabzeta-ATF3 inflammatory axis. Nature 556(7702), 501–504 (2018). https://doi.org/10.1038/s41586-018-0052-z
- L. Ni, Z. Lin, S. Hu, Y. Shi, Z. Jiang et al., Itaconate attenuates osteoarthritis by inhibiting STING/NF-kappaB axis in chondrocytes and promoting M2 polarization in macrophages. Biochem. Pharmacol. 198, 114935 (2022). https://doi.org/10.1016/j.bcp.2022.114935
- H. Yu, P. Ren, X. Pan, X. Zhang, J. Ma et al., Intracellular delivery of itaconate by metal-organic framework-anchored hydrogel microspheres for osteoarthritis therapy. Pharmaceutics 15(3), 724 (2023). https://doi.org/10.3390/pharmaceutics15030724
- Q. Ding, T. Sun, W. Su, X. Jing, B. Ye et al., Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: a stepwise countermeasure for diabetic skin wound healing. Adv. Healthc. Mater. 11(12), e2102791 (2022). https://doi.org/10.1002/adhm.202102791
- V.L. Nelson, H.C.B. Nguyen, J.C. Garcia-Canaveras, E.R. Briggs, W.Y. Ho et al., PPARgamma is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes Dev. 32(15–16), 1035–1044 (2018). https://doi.org/10.1101/gad.312355.118
- M.C. Runtsch, S. Angiari, A. Hooftman, R. Wadhwa, Y. Zhang et al., Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab. 34(3), 487–50.e18 (2022). https://doi.org/10.1016/j.cmet.2022.02.002
- V.C. Ganta, M.H. Choi, A. Kutateladze, T.E. Fox, C.R. Farber et al., A microRNA93-interferon regulatory factor-9-immunoresponsive gene-1-itaconic acid pathway modulates M2-like macrophage polarization to revascularize ischemic muscle. Circulation 135(24), 2403–2425 (2017). https://doi.org/10.1161/CIRCULATIONAHA.116.025490
- T. Ganz, E. Nemeth, Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15(8), 500–510 (2015). https://doi.org/10.1038/nri3863
- S. Recalcati, M. Locati, A. Marini, P. Santambrogio, F. Zaninotto et al., Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol. 40(3), 824–835 (2010). https://doi.org/10.1002/eji.200939889
- C. Pfeifhofer-Obermair, P. Tymoszuk, V. Petzer, G. Weiss, M. Nairz, Iron in the tumor microenvironment-connecting the dots. Front. Oncol. 8, 549 (2018). https://doi.org/10.3389/fonc.2018.00549
- M. Jung, C. Mertens, B. Brune, Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 220(2), 295–304 (2015). https://doi.org/10.1016/j.imbio.2014.09.011
- S. Recalcati, M. Locati, E. Gammella, P. Invernizzi, G. Cairo, Iron levels in polarized macrophages: regulation of immunity and autoimmunity. Autoimmun. Rev. 11(12), 883–889 (2012). https://doi.org/10.1016/j.autrev.2012.03.003
- A.T. Aron, A.G. Reeves, C.J. Chang, Activity-based sensing fluorescent probes for iron in biological systems. Curr. Opin. Chem. Biol. 43, 113–118 (2018). https://doi.org/10.1016/j.cbpa.2017.12.010
- W. Xing, H. Xu, H. Ma, S.A.A. Abedi, S. Wang et al., A PET-based fluorescent probe for monitoring labile Fe(II) pools in macrophage activations and ferroptosis. Chem. Commun. 58(18), 2979–2982 (2022). https://doi.org/10.1039/d1cc06611k
- H.Y. Lin, R. Weissleder, E. Corradini, J.L. Babitt, Y. Xia et al., Method for measuring macrophage iron efflux in vitro and in vivo using magnetic resonance imaging. Blood 112(11), 4636–4636 (2008). https://doi.org/10.1182/blood.V112.11.4636.4636
- A. Leftin, N. Ben-Chetrit, J.A. Joyce, J.A. Koutcher, Imaging endogenous macrophage iron deposits reveals a metabolic biomarker of polarized tumor macrophage infiltration and response to CSF1R breast cancer immunotherapy. Sci. Rep. 9(1), 857 (2019). https://doi.org/10.1038/s41598-018-37408-7
- A. Biesemeier, O. Eibl, S. Eswara, J.N. Audinot, T. Wirtz et al., Transition metals and trace elements in the retinal pigment epithelium and choroid: correlative ultrastructural and chemical analysis by analytical electron microscopy and nano-secondary ion mass spectrometry. Metallomics 10(2), 296–308 (2018). https://doi.org/10.1039/c7mt00259a
- F. Penen, J. Malherbe, M.P. Isaure, D. Dobritzsch, I. Bertalan et al., Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS. J. Trace Elem. Med. Biol. 37, 62–68 (2016). https://doi.org/10.1016/j.jtemb.2016.04.014
- J. Lovric, N. Najafinobar, M.E. Kurczy, O. De Castro, A. Biesemeier et al., Correlative high-resolution imaging of iron uptake in lung macrophages. Anal. Chem. 94(37), 12798–12806 (2022). https://doi.org/10.1021/acs.analchem.2c02675
- Y. Zhou, K.T. Que, Z. Zhang, Z.J. Yi, P.X. Zhao et al., Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med. 7(8), 4012–4022 (2018). https://doi.org/10.1002/cam4.1670
- H. She, S. Xiong, M. Lin, E. Zandi, C. Giulivi et al., Iron activates NF-kappaB in kupffer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 283(3), G719-726 (2002). https://doi.org/10.1152/ajpgi.00108.2002
- P. Handa, S. Thomas, V. Morgan-Stevenson, B.D. Maliken, E. Gochanour et al., Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. J. Leukoc. Biol. 105(5), 1015–1026 (2019). https://doi.org/10.1002/JLB.3A0318-108R
- H. Kim, J.Y. Hong, W.J. Jeon, J. Lee, Y.J. Lee et al., Melittin regulates iron homeostasis and mediates macrophage polarization in rats with lumbar spinal stenosis. Biomed. Pharmacother. 156, 113776 (2022). https://doi.org/10.1016/j.biopha.2022.113776
- E. Patino, D. Bhatia, S.Z. Vance, A. Antypiuk, R. Uni et al., Iron therapy mitigates chronic kidney disease progression by regulating intracellular iron status of kidney macrophages. JCI Insight 8(1), e159235 (2023). https://doi.org/10.1172/jci.insight.159235
- D.G. DeNardo, B. Ruffell, Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19(6), 369–382 (2019). https://doi.org/10.1038/s41577-019-0127-6
- H. Zhao, R. Liu, L. Wang, F. Tang, W. Chen et al., Artificial macrophage with hierarchical nanostructure for biomimetic reconstruction of antitumor immunity. Nano-Micro Lett. 15(1), 216 (2023). https://doi.org/10.1007/s40820-023-01193-4
- S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi et al., Iron oxide nanops inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11(11), 986–994 (2016). https://doi.org/10.1038/nnano.2016.168
- Z. Liu, W. Jiang, J. Nam, J.J. Moon, B.Y.S. Kim, Immunomodulating nanomedicine for cancer therapy. Nano Lett. 18(11), 6655–6659 (2018). https://doi.org/10.1021/acs.nanolett.8b02340
- Z. Liu, J. Qiao, T. Nagy, M.P. Xiong, ROS-triggered degradable iron-chelating nanogels: safely improving iron elimination in vivo. J. Control. Release 283, 84–93 (2018). https://doi.org/10.1016/j.jconrel.2018.05.025
- R. Agoro, M. Taleb, V.F.J. Quesniaux, C. Mura, Cell iron status influences macrophage polarization. PLoS ONE 13(5), e0196921 (2018). https://doi.org/10.1371/journal.pone.0196921
- H.N. Wilkinson, E.R. Roberts, A.R. Stafford, K.L. Banyard, P. Matteucci et al., Tissue iron promotes wound repair via M2 macrophage polarization and the chemokine (C-C Motif) ligands 17 and 22. Am. J. Pathol. 189(11), 2196–2208 (2019). https://doi.org/10.1016/j.ajpath.2019.07.015
- Z.S. Gan, Q.Q. Wang, J.H. Li, X.L. Wang, Y.Z. Wang et al., Iron reduces M1 macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1. Mediators Inflamm. 2017, 8570818 (2017). https://doi.org/10.1155/2017/8570818
- D. Li, C. Beisswenger, C. Herr, R.M. Schmid, R.L. Gallo et al., Expression of the antimicrobial peptide cathelicidin in myeloid cells is required for lung tumor growth. Oncogene 33(21), 2709–2716 (2014). https://doi.org/10.1038/onc.2013.248
- X. Zhou, W. Yang, J. Li, Ca2+- and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages. J. Biol. Chem. 281(42), 31337–31347 (2006). https://doi.org/10.1074/jbc.M602739200
- E.Y. Moon, S. Pyo, Lipopolysaccharide stimulates Epac1-mediated Rap1/NF-kappaB pathway in Raw 264.7 murine macrophages. Immunol. Lett. 110(2), 121–125 (2007). https://doi.org/10.1016/j.imlet.2007.04.002
- L.C. Denlinger, P.L. Fisette, K.A. Garis, G. Kwon, A. Vazquez-Torres et al., Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J. Biol. Chem. 271(1), 337–342 (1996). https://doi.org/10.1074/jbc.271.1.337
- Y. Ye, X. Huang, Y. Zhang, X. Lai, X. Wu et al., Calcium influx blocked by SK&K 96365 modulates the LPS plus IFN-gamma-induced inflammatory response in murine peritoneal macrophages. Int. Immunopharmacol. 12(2), 384–393 (2012). https://doi.org/10.1016/j.intimp.2011.12.011
- S.Y. Ji, H. Lee, H. Hwangbo, S.H. Hong, H.J. Cha et al., A novel peptide oligomer of bacitracin induces M1 macrophage polarization by facilitating Ca2+ influx. Nutrients 12(6), 1603 (2020). https://doi.org/10.3390/nu12061603
- J. Mo, Y. Xu, X. Wang, W. Wei, J. Zhao, Exploiting the protein corona: coating of black phosphorus nanosheets enables macrophage polarization via calcium influx. Nanoscale 12(3), 1742–1748 (2020). https://doi.org/10.1039/c9nr08570j
- A. Chauhan, Y. Sun, P. Sukumaran, F.O. Quenum Zangbede, C.N. Jondle et al., M1 macrophage polarization is dependent on TRPC1-mediated calcium entry. iScience 8, 85–102 (2018). https://doi.org/10.1016/j.isci.2018.09.014
- Z. Yin, T. Ma, Y. Lin, X. Lu, C. Zhang et al., IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J. Cell. Biochem. 119(11), 9419–9432 (2018). https://doi.org/10.1002/jcb.27259
- N. Ding, Y. Wang, C. Dou, F. Liu, G. Guan et al., Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway. J. Cell. Physiol. 234(6), 8788–8796 (2019). https://doi.org/10.1002/jcp.27537
- H. Jiang, M.B. Harris, P. Rothman, IL-4/IL-13 signaling beyond JAK/STAT. J. Allergy Clin. Immunol. 105(6 Pt 1), 1063–1070 (2000). https://doi.org/10.1067/mai.2000.107604
- G. Nappo, F. Handle, F.R. Santer, R.V. McNeill, R.I. Seed et al., The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis 6(5), e342 (2017). https://doi.org/10.1038/oncsis.2017.23
- S. Su, Q. Zhao, C. He, D. Huang, J. Liu et al., miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat. Commun. 6, 8523 (2015). https://doi.org/10.1038/ncomms9523
- F.O. Martinez, L. Helming, R. Milde, A. Varin, B.N. Melgert et al., Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121(9), e57-69 (2013). https://doi.org/10.1182/blood-2012-06-436212
- P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1), 14–20 (2014). https://doi.org/10.1016/j.immuni.2014.06.008
- K. Nelms, A.D. Keegan, J. Zamorano, J.J. Ryan, W.E. Paul, The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999). https://doi.org/10.1146/annurev.immunol.17.1.701
- S.C. Huang, A.M. Smith, B. Everts, M. Colonna, E.L. Pearce et al., Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45(4), 817–830 (2016). https://doi.org/10.1016/j.immuni.2016.09.016
- A.S. Divakaruni, W.Y. Hsieh, L. Minarrieta, T.N. Duong, K.K.O. Kim et al., Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 28(3), 490–50.e37 (2018). https://doi.org/10.1016/j.cmet.2018.06.001
- J. Lundin, E. Kimby, L. Bergmann, T. Karakas, H. Mellstedt et al., Interleukin 4 therapy for patients with chronic lymphocytic leukaemia: a phase I/II study. Br. J. Haematol. 112(1), 155–160 (2001). https://doi.org/10.1046/j.1365-2141.2001.02525.x
- Y. Qian, L. Li, Y. Song, L. Dong, P. Chen et al., Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials 164, 22–37 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.038
- X. Ge, J. Hu, Y. Peng, Z. Zeng, D. He et al., Atmosphere-inspired multilayered nanoarmor with modulable protection and delivery of interleukin-4 for inflammatory microenvironment modulation. Biomaterials 301, 122254 (2023). https://doi.org/10.1016/j.biomaterials.2023.122254
- V. Spieler, M.G. Ludwig, J. Dawson, B. Tigani, A. Littlewood-Evans et al., Targeting interleukin-4 to the arthritic joint. J. Control. Release 326, 172–180 (2020). https://doi.org/10.1016/j.jconrel.2020.07.005
- R. Lang, D. Patel, J.J. Morris, R.L. Rutschman, P.J. Murray, Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169(5), 2253–2263 (2002). https://doi.org/10.4049/jimmunol.169.5.2253
- P.J. Murray, The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc. Natl. Acad. Sci. U.S.A. 102(24), 8686–8691 (2005). https://doi.org/10.1073/pnas.0500419102
- W. Ouyang, S. Rutz, N.K. Crellin, P.A. Valdez, S.G. Hymowitz, Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 29, 71–109 (2011). https://doi.org/10.1146/annurev-immunol-031210-101312
- J. Patel, IL-10 reprogramming of metabolism in macrophages through mitophagy. Cardiovasc. Res. 113(11), e40–e41 (2017). https://doi.org/10.1093/cvr/cvx144
- K. Minton, Immune regulation: IL-10 targets macrophage metabolism. Nat. Rev. Immunol. 17(6), 345 (2017). https://doi.org/10.1038/nri.2017.57
- C.J. Huang, B.R. Stevens, R.B. Nielsen, P.N. Slovin, X. Fang et al., Interleukin-10 inhibition of nitric oxide biosynthesis involves suppression of CAT-2 transcription. Nitric Oxide 6(1), 79–84 (2002). https://doi.org/10.1006/niox.2001.0402
- W.C. Huang, Y.S. Lin, C.Y. Wang, C.C. Tsai, H.C. Tseng et al., Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology 128(1 Suppl), e275-286 (2009). https://doi.org/10.1111/j.1365-2567.2008.02959.x
- T. Schreiber, S. Ehlers, L. Heitmann, A. Rausch, J. Mages et al., Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J. Immunol. 183(2), 1301–1312 (2009). https://doi.org/10.4049/jimmunol.0803567
- M. Jung, Y. Ma, R.P. Iyer, K.Y. DeLeon-Pennell, A. Yabluchanskiy et al., IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res. Cardiol. 112(3), 33 (2017). https://doi.org/10.1007/s00395-017-0622-5
- O.P.B. Wiklander, M.A. Brennan, J. Lotvall, X.O. Breakefield, S. El Andaloussi, Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11(492), eaav8521 (2019). https://doi.org/10.1126/scitranslmed.aav8521
- D. Li, K. Chen, H. Tang, S. Hu, L. Xin et al., A logic-based diagnostic and therapeutic hydrogel with multi-stimuli responsiveness to orchestrate diabetic bone regeneration. Adv. Mater. 34(11), e2108430 (2021). https://doi.org/10.1002/adma.202108430
- R. Stienstra, R.T. Netea-Maier, N.P. Riksen, L.A.B. Joosten, M.G. Netea, Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab. 26(1), 142–156 (2017). https://doi.org/10.1016/j.cmet.2017.06.001
- M. Munder, K. Eichmann, M. Modolell, Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160(11), 5347–5354 (1998). https://doi.org/10.4049/jimmunol.160.11.5347
- N. Hannemann, S. Cao, D. Eriksson, A. Schnelzer, J. Jordan et al., Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. J. Clin. Inves
References
K. Sadtler, A. Singh, M.T. Wolf, X. Wang, D.M. Pardoll et al., Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 16040–16056 (2016). https://doi.org/10.1038/natrevmats.2016.40
R. Sridharan, A.R. Cameron, D.J. Kelly, C.J. Kearney, F.J. O’Brien, Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater. Today 18(6), 313–325 (2015). https://doi.org/10.1016/j.mattod.2015.01.019
T.A. Wynn, A. Chawla, J.W. Pollard, Macrophage biology in development, homeostasis and disease. Nature 496(7446), 445–455 (2013). https://doi.org/10.1038/nature12034
L. Parisi, E. Gini, D. Baci, M. Tremolati, M. Fanuli et al., Macrophage polarization in chronic inflammatory diseases: Killers or builders? J. Immunol. Res. 2018, 8917804 (2018). https://doi.org/10.1155/2018/8917804
D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969 (2008). https://doi.org/10.1038/nri2448
A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12), 677–686 (2004). https://doi.org/10.1016/j.it.2004.09.015
J.J. O’Shea, P.J. Murray, Cytokine signaling modules in inflammatory responses. Immunity 28(4), 477–487 (2008). https://doi.org/10.1016/j.immuni.2008.03.002
A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini, M. Taghadosi, S.A. Esmaeili et al., Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233(9), 6425–6440 (2018). https://doi.org/10.1002/jcp.26429
S. Gordon, F.O. Martinez, Alternative activation of macrophages: mechanism and functions. Immunity 32(5), 593–604 (2010). https://doi.org/10.1016/j.immuni.2010.05.007
W. Xu, X. Zhao, M.R. Daha, C. van Kooten, Reversible differentiation of pro- and anti-inflammatory macrophages. Mol. Immunol. 53(3), 179–186 (2013). https://doi.org/10.1016/j.molimm.2012.07.005
E.L. Mills, B. Kelly, A. Logan, A.S.H. Costa, M. Varma et al., Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167(2), 457-470.e413 (2016). https://doi.org/10.1016/j.cell.2016.08.064
D.G. Ryan, L.A.J. O’Neill, Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020). https://doi.org/10.1146/annurev-immunol-081619-104850
E.L. Mills, B. Kelly, L.A.J. O’Neill, Mitochondria are the powerhouses of immunity. Nat. Immunol. 18(5), 488–498 (2017). https://doi.org/10.1038/ni.3704
J. Van den Bossche, L.A. O’Neill, D. Menon, Macrophage immunometabolism: where are we (going)? Trends Immunol. 38(6), 395–406 (2017). https://doi.org/10.1016/j.it.2017.03.001
E.L. Mills, L.A. O’Neill, Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46(1), 13–21 (2016). https://doi.org/10.1002/eji.201445427
A.K. Jha, S.C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova et al., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3), 419–430 (2015). https://doi.org/10.1016/j.immuni.2015.02.005
A.M. Kabat, E.J. Pearce, Inflammation by way of macrophage metabolism. Science 356(6337), 488–489 (2017). https://doi.org/10.1126/science.aan2691
I. Vitale, G. Manic, L.M. Coussens, G. Kroemer, L. Galluzzi, Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30(1), 36–50 (2019). https://doi.org/10.1016/j.cmet.2019.06.001
J. Li, X. Jiang, H. Li, M. Gelinsky, Z. Gu, Tailoring materials for modulation of macrophage fate. Adv. Mater. 33(12), e2004172 (2021). https://doi.org/10.1002/adma.202004172
L. Zhang, X. Chen, P. Cai, H. Sun, S. Shen et al., Reprogramming mitochondrial metabolism in synovial macrophages of early osteoarthritis by a camouflaged meta-defensome. Adv. Mater. 34(30), e2202715 (2022). https://doi.org/10.1002/adma.202202715
L. Wang, D. Wang, T. Zhang, Y. Ma, X. Tong et al., The role of immunometabolism in macrophage polarization and its impact on acute lung injury/acute respiratory distress syndrome. Front. Immunol. 14, 1117548 (2023). https://doi.org/10.3389/fimmu.2023.1117548
S. Cai, M. Zhao, B. Zhou, A. Yoshii, D. Bugg et al., Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J. Clin. Invest. 133(4), e159498 (2023). https://doi.org/10.1172/JCI159498
S.A. Eming, P.J. Murray, E.J. Pearce, Metabolic orchestration of the wound healing response. Cell Metab. 33(9), 1726–1743 (2021). https://doi.org/10.1016/j.cmet.2021.07.017
A. Castegna, R. Gissi, A. Menga, M. Montopoli, M. Favia et al., Pharmacological targets of metabolism in disease: opportunities from macrophages. Pharmacol. Ther. 210, 107521 (2020). https://doi.org/10.1016/j.pharmthera.2020.107521
P. Hou, J. Fang, Z. Liu, Y. Shi, M. Agostini et al., Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 14(10), 691 (2023). https://doi.org/10.1038/s41419-023-06206-z
W.K.E. Ip, N. Hoshi, D.S. Shouval, S. Snapper, R. Medzhitov, Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356(6337), 513–519 (2017). https://doi.org/10.1126/science.aal3535
R.A. Franklin, W. Liao, A. Sarkar, M.V. Kim, M.R. Bivona et al., The cellular and molecular origin of tumor-associated macrophages. Science 344(6186), 921–925 (2014). https://doi.org/10.1126/science.1252510
M. Li, Y. Yang, L. Xiong, P. Jiang, J. Wang et al., Metabolism, metabolites, and macrophages in cancer. J. Hematol. Oncol. 16(1), 80 (2023). https://doi.org/10.1186/s13045-023-01478-6
D. Kim, Y.W. Wu, Q.Y. Li, Y.K. Oh, Nanop-mediated lipid metabolic reprogramming of T cells in tumor microenvironments for immunometabolic therapy. Nano-Micro Lett. 13(1), 31 (2021). https://doi.org/10.1007/s40820-020-00555-6
T. Hou, T. Wang, W. Mu, R. Yang, S. Liang et al., Nanop-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nano-Micro Lett. 13(1), 6 (2020). https://doi.org/10.1007/s40820-020-00531-0
J. Mao, L. Chen, Z. Cai, S. Qian, Z. Liu et al., Advanced biomaterials for regulating polarization of macrophages in wound healing. Adv. Funct. Mater. 32(12), 2111003 (2021). https://doi.org/10.1002/adfm.202111003
E. Peled, A. Sosnik, Amphiphilic galactomannan nanops trigger the alternative activation of murine macrophages. J. Control. Release 339, 473–483 (2021). https://doi.org/10.1016/j.jconrel.2021.10.017
J. Tang, S. Baxter, A. Menon, A. Alaarg, B.L. Sanchez-Gaytan et al., Immune cell screening of a nanop library improves atherosclerosis therapy. Proc. Natl. Acad. Sci. U.S.A. 113(44), E6731–E6740 (2016). https://doi.org/10.1073/pnas.1609629113
H.J. Jeong, R.J. Yoo, J.K. Kim, M.H. Kim, S.H. Park et al., Macrophage cell tracking pet imaging using mesoporous silica nanops via in vivo bioorthogonal F-18 labeling. Biomaterials 199, 32–39 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.043
S.B. Lee, H.W. Lee, T.D. Singh, Y. Li, S.K. Kim et al., Visualization of macrophage recruitment to inflammation lesions using highly sensitive and stable radionuclide-embedded gold nanops as a nuclear bio-imaging platform. Theranostics 7(4), 926–934 (2017). https://doi.org/10.7150/thno.17131
J. Toczek, P. Boodagh, N. Sanzida, M. Ghim, M. Salarian et al., Computed tomography imaging of macrophage phagocytic activity in abdominal aortic aneurysm. Theranostics 11(12), 5876–5888 (2021). https://doi.org/10.7150/thno.55106
Z. Guo, L. Yang, M. Chen, X. Wen, H. Liu et al., Molecular imaging of advanced atherosclerotic plaques with folate receptor-targeted 2D nanoprobes. Nano Res. 13(1), 173–182 (2019). https://doi.org/10.1007/s12274-019-2592-4
H. Deng, X. Li, J. Ju, X. Mo, G. Ge et al., Multifunctional nanoprobes for macrophage imaging. Biomaterials 290, 121824 (2022). https://doi.org/10.1016/j.biomaterials.2022.121824
A. Ramesh, N. Deshpande, V. Malik, A. Nguyen, M. Malhotra et al., Activatable nanoreporters for real-time tracking of macrophage phenotypic states associated with disease progression. Small 19(41), e2300978 (2023). https://doi.org/10.1002/smll.202300978
X. Liu, X. Xie, J. Jiang, M. Lin, E. Zheng et al., Use of nanoformulation to target macrophages for disease treatment. Adv. Funct. Mater. 31(38), 2104487 (2021). https://doi.org/10.1002/adfm.202104487
Y. Zhu, S. Hideyoshi, H. Jiang, Y. Matsumura, J.L. Dziki et al., Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications. Acta Biomater. 73, 112–126 (2018). https://doi.org/10.1016/j.actbio.2018.04.003
H. Yao, F. Wang, H. Chong, J. Wang, Y. Bai et al., A curcumin-modified coordination polymers with ROS scavenging and macrophage phenotype regulating properties for efficient ulcerative colitis treatment. Adv. Sci. 10(19), e2300601 (2023). https://doi.org/10.1002/advs.202300601
L. Hou, X. Gong, J. Yang, H. Zhang, W. Yang et al., Hybrid-membrane-decorated prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv. Mater. 34(14), e2200389 (2022). https://doi.org/10.1002/adma.202200389
P.K. Langston, M. Shibata, T. Horng, Metabolism supports macrophage activation. Front. Immunol. 8, 61 (2017). https://doi.org/10.3389/fimmu.2017.00061
D.E. Lackey, J.M. Olefsky, Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12(1), 15–28 (2016). https://doi.org/10.1038/nrendo.2015.189
O. Osborn, J.M. Olefsky, The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18(3), 363–374 (2012). https://doi.org/10.1038/nm.2627
G.J. Koelwyn, E.M. Corr, E. Erbay, K.J. Moore, Regulation of macrophage immunometabolism in atherosclerosis. Nat. Immunol. 19(6), 526–537 (2018). https://doi.org/10.1038/s41590-018-0113-3
V. Kumar, Targeting macrophage immunometabolism: dawn in the darkness of sepsis. Int. Immunopharmacol. 58, 173–185 (2018). https://doi.org/10.1016/j.intimp.2018.03.005
S. Galvan-Pena, L.A. O’Neill, Metabolic reprograming in macrophage polarization. Front. Immunol. 5, 420 (2014). https://doi.org/10.3389/fimmu.2014.00420
M. Xie, Y. Yu, R. Kang, S. Zhu, L. Yang et al., PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016). https://doi.org/10.1038/ncomms13280
E.M. Palsson-McDermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy et al., Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21(2), 347 (2015). https://doi.org/10.1016/j.cmet.2015.01.017
K. Mehla, P.K. Singh, Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5(12), 822–834 (2019). https://doi.org/10.1016/j.trecan.2019.10.007
L.A. O’Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16(9), 553–565 (2016). https://doi.org/10.1038/nri.2016.70
B.J. Altman, Z.E. Stine, C.V. Dang, From krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16(11), 749 (2016). https://doi.org/10.1038/nrc.2016.114
M. Trauelsen, T.K. Hiron, D. Lin, J.E. Petersen, B. Breton et al., Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GRP91-mediated gq signaling. Cell Rep. 35(11), 109246 (2021). https://doi.org/10.1016/j.celrep.2021.109246
M. de Castro Fonseca, C.J. Aguiar, J.A. da Rocha Franco, R.N. Gingold, M.F. Leite, GRP91: expanding the frontiers of Krebs cycle intermediates. Cell Commun. Signal 14, 3 (2016). https://doi.org/10.1186/s12964-016-0126-1
T. Reimann, D. Buscher, R.A. Hipskind, S. Krautwald, M.L. Lohmann-Matthes et al., Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. J. Immunol. 153(12), 5740–5749 (1994). https://doi.org/10.4049/jimmunol.153.12.5740
M. Rath, I. Muller, P. Kropf, E.I. Closs, M. Munder, Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front. Immunol. 5, 532 (2014). https://doi.org/10.3389/fimmu.2014.00532
J.E. Qualls, C. Subramanian, W. Rafi, A.M. Smith, L. Balouzian et al., Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 12(3), 313–323 (2012). https://doi.org/10.1016/j.chom.2012.07.012
B. Beltran, A. Mathur, M.R. Duchen, J.D. Erusalimsky, S. Moncada, The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc. Natl. Acad. Sci. U.S.A. 97(26), 14602–14607 (2000). https://doi.org/10.1073/pnas.97.26.14602
J. Van den Bossche, J. Baardman, N.A. Otto, S. van der Velden, A.E. Neele et al., Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 17(3), 684–696 (2016). https://doi.org/10.1016/j.celrep.2016.09.008
E.L. Pearce, E.J. Pearce, Metabolic pathways in immune cell activation and quiescence. Immunity 38(4), 633–643 (2013). https://doi.org/10.1016/j.immuni.2013.04.005
M. Hesse, M. Modolell, A.C. La Flamme, M. Schito, J.M. Fuentes et al., Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167(11), 6533–6544 (2001). https://doi.org/10.4049/jimmunol.167.11.6533
J. Van den Bossche, W.H. Lamers, E.S. Koehler, J.M. Geuns, L. Alhonen et al., Pivotal advance: arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. J. Leukoc. Biol. 91(5), 685–699 (2012). https://doi.org/10.1189/jlb.0911453
N. Sukhbaatar, T. Weichhart, Iron regulation: macrophages in control. Pharmaceuticals 11(4), 137 (2018). https://doi.org/10.3390/ph11040137
D.J. Kosman, Redox cycling in iron uptake, efflux, and trafficking. J. Biol. Chem. 285(35), 26729–26735 (2010). https://doi.org/10.1074/jbc.R110.113217
M.P. Soares, I. Hamza, Macrophages and iron metabolism. Immunity 44(3), 492–504 (2016). https://doi.org/10.1016/j.immuni.2016.02.016
E. Nemeth, M.S. Tuttle, J. Powelson, M.B. Vaughn, A. Donovan et al., Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704), 2090–2093 (2004). https://doi.org/10.1126/science.1104742
X.B. Liu, N.B. Nguyen, K.D. Marquess, F. Yang, D.J. Haile, Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol. Dis. 35(1), 47–56 (2005). https://doi.org/10.1016/j.bcmd.2005.04.006
G. Cairo, S. Recalcati, A. Mantovani, M. Locati, Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 32(6), 241–247 (2011). https://doi.org/10.1016/j.it.2011.03.007
M. Pereira, T.D. Chen, N. Buang, A. Olona, J.H. Ko et al., Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo. Cell Rep. 28(2), 498-511.e495 (2019). https://doi.org/10.1016/j.celrep.2019.06.039
A.B. Parekh, J.W. Putney Jr., Store-operated calcium channels. Physiol. Rev. 85(2), 757–810 (2005). https://doi.org/10.1152/physrev.00057.2003
S. Feske, H. Wulff, E.Y. Skolnik, Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291–353 (2015). https://doi.org/10.1146/annurev-immunol-032414-112212
C. Giorgi, S. Marchi, P. Pinton, The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19(11), 713–730 (2018). https://doi.org/10.1038/s41580-018-0052-8
P. He, F. Liu, M. Li, M. Ren, X. Wang et al., Mitochondrial calcium ion nanogluttons alleviate periodontitis via controlling mPTPs. Adv. Healthc. Mater. 12(15), e2203106 (2023). https://doi.org/10.1002/adhm.202203106
O. Krenkel, F. Tacke, Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17(5), 306–321 (2017). https://doi.org/10.1038/nri.2017.11
D. Vats, L. Mukundan, J.I. Odegaard, L. Zhang, K.L. Smith et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4(1), 13–24 (2006). https://doi.org/10.1016/j.cmet.2006.05.011
J.T. Hou, K.K. Yu, K. Sunwoo, W.Y. Kim, S. Koo et al., Fluorescent imaging of reactive oxygen and nitrogen species associated with pathophysiological processes. Chem 6(4), 832–866 (2020). https://doi.org/10.1016/j.chempr.2019.12.005
L.A. O’Neill, E.J. Pearce, Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213(1), 15–23 (2016). https://doi.org/10.1084/jem.20151570
E. Rendra, V. Riabov, D.M. Mossel, T. Sevastyanova, M.C. Harmsen et al., Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224(2), 242–253 (2019). https://doi.org/10.1016/j.imbio.2018.11.010
L. Formentini, F. Santacatterina, C. Nunez de Arenas, K. Stamatakis, D. Lopez-Martinez et al., Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep. 19(6), 1202–1213 (2017). https://doi.org/10.1016/j.celrep.2017.04.036
A.P. West, I.E. Brodsky, C. Rahner, D.K. Woo, H. Erdjument-Bromage et al., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344), 476–480 (2011). https://doi.org/10.1038/nature09973
M. Hori, K. Nishida, Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc. Res. 81(3), 457–464 (2009). https://doi.org/10.1093/cvr/cvn335
X. Li, Y. Liu, X. Qi, S. Xiao, Z. Xu et al., Sensitive activatable nanoprobes for real-time ratiometric magnetic resonance imaging of reactive oxygen species and ameliorating inflammation in vivo. Adv. Mater. 34(19), e2109004 (2022). https://doi.org/10.1002/adma.202109004
B.X. Ma, H. Xu, W.H. Zhuang, Y.N. Wang, G.C. Li et al., Reactive oxygen species responsive theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation. ACS Nano 14(5), 5862–5873 (2020). https://doi.org/10.1021/acsnano.0c01012
H. Wang, D. Yu, B. Li, Z. Liu, J. Ren et al., Ultrasensitive magnetic resonance imaging of systemic reactive oxygen species in vivo for early diagnosis of sepsis using activatable nanoprobes. Chem. Sci. 10(13), 3770–3778 (2019). https://doi.org/10.1039/c8sc04961k
B.A. Berkowitz, Oxidative stress measured in vivo without an exogenous contrast agent using quest MRI. J. Magn. Reson. 291, 94–100 (2018). https://doi.org/10.1016/j.jmr.2018.01.013
E.M. Espinoza, J.J. Roise, I.C. Li, R. Das, N. Murthy, Advances in imaging reactive oxygen species. J. Nucl. Med. 62(4), 457–461 (2021). https://doi.org/10.2967/jnumed.120.245415
B.J. Crielaard, C.J. Rijcken, L. Quan, S. van der Wal, I. Altintas et al., Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew. Chem. Int. Ed. 51(29), 7254–7258 (2012). https://doi.org/10.1002/anie.201202713
G. Yang, M. Fan, J. Zhu, C. Ling, L. Wu et al., A multifunctional anti-inflammatory drug that can specifically target activated macrophages, massively deplete intracellular H2O2, and produce large amounts CO for a highly efficient treatment of osteoarthritis. Biomaterials 255, 120155 (2020). https://doi.org/10.1016/j.biomaterials.2020.120155
A. Bellahcene, M.J. Nokin, V. Castronovo, C. Schalkwijk, Methylglyoxal-derived stress: an emerging biological factor involved in the onset and progression of cancer. Semin. Cancer Biol. 49, 64–74 (2018). https://doi.org/10.1016/j.semcancer.2017.05.010
Z. Mao, M. Ye, W. Hu, X. Ye, Y. Wang et al., Design of a ratiometric two-photon probe for imaging of hypochlorous acid (HClO) in wounded tissues. Chem. Sci. 9(28), 6035–6040 (2018). https://doi.org/10.1039/c8sc01697f
M. Yao, Y. Lu, L. Shi, Y. Huang, Q. Zhang et al., A ROS-responsive, self-immolative and self-reporting hydrogen sulfide donor with multiple biological activities for the treatment of myocardial infarction. Bioact. Mater. 9, 168–182 (2022). https://doi.org/10.1016/j.bioactmat.2021.07.011
H. Feng, Z. Zhang, Q. Meng, H. Jia, Y. Wang et al., Rapid response fluorescence probe enabled in vivo diagnosis and assessing treatment response of hypochlorous acid-mediated rheumatoid arthritis. Adv. Sci. 5(8), 1800397 (2018). https://doi.org/10.1002/advs.201800397
R. Zhang, J. Zhao, G. Han, Z. Liu, C. Liu et al., Real-time discrimination and versatile profiling of spontaneous reactive oxygen species in living organisms with a single fluorescent probe. J. Am. Chem. Soc. 138(11), 3769–3778 (2016). https://doi.org/10.1021/jacs.5b12848
C. Zhao, Z. Li, J. Chen, L. Su, J. Wang et al., Site-specific biomimicry of antioxidative melanin formation and its application for acute liver injury therapy and imaging. Adv. Mater. 33(34), e2102391 (2021). https://doi.org/10.1002/adma.202102391
C. Zhao, J. Chen, J. Ye, Z. Li, L. Su et al., Structural transformative antioxidants for dual-responsive anti-inflammatory delivery and photoacoustic inflammation imaging. Angew. Chem. Int. Ed. 60(26), 14458–14466 (2021). https://doi.org/10.1002/anie.202100873
X. Ai, Z. Wang, H. Cheong, Y. Wang, R. Zhang et al., Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat. Commun. 10(1), 1087 (2019). https://doi.org/10.1038/s41467-019-09001-7
Z. Lei, F. Zhang, Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem. Int. Ed. 60(30), 16294–16308 (2021). https://doi.org/10.1002/anie.202007040
C. Chu, J. Yu, E. Ren, S. Ou, Y. Zhang et al., Multimodal photoacoustic imaging-guided regression of corneal neovascularization: a non-invasive and safe strategy. Adv. Sci. 7(14), 2000346 (2020). https://doi.org/10.1002/advs.202000346
Y. Ni, H. Liu, D. Dai, X. Mu, J. Xu et al., Chromogenic, fluorescent, and redox sensors for multichannel imaging and detection of hydrogen peroxide in living cell systems. Anal. Chem. 90(17), 10152–10158 (2018). https://doi.org/10.1021/acs.analchem.7b04435
R. Singh, W. Zhang, X. Liu, B. Zhang, S. Kumar, Waveflex biosensor: MXene-Immobilized W-shaped fiber-based LSPR sensor for highly selective tyramine detection. Opt. Laser technol. 171, 110357 (2024). https://doi.org/10.1016/j.optlastec.2023.110357
H.C. Gomes, X. Liu, A. Fernandes, C. Moreirinha, R. Singh et al., Laser-induced graphene-based fabry-pérot cavity label-free immunosensors for the quantification of cortisol. Sens. Actuators Rep. 7, 100186 (2024). https://doi.org/10.1016/j.snr.2024.100186
R. Singh, W. Zhang, X. Liu, B. Zhang, S. Kumar, Humanoid-shaped waveflex biosensor for the detection of food contamination. Biomed. Opt. Express 14(9), 4660–4676 (2023). https://doi.org/10.1364/boe.500311
G. Zhang, R. Singh, B. Zhang, S. Kumar, G. Li, Waveflex biosensor based on S-tapered and waist-expanded technique for detection of glycosylated hemoglobin. Biomed. Opt. Express 14(11), 6100–6113 (2023). https://doi.org/10.1364/boe.505864
G. Li, X. Li, R. Singh, G. Zhang, B. Zhang et al., Slide-type waveflex biosensor based on signal enhancement technology for alpha-fetoprotein detection. Opt. Lett. 48(18), 4745–4748 (2023). https://doi.org/10.1364/OL.501864
R. Singh, S. Kumar, S. Bera, S.K. Bhunia, Trends in using fluorescent mxene quantum dots for selective detection and bioimaging applications: a review. ACS Appl. Nano Mater. 6(21), 19526–19550 (2023). https://doi.org/10.1021/acsanm.3c04491
R. Singh, Z. Wang, C. Marques, R. Min, B. Zhang et al., Alanine aminotransferase detection using TIT assisted four tapered fiber structure-based LSPR sensor: from healthcare to marine life. Biosens. Bioelectron. 236, 115424 (2023). https://doi.org/10.1016/j.bios.2023.115424
A.M. Cameron, A. Castoldi, D.E. Sanin, L.J. Flachsmann, C.S. Field et al., Inflammatory macrophage dependence on NAD(+) salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat. Immunol. 20(4), 420–432 (2019). https://doi.org/10.1038/s41590-019-0336-y
R.M. Palmer, A.G. Ferrige, S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122), 524–526 (1987). https://doi.org/10.1038/327524a0
E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi et al., Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 127(11), 3684–3685 (2005). https://doi.org/10.1021/ja042967z
Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126(10), 3357–3367 (2004). https://doi.org/10.1021/ja037944j
H. Kojima, Y. Urano, K. Kikuchi, T. Higuchi, Y. Hirata et al., Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. 38(21), 3209–3212 (1999). https://doi.org/10.1002/(sici)1521-3773(19991102)38:21%3c3209::aid-anie3209%3e3.0.co;2-6
M.M. Sadek, M.B.A. Olia, C.J. Nowell, N. Barlow, C.H. Schiesser et al., Characterisation of a novel coumarin-based fluorescent probe for monitoring nitric oxide production in macrophages. Bioorgan. Med. Chem. 25(20), 5743–5748 (2017). https://doi.org/10.1016/j.bmc.2017.08.054
E.Y. Zhou, H.J. Knox, C.J. Reinhardt, G. Partipilo, M.J. Nilges et al., Near-infrared photoactivatable nitric oxide donors with integrated photoacoustic monitoring. J. Am. Chem. Soc. 140(37), 11686–11697 (2018). https://doi.org/10.1021/jacs.8b05514
Z. Mao, H. Jiang, Z. Li, C. Zhong, W. Zhang et al., An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide. Chem. Sci. 8(6), 4533–4538 (2017). https://doi.org/10.1039/c7sc00416h
J. Miao, Y. Huo, Q. Liu, Z. Li, H. Shi et al., A new class of fast-response and highly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats. Biomaterials 107, 33–43 (2016). https://doi.org/10.1016/j.biomaterials.2016.08.032
Y. Huo, J. Miao, Y. Li, Y. Shi, H. Shi et al., Aromatic primary monoamine-based fast-response and highly specific fluorescent probes for imaging the biological signaling molecule nitric oxide in living cells and organisms. J. Mater. Chem. B 5(13), 2483–2490 (2017). https://doi.org/10.1039/c6tb03382b
T.W. Shiue, Y.H. Chen, C.M. Wu, G. Singh, H.Y. Chen et al., Nitric oxide turn-on fluorescent probe based on deamination of aromatic primary monoamines. Inorg. Chem. 51(9), 5400–5408 (2012). https://doi.org/10.1021/ic300379u
A. Fernandez, M. Vendrell, Smart fluorescent probes for imaging macrophage activity. Chem. Soc. Rev. 45(5), 1182–1196 (2016). https://doi.org/10.1039/c5cs00567a
P. Yuan, X. Xu, D. Hu, Y. Chen, J. Fan et al., Highly sensitive imaging of tumor metastasis based on the targeting and polarization of M2-like macrophages. J. Am. Chem. Soc. 145(14), 7941–7951 (2023). https://doi.org/10.1021/jacs.2c13218
Y. Huo, J. Miao, J. Fang, H. Shi, J. Wang et al., Aromatic secondary amine-functionalized fluorescent NO probes: improved detection sensitivity for NO and potential applications in cancer immunotherapy studies. Chem. Sci. 10(1), 145–152 (2019). https://doi.org/10.1039/c8sc03694b
A. Ramesh, S. Kumar, A. Brouillard, D. Nandi, A. Kulkarni, A nitric oxide (NO) nanoreporter for noninvasive real-time imaging of macrophage immunotherapy. Adv. Mater. 32(24), e2000648 (2020). https://doi.org/10.1002/adma.202000648
R. Radi, Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 288(37), 26464–26472 (2013). https://doi.org/10.1074/jbc.R113.472936
J. Kim, J. Park, H. Lee, Y. Choi, Y. Kim, A boronate-based fluorescent probe for the selective detection of cellular peroxynitrite. Chem. Commun. 50(66), 9353–9356 (2014). https://doi.org/10.1039/c4cc02943g
J. Peng, A. Samanta, X. Zeng, S. Han, L. Wang et al., Real-time in vivo hepatotoxicity monitoring through chromophore-conjugated photon-upconverting nanoprobes. Angew. Chem. Int. Ed. 56(15), 4165–4169 (2017). https://doi.org/10.1002/anie.201612020
C. Wang, W. Fan, Z. Zhang, Y. Wen, L. Xiong et al., Advanced nanotechnology leading the way to multimodal imaging-guided precision surgical therapy. Adv. Mater. 31(49), e1904329 (2019). https://doi.org/10.1002/adma.201904329
L. Wu, Y. Ishigaki, W. Zeng, T. Harimoto, B. Yin et al., Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat. Commun. 12(1), 6145 (2021). https://doi.org/10.1038/s41467-021-26380-y
Y. Wang, Y. Zhang, Z. Wang, J. Zhang, R.R. Qiao et al., Optical/MRI dual-modality imaging of M1 macrophage polarization in atherosclerotic plaque with marco-targeted upconversion luminescence probe. Biomaterials 219, 119378 (2019). https://doi.org/10.1016/j.biomaterials.2019.119378
L. Yuan, W. Lin, Y. Yang, H. Chen, A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J. Am. Chem. Soc. 134(2), 1200–1211 (2012). https://doi.org/10.1021/ja209292b
M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr. Biol. 24(10), R453–R462 (2014). https://doi.org/10.1016/j.cub.2014.03.034
G. Morris, M. Gevezova, V. Sarafian, M. Maes, Redox regulation of the immune response. Cell. Mol. Immunol. 19(10), 1079–1101 (2022). https://doi.org/10.1038/s41423-022-00902-0
J.S. Arthur, S.C. Ley, Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13(9), 679–692 (2013). https://doi.org/10.1038/nri3495
H. Kamata, S. Honda, S. Maeda, L.F. Chang, H. Hirata et al., Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5), 649–661 (2005). https://doi.org/10.1016/j.cell.2004.12.041
C. Wu, W. Zhao, X. Zhang, X. Chen, Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophages by suppression of NF-kappaB and iNOS signaling pathways. Acta. Pharm. Sin. B 5(4), 323–329 (2015). https://doi.org/10.1016/j.apsb.2015.01.010
C. Bogdan, Nitric oxide and the immune response. Nat. Immunol. 2(10), 907–916 (2001). https://doi.org/10.1038/ni1001-907
V. Toshchakov, B.W. Jones, P.Y. Perera, K. Thomas, M.J. Cody et al., TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3(4), 392–398 (2002). https://doi.org/10.1038/ni774
J.S. Ma, W.J. Kim, J.J. Kim, T.J. Kim, S.K. Ye et al., Gold nanops attenuate LPS-induced NO production through the inhibition of NF-kappab and IFN-beta/STAT1 pathways in RAW264.7 cells. Nitric Oxide 23(3), 214–219 (2010). https://doi.org/10.1016/j.niox.2010.06.005
E. Butturini, D. Boriero, A. Carcereri de Prati, S. Mariotto, STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Arch. Biochem. Biophys. 669, 22–30 (2019). https://doi.org/10.1016/j.abb.2019.05.011
B. Everts, E. Amiel, G.J. van der Windt, T.C. Freitas, R. Chott et al., Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120(7), 1422–1431 (2012). https://doi.org/10.1182/blood-2012-03-419747
Q. Zhang, D. Dehaini, Y. Zhang, J. Zhou, X. Chen et al., Neutrophil membrane-coated nanops inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13(12), 1182–1190 (2018). https://doi.org/10.1038/s41565-018-0254-4
W. Yang, Y. Tao, Y. Wu, X. Zhao, W. Ye et al., Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 10(1), 1076 (2019). https://doi.org/10.1038/s41467-019-09046-8
A. Gombozhapova, Y. Rogovskaya, V. Shurupov, M. Rebenkova, J. Kzhyshkowska et al., Macrophage activation and polarization in post-infarction cardiac remodeling. J. Biomed. Sci. 24(1), 13 (2017). https://doi.org/10.1186/s12929-017-0322-3
E.H. Choo, J.H. Lee, E.H. Park, H.E. Park, N.C. Jung et al., Infarcted myocardium-primed dendritic cells improve remodeling and cardiac function after myocardial infarction by modulating the regulatory T cell and macrophage polarization. Circulation 135(15), 1444–1457 (2017). https://doi.org/10.1161/CIRCULATIONAHA.116.023106
Y. Liu, K. Ai, X. Ji, D. Askhatova, R. Du et al., Comprehensive insights into the multi-antioxidative mechanisms of melanin nanops and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 139(2), 856–862 (2017). https://doi.org/10.1021/jacs.6b11013
X. Bao, J. Zhao, J. Sun, M. Hu, X. Yang, Polydopamine nanops as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 12(9), 8882–8892 (2018). https://doi.org/10.1021/acsnano.8b04022
C. Zhang, X. Wang, J. Du, Z. Gu, Y. Zhao, Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment. Adv. Sci. 8(3), 2002797 (2021). https://doi.org/10.1002/advs.202002797
L. Zhang, Q.C. Yang, S. Wang, Y. Xiao, S.C. Wan et al., Engineering multienzyme-mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity. Adv. Mater. 34(13), e2108174 (2022). https://doi.org/10.1002/adma.202108174
J. Zhang, B. Gao, B. Ye, Z. Sun, Z. Qian et al., Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv. Mater. 35(11), e2208571 (2023). https://doi.org/10.1002/adma.202208571
T. Liu, B. Xiao, F. Xiang, J. Tan, Z. Chen et al., Ultrasmall copper-based nanops for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11(1), 2788 (2020). https://doi.org/10.1038/s41467-020-16544-7
Y. Peng, D. He, X. Ge, Y. Lu, Y. Chai et al., Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater. 6(10), 3109–3124 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.006
M. Soh, D.W. Kang, H.G. Jeong, D. Kim, D.Y. Kim et al., Ceria-Zirconia nanops as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem. Int. Ed. 56(38), 11399–11403 (2017). https://doi.org/10.1002/anie.201704904
S.I. Han, S.W. Lee, M.G. Cho, J.M. Yoo, M.H. Oh et al., Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv. Mater. 32(31), e2001566 (2020). https://doi.org/10.1002/adma.202001566
X. Zhou, Q. Zhou, Z. He, Y. Xiao, Y. Liu et al., ROS balance autoregulating core-shell CeO2@ZIF-8/Au nanoplatform for wound repair. Nano-Micro Lett. 16(1), 156 (2024). https://doi.org/10.1007/s40820-024-01353-0
J. Kim, H.Y. Kim, S.Y. Song, S.H. Go, H.S. Sohn et al., Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanops for rheumatoid arthritis treatment. ACS Nano 13(3), 3206–3217 (2019). https://doi.org/10.1021/acsnano.8b08785
J. Mu, C. Li, Y. Shi, G. Liu, J. Zou et al., Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nat. Commun. 13(1), 2513 (2022). https://doi.org/10.1038/s41467-022-29772-w
X.D. Zhang, X.K. Chen, Y.L. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
Y.J. Li, S.J.Y. Gao, S.R. Shi, D.X. Xiao, S.L. Peng et al., Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity. Nano-Micro Lett. 13(1), 186 (2021). https://doi.org/10.1007/s40820-021-00711-6
F. Zhou, M. Li, M. Chen, M. Chen, X. Chen et al., Redox homeostasis strategy for inflammatory macrophage reprogramming in rheumatoid arthritis based on ceria oxide nanozyme-complexed biopolymeric micelles. ACS Nano 17(5), 4358–4372 (2023). https://doi.org/10.1021/acsnano.2c09127
Y. Guo, Q. Sun, F.G. Wu, Y. Dai, X. Chen, Polyphenol-containing nanops: synthesis, properties, and therapeutic delivery. Adv. Mater. 33(22), e2007356 (2021). https://doi.org/10.1002/adma.202007356
M.S. Petronek, J.M. Stolwijk, S.D. Murray, E.J. Steinbach, Y. Zakharia et al., Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biol. 42, 101864 (2021). https://doi.org/10.1016/j.redox.2021.101864
W.L. Wan, Y.J. Lin, H.L. Chen, C.C. Huang, P.C. Shih et al., In situ nanoreactor for photosynthesizing H2 gas to mitigate oxidative stress in tissue inflammation. J. Am. Chem. Soc. 139(37), 12923–12926 (2017). https://doi.org/10.1021/jacs.7b07492
B. Zhao, L. Zeng, D. Chen, S. Xie, Z. Jin et al., NIR-photocatalytic regulation of arthritic synovial microenvironment. Sci. Adv. 8(40), eabq0959 (2022). https://doi.org/10.1126/sciadv.abq0959
G. Yang, J.S. Ni, Y. Li, M. Zha, Y. Tu et al., Acceptor engineering for optimized ROS generation facilitates reprogramming macrophages to M1 phenotype in photodynamic immunotherapy. Angew. Chem. Int. Ed. 60(10), 5386–5393 (2021). https://doi.org/10.1002/anie.202013228
M.W. Cleeter, J.M. Cooper, V.M. Darley-Usmar, S. Moncada, A.H. Schapira, Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345(1), 50–54 (1994). https://doi.org/10.1016/0014-5793(94)00424-2
S. Theivendran, Z. Gu, J. Tang, Y. Yang, H. Song et al., Nanostructured organosilica nitric oxide donors intrinsically regulate macrophage polarization with antitumor effect. ACS Nano 16(7), 10943–10957 (2022). https://doi.org/10.1021/acsnano.2c03348
M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
K. Sridhar, B.S. Inbaraj, B.H. Chen, Recent advances on nanop based strategies for improving carotenoid stability and biological activity. Antioxidants 10(5), 713 (2021). https://doi.org/10.3390/antiox10050713
D. Zhong, Z. Du, M. Zhou, Algae: a natural active material for biomedical applications. View 2(4), 20200189 (2021). https://doi.org/10.1002/viw.20200189
H. Chen, Y. Guo, Z. Zhang, W. Mao, C. Shen et al., Symbiotic algae-bacteria dressing for producing hydrogen to accelerate diabetic wound healing. Nano Lett. 22(1), 229–237 (2022). https://doi.org/10.1021/acs.nanolett.1c03693
W. Geng, X. Liu, B. Tao, Y. He, K. Li et al., Nitric oxide scavenging and hydrogen sulfide production synergistically treat rheumatoid arthritis. Adv. Healthc. Mater. 12(4), 2202380 (2023). https://doi.org/10.1002/adhm.202202380
Y. Yan, A. Lu, Y. Dou, Z. Zhang, X.Y. Wang et al., Nanomedicines reprogram synovial macrophages by scavenging nitric oxide and silencing CA9 in progressive osteoarthritis. Adv. Sci. 10(11), 2207490 (2023). https://doi.org/10.1002/advs.202207490
F. Zhou, J. Mei, S. Yang, X. Han, H. Li et al., Modified ZIF-8 nanops attenuate osteoarthritis by reprogramming the metabolic pathway of synovial macrophages. ACS Appl. Mater. Interfaces 12(2), 2009–2022 (2020). https://doi.org/10.1021/acsami.9b16327
M. He, L. Sun, X. Fu, S.P. McDonough, C.C. Chu, Biodegradable amino acid-based poly(ester amine) with tunable immunomodulating properties and their in vitro and in vivo wound healing studies in diabetic rats’ wounds. Acta Biomater. 84, 114–132 (2019). https://doi.org/10.1016/j.actbio.2018.11.053
X. Li, X. Wang, Q. Liu, J. Yan, D. Pan et al., ROS-responsive boronate-stabilized polyphenol-poloxamer 188 assembled dexamethasone nanodrug for macrophage repolarization in osteoarthritis treatment. Adv. Healthc. Mater. 10(20), 2100883 (2021). https://doi.org/10.1002/adhm.202100883
L. Valls-Lacalle, I. Barba, E. Miro-Casas, J.J. Alburquerque-Bejar, M. Ruiz-Meana et al., Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc. Res. 109(3), 374–384 (2016). https://doi.org/10.1093/cvr/cvv279
L. Davenport Huyer, S. Mandla, Y. Wang, S.B. Campbell, B. Yee et al., Macrophage immunomodulation through new polymers that recapitulate functional effects of itaconate as a power house of innate immunity. Adv. Funct. Mater. 31(6), 2003341 (2020). https://doi.org/10.1002/adfm.202003341
J.R. Nakkala, Y. Yao, Z. Zhai, Y. Duan, D. Zhang et al., Dimethyl itaconate-loaded nanofibers rewrite macrophage polarization, reduce inflammation, and enhance repair of myocardic infarction. Small 17(17), 2006992 (2021). https://doi.org/10.1002/smll.202006992
F. Zhu, L. Zi, P. Yang, Y. Wei, R. Zhong et al., Efficient iron and ROS nanoscavengers for brain protection after intracerebral hemorrhage. ACS Appl. Mater. Interfaces 13(8), 9729–9738 (2021). https://doi.org/10.1021/acsami.1c00491
X. Dong, P. Wu, L. Yan, K. Liu, W. Wei et al., Oriented nanofibrous P(MMD-co-LA)/deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials 280, 121288 (2022). https://doi.org/10.1016/j.biomaterials.2021.121288
J. Han, Y.S. Kim, M.Y. Lim, H.Y. Kim, S. Kong et al., Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair. ACS Nano 12(2), 1959–1977 (2018). https://doi.org/10.1021/acsnano.7b09107
Y. Li, X. Teng, C. Yang, Y. Wang, L. Wang et al., Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy. Angew. Chem. Int. Ed. 60(10), 5083–5090 (2021). https://doi.org/10.1002/anie.202010391
L. Chen, L. Zhang, H. Zhang, X. Sun, D. Liu et al., Programmable immune activating electrospun fibers for skin regeneration. Bioactive. Mater. 6(10), 3218–3230 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.022
T.T. Tang, B. Wang, M. Wu, Z.L. Li, Y. Feng et al., Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci. Adv. 6(33), eaaz0748 (2020). https://doi.org/10.1126/sciadv.aaz0748
H. Kang, K. Zhang, D.S.H. Wong, F. Han, B. Li et al., Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization. Biomaterials 178, 681–696 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.007
X. Lei, G. Tan, Y. Wang, L. Chen, Y. Cao et al., Mitochondrial calcium nanoregulators reverse the macrophage proinflammatory phenotype through restoring mitochondrial calcium homeostasis for the treatment of osteoarthritis. Int. J. Nanomedicine 18, 1469–1489 (2023). https://doi.org/10.2147/IJN.S402170
J. Wu, M. Wang, Y. Wu, J. Liu, W. Zhi et al., Coupling BCP ceramics with micro-vibration stimulation field for cascade amplification from immune activation to bone regeneration. Adv. Funct. Mater. 33, 2215079 (2023). https://doi.org/10.1002/adfm.202215079
N. Feng, L. Liang, M. Fan, Y. Du, C. Chen et al., Treating autoimmune inflammatory diseases with an siERN1-nanoprodrug that mediates macrophage polarization and blocks Toll-like receptor signaling. ACS Nano 15(10), 15874–15891 (2021). https://doi.org/10.1021/acsnano.1c03726
N. Li, Q. Du, Z. Jing, L. Xue, W. He et al., Study of the effects of Au@ZIF-8 on metabolism in mouse RAW 264.7 macrophages. Biomater. Adv. 138, 212800 (2022). https://doi.org/10.1016/j.bioadv.2022.212800
H. Gu, Y. Zhu, J. Yang, R. Jiang, Y. Deng et al., Liver-inspired polyetherketoneketone scaffolds simulate regenerative signals and mobilize anti-inflammatory reserves to reprogram macrophage metabolism for boosted osteoporotic osseointegration. Adv. Sci. 10(25), e2302136 (2023). https://doi.org/10.1002/advs.202302136
Y. Sang, Q. Deng, F. Cao, Z. Liu, Y. You et al., Remodeling macrophages by an iron nanotrap for tumor growth suppression. ACS Nano 15(12), 19298–19309 (2021). https://doi.org/10.1021/acsnano.1c05392
Y. Yang, Q. Tian, S. Wu, Y. Li, K. Yang et al., Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanops for cancer iron therapy. Biomaterials 271, 120739 (2021). https://doi.org/10.1016/j.biomaterials.2021.120739
C.X. Li, Y. Zhang, X. Dong, L. Zhang, M.D. Liu et al., Artificially reprogrammed macrophages as tumor-tropic immunosuppression-resistant biologics to realize therapeutics production and immune activation. Adv. Mater. 31(15), e1807211 (2019). https://doi.org/10.1002/adma.201807211
M.H. Oh, I.H. Sun, L. Zhao, R.D. Leone, I.M. Sun et al., Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130(7), 3865–3884 (2020). https://doi.org/10.1172/jci131859
X.B. Shulan Han, Y. Zou, L. Wang, Y. Li, L. Yang et al., D-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci. Adv. 9(29), eadg2697 (2023). https://doi.org/10.1126/sciadv.adg2697
J. Zhao, Z. Tian, S. Zhao, D. Feng, Z. Guo et al., Insights into the effect of catalytic intratumoral lactate depletion on metabolic reprogramming and immune activation for antitumoral activity. Adv. Sci. 10(4), e2204808 (2023). https://doi.org/10.1002/advs.202204808
Z.Y. Han, C. Zhang, J.X. An, Y.Z. Wang, J.Y. Qiao et al., Metabolic regulation of tumor microenvironment with biohybrid bacterial bioreactor for enhanced cancer chemo-immunotherapy. Adv. Funct. Mater. 33, 2302728 (2023). https://doi.org/10.1002/adfm.202302728
G.M. Tannahill, A.M. Curtis, J. Adamik, E.M. Palsson-McDermott, A.F. McGettrick et al., Succinate is an inflammatory signal that induces IL-1β through HIF-1alpha. Nature 496(7444), 238–242 (2013). https://doi.org/10.1038/nature11986
M.P. Murphy, L.A.J. O’Neill, Krebs cycle reimagined: The emerging roles of succinate and itaconate as signal transducers. Cell 174(4), 780–784 (2018). https://doi.org/10.1016/j.cell.2018.07.030
E.T. Chouchani, V.R. Pell, E. Gaude, D. Aksentijevic, S.Y. Sundier et al., Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527), 431–435 (2014). https://doi.org/10.1038/nature13909
C.L. Strelko, W. Lu, F.J. Dufort, T.N. Seyfried, T.C. Chiles et al., Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133(41), 16386–16389 (2011). https://doi.org/10.1021/ja2070889
A. Michelucci, T. Cordes, J. Ghelfi, A. Pailot, N. Reiling et al., Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. U.S.A. 110(19), 7820–7825 (2013). https://doi.org/10.1073/pnas.1218599110
W. Qin, K. Qin, Y. Zhang, W. Jia, Y. Chen et al., S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol. 15(10), 983–991 (2019). https://doi.org/10.1038/s41589-019-0323-5
W. Qin, Y. Zhang, H. Tang, D. Liu, Y. Chen et al., Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages. J. Am. Chem. Soc. 142(25), 10894–10898 (2020). https://doi.org/10.1021/jacs.9b11962
P. Sun, Z. Zhang, B. Wang, C. Liu, C. Chen et al., A genetically encoded fluorescent biosensor for detecting itaconate with subcellular resolution in living macrophages. Nat. Commun. 13(1), 6562 (2022). https://doi.org/10.1038/s41467-022-34306-5
A. Hooftman, L.A.J. O’Neill, The immunomodulatory potential of the metabolite itaconate. Trends Immunol. 40(8), 687–698 (2019). https://doi.org/10.1016/j.it.2019.05.007
V. Lampropoulou, A. Sergushichev, M. Bambouskova, S. Nair, E.E. Vincent et al., Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24(1), 158–166 (2016). https://doi.org/10.1016/j.cmet.2016.06.004
L.A.J. O’Neill, M.N. Artyomov, Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19(5), 273–281 (2019). https://doi.org/10.1038/s41577-019-0128-5
E.L. Mills, D.G. Ryan, H.A. Prag, D. Dikovskaya, D. Menon et al., Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556(7699), 113–117 (2018). https://doi.org/10.1038/nature25986
M. Bambouskova, L. Gorvel, V. Lampropoulou, A. Sergushichev, E. Loginicheva et al., Electrophilic properties of itaconate and derivatives regulate the Ikappabzeta-ATF3 inflammatory axis. Nature 556(7702), 501–504 (2018). https://doi.org/10.1038/s41586-018-0052-z
L. Ni, Z. Lin, S. Hu, Y. Shi, Z. Jiang et al., Itaconate attenuates osteoarthritis by inhibiting STING/NF-kappaB axis in chondrocytes and promoting M2 polarization in macrophages. Biochem. Pharmacol. 198, 114935 (2022). https://doi.org/10.1016/j.bcp.2022.114935
H. Yu, P. Ren, X. Pan, X. Zhang, J. Ma et al., Intracellular delivery of itaconate by metal-organic framework-anchored hydrogel microspheres for osteoarthritis therapy. Pharmaceutics 15(3), 724 (2023). https://doi.org/10.3390/pharmaceutics15030724
Q. Ding, T. Sun, W. Su, X. Jing, B. Ye et al., Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: a stepwise countermeasure for diabetic skin wound healing. Adv. Healthc. Mater. 11(12), e2102791 (2022). https://doi.org/10.1002/adhm.202102791
V.L. Nelson, H.C.B. Nguyen, J.C. Garcia-Canaveras, E.R. Briggs, W.Y. Ho et al., PPARgamma is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes Dev. 32(15–16), 1035–1044 (2018). https://doi.org/10.1101/gad.312355.118
M.C. Runtsch, S. Angiari, A. Hooftman, R. Wadhwa, Y. Zhang et al., Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab. 34(3), 487–50.e18 (2022). https://doi.org/10.1016/j.cmet.2022.02.002
V.C. Ganta, M.H. Choi, A. Kutateladze, T.E. Fox, C.R. Farber et al., A microRNA93-interferon regulatory factor-9-immunoresponsive gene-1-itaconic acid pathway modulates M2-like macrophage polarization to revascularize ischemic muscle. Circulation 135(24), 2403–2425 (2017). https://doi.org/10.1161/CIRCULATIONAHA.116.025490
T. Ganz, E. Nemeth, Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15(8), 500–510 (2015). https://doi.org/10.1038/nri3863
S. Recalcati, M. Locati, A. Marini, P. Santambrogio, F. Zaninotto et al., Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol. 40(3), 824–835 (2010). https://doi.org/10.1002/eji.200939889
C. Pfeifhofer-Obermair, P. Tymoszuk, V. Petzer, G. Weiss, M. Nairz, Iron in the tumor microenvironment-connecting the dots. Front. Oncol. 8, 549 (2018). https://doi.org/10.3389/fonc.2018.00549
M. Jung, C. Mertens, B. Brune, Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 220(2), 295–304 (2015). https://doi.org/10.1016/j.imbio.2014.09.011
S. Recalcati, M. Locati, E. Gammella, P. Invernizzi, G. Cairo, Iron levels in polarized macrophages: regulation of immunity and autoimmunity. Autoimmun. Rev. 11(12), 883–889 (2012). https://doi.org/10.1016/j.autrev.2012.03.003
A.T. Aron, A.G. Reeves, C.J. Chang, Activity-based sensing fluorescent probes for iron in biological systems. Curr. Opin. Chem. Biol. 43, 113–118 (2018). https://doi.org/10.1016/j.cbpa.2017.12.010
W. Xing, H. Xu, H. Ma, S.A.A. Abedi, S. Wang et al., A PET-based fluorescent probe for monitoring labile Fe(II) pools in macrophage activations and ferroptosis. Chem. Commun. 58(18), 2979–2982 (2022). https://doi.org/10.1039/d1cc06611k
H.Y. Lin, R. Weissleder, E. Corradini, J.L. Babitt, Y. Xia et al., Method for measuring macrophage iron efflux in vitro and in vivo using magnetic resonance imaging. Blood 112(11), 4636–4636 (2008). https://doi.org/10.1182/blood.V112.11.4636.4636
A. Leftin, N. Ben-Chetrit, J.A. Joyce, J.A. Koutcher, Imaging endogenous macrophage iron deposits reveals a metabolic biomarker of polarized tumor macrophage infiltration and response to CSF1R breast cancer immunotherapy. Sci. Rep. 9(1), 857 (2019). https://doi.org/10.1038/s41598-018-37408-7
A. Biesemeier, O. Eibl, S. Eswara, J.N. Audinot, T. Wirtz et al., Transition metals and trace elements in the retinal pigment epithelium and choroid: correlative ultrastructural and chemical analysis by analytical electron microscopy and nano-secondary ion mass spectrometry. Metallomics 10(2), 296–308 (2018). https://doi.org/10.1039/c7mt00259a
F. Penen, J. Malherbe, M.P. Isaure, D. Dobritzsch, I. Bertalan et al., Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS. J. Trace Elem. Med. Biol. 37, 62–68 (2016). https://doi.org/10.1016/j.jtemb.2016.04.014
J. Lovric, N. Najafinobar, M.E. Kurczy, O. De Castro, A. Biesemeier et al., Correlative high-resolution imaging of iron uptake in lung macrophages. Anal. Chem. 94(37), 12798–12806 (2022). https://doi.org/10.1021/acs.analchem.2c02675
Y. Zhou, K.T. Que, Z. Zhang, Z.J. Yi, P.X. Zhao et al., Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med. 7(8), 4012–4022 (2018). https://doi.org/10.1002/cam4.1670
H. She, S. Xiong, M. Lin, E. Zandi, C. Giulivi et al., Iron activates NF-kappaB in kupffer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 283(3), G719-726 (2002). https://doi.org/10.1152/ajpgi.00108.2002
P. Handa, S. Thomas, V. Morgan-Stevenson, B.D. Maliken, E. Gochanour et al., Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. J. Leukoc. Biol. 105(5), 1015–1026 (2019). https://doi.org/10.1002/JLB.3A0318-108R
H. Kim, J.Y. Hong, W.J. Jeon, J. Lee, Y.J. Lee et al., Melittin regulates iron homeostasis and mediates macrophage polarization in rats with lumbar spinal stenosis. Biomed. Pharmacother. 156, 113776 (2022). https://doi.org/10.1016/j.biopha.2022.113776
E. Patino, D. Bhatia, S.Z. Vance, A. Antypiuk, R. Uni et al., Iron therapy mitigates chronic kidney disease progression by regulating intracellular iron status of kidney macrophages. JCI Insight 8(1), e159235 (2023). https://doi.org/10.1172/jci.insight.159235
D.G. DeNardo, B. Ruffell, Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19(6), 369–382 (2019). https://doi.org/10.1038/s41577-019-0127-6
H. Zhao, R. Liu, L. Wang, F. Tang, W. Chen et al., Artificial macrophage with hierarchical nanostructure for biomimetic reconstruction of antitumor immunity. Nano-Micro Lett. 15(1), 216 (2023). https://doi.org/10.1007/s40820-023-01193-4
S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi et al., Iron oxide nanops inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11(11), 986–994 (2016). https://doi.org/10.1038/nnano.2016.168
Z. Liu, W. Jiang, J. Nam, J.J. Moon, B.Y.S. Kim, Immunomodulating nanomedicine for cancer therapy. Nano Lett. 18(11), 6655–6659 (2018). https://doi.org/10.1021/acs.nanolett.8b02340
Z. Liu, J. Qiao, T. Nagy, M.P. Xiong, ROS-triggered degradable iron-chelating nanogels: safely improving iron elimination in vivo. J. Control. Release 283, 84–93 (2018). https://doi.org/10.1016/j.jconrel.2018.05.025
R. Agoro, M. Taleb, V.F.J. Quesniaux, C. Mura, Cell iron status influences macrophage polarization. PLoS ONE 13(5), e0196921 (2018). https://doi.org/10.1371/journal.pone.0196921
H.N. Wilkinson, E.R. Roberts, A.R. Stafford, K.L. Banyard, P. Matteucci et al., Tissue iron promotes wound repair via M2 macrophage polarization and the chemokine (C-C Motif) ligands 17 and 22. Am. J. Pathol. 189(11), 2196–2208 (2019). https://doi.org/10.1016/j.ajpath.2019.07.015
Z.S. Gan, Q.Q. Wang, J.H. Li, X.L. Wang, Y.Z. Wang et al., Iron reduces M1 macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1. Mediators Inflamm. 2017, 8570818 (2017). https://doi.org/10.1155/2017/8570818
D. Li, C. Beisswenger, C. Herr, R.M. Schmid, R.L. Gallo et al., Expression of the antimicrobial peptide cathelicidin in myeloid cells is required for lung tumor growth. Oncogene 33(21), 2709–2716 (2014). https://doi.org/10.1038/onc.2013.248
X. Zhou, W. Yang, J. Li, Ca2+- and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages. J. Biol. Chem. 281(42), 31337–31347 (2006). https://doi.org/10.1074/jbc.M602739200
E.Y. Moon, S. Pyo, Lipopolysaccharide stimulates Epac1-mediated Rap1/NF-kappaB pathway in Raw 264.7 murine macrophages. Immunol. Lett. 110(2), 121–125 (2007). https://doi.org/10.1016/j.imlet.2007.04.002
L.C. Denlinger, P.L. Fisette, K.A. Garis, G. Kwon, A. Vazquez-Torres et al., Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J. Biol. Chem. 271(1), 337–342 (1996). https://doi.org/10.1074/jbc.271.1.337
Y. Ye, X. Huang, Y. Zhang, X. Lai, X. Wu et al., Calcium influx blocked by SK&K 96365 modulates the LPS plus IFN-gamma-induced inflammatory response in murine peritoneal macrophages. Int. Immunopharmacol. 12(2), 384–393 (2012). https://doi.org/10.1016/j.intimp.2011.12.011
S.Y. Ji, H. Lee, H. Hwangbo, S.H. Hong, H.J. Cha et al., A novel peptide oligomer of bacitracin induces M1 macrophage polarization by facilitating Ca2+ influx. Nutrients 12(6), 1603 (2020). https://doi.org/10.3390/nu12061603
J. Mo, Y. Xu, X. Wang, W. Wei, J. Zhao, Exploiting the protein corona: coating of black phosphorus nanosheets enables macrophage polarization via calcium influx. Nanoscale 12(3), 1742–1748 (2020). https://doi.org/10.1039/c9nr08570j
A. Chauhan, Y. Sun, P. Sukumaran, F.O. Quenum Zangbede, C.N. Jondle et al., M1 macrophage polarization is dependent on TRPC1-mediated calcium entry. iScience 8, 85–102 (2018). https://doi.org/10.1016/j.isci.2018.09.014
Z. Yin, T. Ma, Y. Lin, X. Lu, C. Zhang et al., IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J. Cell. Biochem. 119(11), 9419–9432 (2018). https://doi.org/10.1002/jcb.27259
N. Ding, Y. Wang, C. Dou, F. Liu, G. Guan et al., Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway. J. Cell. Physiol. 234(6), 8788–8796 (2019). https://doi.org/10.1002/jcp.27537
H. Jiang, M.B. Harris, P. Rothman, IL-4/IL-13 signaling beyond JAK/STAT. J. Allergy Clin. Immunol. 105(6 Pt 1), 1063–1070 (2000). https://doi.org/10.1067/mai.2000.107604
G. Nappo, F. Handle, F.R. Santer, R.V. McNeill, R.I. Seed et al., The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis 6(5), e342 (2017). https://doi.org/10.1038/oncsis.2017.23
S. Su, Q. Zhao, C. He, D. Huang, J. Liu et al., miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat. Commun. 6, 8523 (2015). https://doi.org/10.1038/ncomms9523
F.O. Martinez, L. Helming, R. Milde, A. Varin, B.N. Melgert et al., Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121(9), e57-69 (2013). https://doi.org/10.1182/blood-2012-06-436212
P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1), 14–20 (2014). https://doi.org/10.1016/j.immuni.2014.06.008
K. Nelms, A.D. Keegan, J. Zamorano, J.J. Ryan, W.E. Paul, The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999). https://doi.org/10.1146/annurev.immunol.17.1.701
S.C. Huang, A.M. Smith, B. Everts, M. Colonna, E.L. Pearce et al., Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45(4), 817–830 (2016). https://doi.org/10.1016/j.immuni.2016.09.016
A.S. Divakaruni, W.Y. Hsieh, L. Minarrieta, T.N. Duong, K.K.O. Kim et al., Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 28(3), 490–50.e37 (2018). https://doi.org/10.1016/j.cmet.2018.06.001
J. Lundin, E. Kimby, L. Bergmann, T. Karakas, H. Mellstedt et al., Interleukin 4 therapy for patients with chronic lymphocytic leukaemia: a phase I/II study. Br. J. Haematol. 112(1), 155–160 (2001). https://doi.org/10.1046/j.1365-2141.2001.02525.x
Y. Qian, L. Li, Y. Song, L. Dong, P. Chen et al., Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials 164, 22–37 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.038
X. Ge, J. Hu, Y. Peng, Z. Zeng, D. He et al., Atmosphere-inspired multilayered nanoarmor with modulable protection and delivery of interleukin-4 for inflammatory microenvironment modulation. Biomaterials 301, 122254 (2023). https://doi.org/10.1016/j.biomaterials.2023.122254
V. Spieler, M.G. Ludwig, J. Dawson, B. Tigani, A. Littlewood-Evans et al., Targeting interleukin-4 to the arthritic joint. J. Control. Release 326, 172–180 (2020). https://doi.org/10.1016/j.jconrel.2020.07.005
R. Lang, D. Patel, J.J. Morris, R.L. Rutschman, P.J. Murray, Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169(5), 2253–2263 (2002). https://doi.org/10.4049/jimmunol.169.5.2253
P.J. Murray, The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc. Natl. Acad. Sci. U.S.A. 102(24), 8686–8691 (2005). https://doi.org/10.1073/pnas.0500419102
W. Ouyang, S. Rutz, N.K. Crellin, P.A. Valdez, S.G. Hymowitz, Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 29, 71–109 (2011). https://doi.org/10.1146/annurev-immunol-031210-101312
J. Patel, IL-10 reprogramming of metabolism in macrophages through mitophagy. Cardiovasc. Res. 113(11), e40–e41 (2017). https://doi.org/10.1093/cvr/cvx144
K. Minton, Immune regulation: IL-10 targets macrophage metabolism. Nat. Rev. Immunol. 17(6), 345 (2017). https://doi.org/10.1038/nri.2017.57
C.J. Huang, B.R. Stevens, R.B. Nielsen, P.N. Slovin, X. Fang et al., Interleukin-10 inhibition of nitric oxide biosynthesis involves suppression of CAT-2 transcription. Nitric Oxide 6(1), 79–84 (2002). https://doi.org/10.1006/niox.2001.0402
W.C. Huang, Y.S. Lin, C.Y. Wang, C.C. Tsai, H.C. Tseng et al., Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology 128(1 Suppl), e275-286 (2009). https://doi.org/10.1111/j.1365-2567.2008.02959.x
T. Schreiber, S. Ehlers, L. Heitmann, A. Rausch, J. Mages et al., Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J. Immunol. 183(2), 1301–1312 (2009). https://doi.org/10.4049/jimmunol.0803567
M. Jung, Y. Ma, R.P. Iyer, K.Y. DeLeon-Pennell, A. Yabluchanskiy et al., IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res. Cardiol. 112(3), 33 (2017). https://doi.org/10.1007/s00395-017-0622-5
O.P.B. Wiklander, M.A. Brennan, J. Lotvall, X.O. Breakefield, S. El Andaloussi, Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11(492), eaav8521 (2019). https://doi.org/10.1126/scitranslmed.aav8521
D. Li, K. Chen, H. Tang, S. Hu, L. Xin et al., A logic-based diagnostic and therapeutic hydrogel with multi-stimuli responsiveness to orchestrate diabetic bone regeneration. Adv. Mater. 34(11), e2108430 (2021). https://doi.org/10.1002/adma.202108430
R. Stienstra, R.T. Netea-Maier, N.P. Riksen, L.A.B. Joosten, M.G. Netea, Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab. 26(1), 142–156 (2017). https://doi.org/10.1016/j.cmet.2017.06.001
M. Munder, K. Eichmann, M. Modolell, Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160(11), 5347–5354 (1998). https://doi.org/10.4049/jimmunol.160.11.5347
N. Hannemann, S. Cao, D. Eriksson, A. Schnelzer, J. Jordan et al., Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. J. Clin. Inves