Engineering HOF-Based Mixed-Matrix Membranes for Efficient CO2 Separation
Corresponding Author: Zhongyi Jiang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 50
Abstract
Hydrogen-bonded organic frameworks (HOFs) have emerged as a new class of crystalline porous materials, and their application in membrane technology needs to be explored. Herein, for the first time, we demonstrated the utilization of HOF-based mixed-matrix membrane for CO2 separation. HOF-21, a unique metallo-hydrogen-bonded organic framework material, was designed and processed into nanofillers via amine modulator, uniformly dispersing with Pebax polymer. Featured with the mix-bonded framework, HOF-21 possessed moderate pore size of 0.35 nm and displayed excellent stability under humid feed gas. The chemical functions of multiple binding sites and continuous hydrogen-bonded network jointly facilitated the mass transport of CO2. The resulting HOF-21 mixed-matrix membrane exhibited a permeability above 750 Barrer, a selectivity of ~ 40 for CO2/CH4 and ~ 60 for CO2/N2, surpassing the 2008 Robeson upper bound. This work enlarges the family of mixed-matrix membranes and lays the foundation for HOF membrane development.
Highlights:
1 For the first time, the hydrogen-bonded organic frameworks (HOFs)-based mixed-matrix membranes were designed for CO2 separation
2 A size-controllable method for synthesis of HOF-21 nanoparticles was proposed via diethylamine-modulated framework assembly process
3 The HOF-21 mixed-matrix membranes exhibited outstanding separation performance with PCO2 of ~ 800 Barrer, and SCO2/CH4 of ~ 40, SCO2/N2 of ~ 60, surpassing the 2008 Robosen upper bound.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.S. Sholl, R.P. Lively, Seven chemical separations to change the world. Nature 532(7600), 435–437 (2016). https://doi.org/10.1038/532435a
- H. Wang, M. Wang, X. Liang, J. Yuan, H. Yang et al., Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50(9), 5468–5516 (2021). https://doi.org/10.1039/D0CS01347A
- H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
- Y. Liu, Y. Ren, H. Ma, G. He, Z. Jiang, Advanced organic molecular sieve membranes for carbon capture: current status, challenges and prospects. Adv. Membr. 2, 100028 (2022). https://doi.org/10.1016/j.advmem.2022.100028
- M. Zhou, Y. Lin, H. Xia, X. Wei, Y. Yao et al., A molecular foaming and activation strategy to porous n-doped carbon foams for supercapacitors and CO2 capture. Nano-Micro Lett. 12(1), 58 (2020). https://doi.org/10.1007/s40820-020-0389-3
- J. Zhang, Q. Xin, X. Li, M. Yun, R. Xu et al., Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J. Membr. Sci. 570, 343–354 (2019). https://doi.org/10.1016/j.memsci.2018.10.075
- M.S. Denny Jr., S.M. Cohen, In situ modification of Metal-organic frameworks in mixed-matrix membranes. Angew. Chem. Int. Ed. 54(31), 9029–9032 (2015). https://doi.org/10.1002/anie.201504077
- X. Jiang, S. He, G. Han, J. Long, S. Li et al., Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Appl. Mater. Interfaces 13(9), 11296–11305 (2021). https://doi.org/10.1021/acsami.0c22910
- B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A.P. Isfahani et al., Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanops. Nat. Energy 2, 170867 (2017). https://doi.org/10.1038/nenergy.2017.86
- H. Niu, H. Guo, L. Kang, L. Ren, R. Lv, S. Bai, Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 14(1), 153 (2022). https://doi.org/10.1007/s40820-022-00909-2
- M.S. Denny Jr., J.C. Moreton, L. Benz, S.M. Cohen, Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 1607812 (2016). https://doi.org/10.1038/natrevmats.2016.78
- Q. Qian, P.A. Asinger, M.J. Lee, G. Han, K.M. Rodriguez et al., MOF-based membranes for gas separations. Chem. Rev. 120(16), 8161–8266 (2020). https://doi.org/10.1021/acs.chemrev.0c00119
- Y. Wang, H. Jiang, Z. Guo, H. Ma, S. Wang et al., Advances in organic microporous membranes for CO2 separation. Energ. Environ. Sci. (2022). https://doi.org/10.1039/d2ee02449g
- I. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem. Int. Ed. 58(33), 11160–11170 (2019). https://doi.org/10.1002/anie.201902147
- B. Liu, X. Pan, D. Nie, X. Hu, E. Liu, T. Liu, Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 32, 200591248 (2020). https://doi.org/10.1002/adma.202005912
- Y. Yang, L. Li, R. Lin, Y. Ye, Z. Yao et al., Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13(10), 933 (2021). https://doi.org/10.1038/s41557-021-00740-z
- X. Luo, X. Jia, J. Deng, J. Zhong, H. Liu et al., A microporous hydrogen-bonded organic framework: exceptional stability and highly selective adsorption of gas and liquid. J. Am. Chem. Soc. 135(32), 11684–11687 (2013). https://doi.org/10.1021/ja403002m
- A. Karmakar, R. Illathvalappil, B. Anothumakkool, A. Sen, P. Samanta et al., Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials. Angew. Chem. Int. Ed. 55(36), 10667–10671 (2016). https://doi.org/10.1002/anie.201604534
- B. Wang, R. Lin, Z. Zhang, S. Xiang, B. Chen, Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 142(34), 14399–14416 (2020). https://doi.org/10.1021/jacs.0c06473
- L. Chen, Z. Yuan, H. Zhang, Y. Ye, Y. Yang et al., A flexible hydrogen-bonded organic framework constructed from a tetrabenzaldehyde with a carbazole n-h binding site for the highly selective recognition and separation of acetone. Angew. Chem. Int. Ed. 61, e202213959 (2022). https://doi.org/10.1002/anie.202213959
- Y. Yang, H. Zhang, Z. Yuan, J. Wang, F. Xiang et al., An ultramicroporous hydrogen-bonded organic framework exhibiting high C2H2/CO2 separation. Angew. Chem. Int. Ed. 61, e202207579 (2022). https://doi.org/10.1002/anie.202207579
- R. Lin, B. Chen, Hydrogen-bonded organic frameworks: chemistry and functions. Chem 8(8), 2114–2135 (2022). https://doi.org/10.1016/j.chempr.2022.06.015
- W. Li, Y. Li, J. Caro, A. Huang, Fabrication of a flexible hydrogen-bonded organic framework based mixed matrix membrane for hydrogen separation. J. Membr. Sci. 643, 120021 (2022). https://doi.org/10.1016/j.memsci.2021.120021
- Z. Bao, D. Xie, G. Chang, H. Wu, L. Li et al., Fine tuning and specific binding sites with a porous hydrogen-bonded metal-complex framework for gas selective separations. J. Am. Chem. Soc. 140(13), 4596–4603 (2018). https://doi.org/10.1021/jacs.7b13706
- Y. Xie, F. Zhong, H. Chen, D. Chen, J. Wang et al., Fabrication of hydrogen-bonded metal-complex frameworks for capturing iodine. J. Solid State Chem. 277, 525–530 (2019). https://doi.org/10.1016/j.jssc.2019.07.013
- N. Zhang, D. Peng, H. Wu, Y. Ren, L. Yang et al., Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. J. Membr. Sci. 549, 670–679 (2018). https://doi.org/10.1016/j.memsci.2017.10.054
- F. Pan, W. Li, Y. Zhang, J. Sun, M. Wang et al., Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. AIChE J. 65(1), 196–206 (2019). https://doi.org/10.1002/aic.16399
- U.W.R. Siagian, A. Raksajati, N.F. Himma, K. Khoiruddin, I.G. Wenten, Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor. J. Nat. Gas Sci. Eng. 67, 172–195 (2019). https://doi.org/10.1016/j.jngse.2019.04.008
- L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin et al., Advances in high permeability polymer-based membrane materials for CO2 separations. Energy. Environ. Sci. 9(6), 1189–1863 (2016). https://doi.org/10.1039/c6ee00811a
References
D.S. Sholl, R.P. Lively, Seven chemical separations to change the world. Nature 532(7600), 435–437 (2016). https://doi.org/10.1038/532435a
H. Wang, M. Wang, X. Liang, J. Yuan, H. Yang et al., Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50(9), 5468–5516 (2021). https://doi.org/10.1039/D0CS01347A
H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14(1), 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
Y. Liu, Y. Ren, H. Ma, G. He, Z. Jiang, Advanced organic molecular sieve membranes for carbon capture: current status, challenges and prospects. Adv. Membr. 2, 100028 (2022). https://doi.org/10.1016/j.advmem.2022.100028
M. Zhou, Y. Lin, H. Xia, X. Wei, Y. Yao et al., A molecular foaming and activation strategy to porous n-doped carbon foams for supercapacitors and CO2 capture. Nano-Micro Lett. 12(1), 58 (2020). https://doi.org/10.1007/s40820-020-0389-3
J. Zhang, Q. Xin, X. Li, M. Yun, R. Xu et al., Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J. Membr. Sci. 570, 343–354 (2019). https://doi.org/10.1016/j.memsci.2018.10.075
M.S. Denny Jr., S.M. Cohen, In situ modification of Metal-organic frameworks in mixed-matrix membranes. Angew. Chem. Int. Ed. 54(31), 9029–9032 (2015). https://doi.org/10.1002/anie.201504077
X. Jiang, S. He, G. Han, J. Long, S. Li et al., Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Appl. Mater. Interfaces 13(9), 11296–11305 (2021). https://doi.org/10.1021/acsami.0c22910
B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A.P. Isfahani et al., Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanops. Nat. Energy 2, 170867 (2017). https://doi.org/10.1038/nenergy.2017.86
H. Niu, H. Guo, L. Kang, L. Ren, R. Lv, S. Bai, Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett. 14(1), 153 (2022). https://doi.org/10.1007/s40820-022-00909-2
M.S. Denny Jr., J.C. Moreton, L. Benz, S.M. Cohen, Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 1607812 (2016). https://doi.org/10.1038/natrevmats.2016.78
Q. Qian, P.A. Asinger, M.J. Lee, G. Han, K.M. Rodriguez et al., MOF-based membranes for gas separations. Chem. Rev. 120(16), 8161–8266 (2020). https://doi.org/10.1021/acs.chemrev.0c00119
Y. Wang, H. Jiang, Z. Guo, H. Ma, S. Wang et al., Advances in organic microporous membranes for CO2 separation. Energ. Environ. Sci. (2022). https://doi.org/10.1039/d2ee02449g
I. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem. Int. Ed. 58(33), 11160–11170 (2019). https://doi.org/10.1002/anie.201902147
B. Liu, X. Pan, D. Nie, X. Hu, E. Liu, T. Liu, Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 32, 200591248 (2020). https://doi.org/10.1002/adma.202005912
Y. Yang, L. Li, R. Lin, Y. Ye, Z. Yao et al., Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13(10), 933 (2021). https://doi.org/10.1038/s41557-021-00740-z
X. Luo, X. Jia, J. Deng, J. Zhong, H. Liu et al., A microporous hydrogen-bonded organic framework: exceptional stability and highly selective adsorption of gas and liquid. J. Am. Chem. Soc. 135(32), 11684–11687 (2013). https://doi.org/10.1021/ja403002m
A. Karmakar, R. Illathvalappil, B. Anothumakkool, A. Sen, P. Samanta et al., Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials. Angew. Chem. Int. Ed. 55(36), 10667–10671 (2016). https://doi.org/10.1002/anie.201604534
B. Wang, R. Lin, Z. Zhang, S. Xiang, B. Chen, Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 142(34), 14399–14416 (2020). https://doi.org/10.1021/jacs.0c06473
L. Chen, Z. Yuan, H. Zhang, Y. Ye, Y. Yang et al., A flexible hydrogen-bonded organic framework constructed from a tetrabenzaldehyde with a carbazole n-h binding site for the highly selective recognition and separation of acetone. Angew. Chem. Int. Ed. 61, e202213959 (2022). https://doi.org/10.1002/anie.202213959
Y. Yang, H. Zhang, Z. Yuan, J. Wang, F. Xiang et al., An ultramicroporous hydrogen-bonded organic framework exhibiting high C2H2/CO2 separation. Angew. Chem. Int. Ed. 61, e202207579 (2022). https://doi.org/10.1002/anie.202207579
R. Lin, B. Chen, Hydrogen-bonded organic frameworks: chemistry and functions. Chem 8(8), 2114–2135 (2022). https://doi.org/10.1016/j.chempr.2022.06.015
W. Li, Y. Li, J. Caro, A. Huang, Fabrication of a flexible hydrogen-bonded organic framework based mixed matrix membrane for hydrogen separation. J. Membr. Sci. 643, 120021 (2022). https://doi.org/10.1016/j.memsci.2021.120021
Z. Bao, D. Xie, G. Chang, H. Wu, L. Li et al., Fine tuning and specific binding sites with a porous hydrogen-bonded metal-complex framework for gas selective separations. J. Am. Chem. Soc. 140(13), 4596–4603 (2018). https://doi.org/10.1021/jacs.7b13706
Y. Xie, F. Zhong, H. Chen, D. Chen, J. Wang et al., Fabrication of hydrogen-bonded metal-complex frameworks for capturing iodine. J. Solid State Chem. 277, 525–530 (2019). https://doi.org/10.1016/j.jssc.2019.07.013
N. Zhang, D. Peng, H. Wu, Y. Ren, L. Yang et al., Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. J. Membr. Sci. 549, 670–679 (2018). https://doi.org/10.1016/j.memsci.2017.10.054
F. Pan, W. Li, Y. Zhang, J. Sun, M. Wang et al., Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. AIChE J. 65(1), 196–206 (2019). https://doi.org/10.1002/aic.16399
U.W.R. Siagian, A. Raksajati, N.F. Himma, K. Khoiruddin, I.G. Wenten, Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor. J. Nat. Gas Sci. Eng. 67, 172–195 (2019). https://doi.org/10.1016/j.jngse.2019.04.008
L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin et al., Advances in high permeability polymer-based membrane materials for CO2 separations. Energy. Environ. Sci. 9(6), 1189–1863 (2016). https://doi.org/10.1039/c6ee00811a