Dual-Defect Engineering Strategy Enables High-Durability Rechargeable Magnesium-Metal Batteries
Corresponding Author: Fusheng Pan
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 184
Abstract
Rechargeable magnesium-metal batteries (RMMBs) are promising next-generation secondary batteries; however, their development is inhibited by the low capacity and short cycle lifespan of cathodes. Although various strategies have been devised to enhance the Mg2+ migration kinetics and structural stability of cathodes, they fail to improve electronic conductivity, rendering the cathodes incompatible with magnesium-metal anodes. Herein, we propose a dual-defect engineering strategy, namely, the incorporation of Mg2+ pre-intercalation defect (P-Mgd) and oxygen defect (Od), to simultaneously improve the Mg2+ migration kinetics, structural stability, and electronic conductivity of the cathodes of RMMBs. Using lamellar V2O5·nH2O as a demo cathode material, we prepare a cathode comprising Mg0.07V2O5·1.4H2O nanobelts composited with reduced graphene oxide (MVOH/rGO) with P-Mgd and Od. The Od enlarges interlayer spacing, accelerates Mg2+ migration kinetics, and prevents structural collapse, while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity. Consequently, the MVOH/rGO cathode exhibits a high capacity of 197 mAh g−1, and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g−1, capable of powering a light-emitting diode. The proposed dual-defect engineering strategy provides new insights into developing high-durability, high-capacity cathodes, advancing the practical application of RMMBs, and other new secondary batteries.
Highlights:
1 MVOH/rGO cathode with dual defect of Mg2+ pre-intercalation defect (P-Mgd) and surface oxygen defect (Od) is prepared.
2 The dual defect of Od and P-Mgd in MVOH/rGO lamellar structure effectively enhances Mg2+ migration kinetics, structural stability, and electronic conductivity.
3 The Mg foil//MVOH/rGO full cell achieves an ultralong lifespan of 850 cycles at 0.1 A g−1 and powers an orange light-emitting diode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Wei, L. Tan, Y. Zhang, Z. Wang, J. Feng et al., Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 52, 299–319 (2022). https://doi.org/10.1016/j.ensm.2022.08.014
- F. Liu, G. Cao, J. Ban, H. Lei, Y. Zhang et al., Recent advances based on Mg anodes and their interfacial modulation in Mg batteries. J. Magnes. Alloys 10, 2699–2716 (2022). https://doi.org/10.1016/j.jma.2022.09.004
- Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16, 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
- H. Duan, Y. You, G. Wang, X. Ou, J. Wen et al., Lithium-ion charged polymer channels flattening lithium metal anode. Nano-Micro Lett. 16, 78 (2024). https://doi.org/10.1007/s40820-023-01300-5
- Y. Zhu, G. Huang, J. Yin, Y. Lei, A.-H. Emwas et al., Hydrated MgxV5O12 cathode with improved Mg2+ storage performance. Adv. Energy Mater. 10, 2002128 (2020). https://doi.org/10.1002/aenm.202002128
- L. Wang, Z. Li, Z. Meng, Y. Xiu, B. Dasari et al., Designing gel polymer electrolyte with synergetic properties for rechargeable magnesium batteries. Energy Storage Mater. 48, 155–163 (2022). https://doi.org/10.1016/j.ensm.2022.03.006
- S.-B. Son, T. Gao, S.P. Harvey, K.X. Steirer, A. Stokes et al., An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532–539 (2018). https://doi.org/10.1038/s41557-018-0019-6
- X. Wang, X. Zhang, G. Zhao, H. Hong, Z. Tang et al., Ether-water hybrid electrolyte contributing to excellent Mg ion storage in layered sodium vanadate. ACS Nano 16, 6093–6102 (2022). https://doi.org/10.1021/acsnano.1c11590
- L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. Xiong et al., Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 30, e1801984 (2018). https://doi.org/10.1002/adma.201801984
- Y.S. Joe, M.S. Kang, G. Jang, S.J. Lee, P. Nakhanivei et al., Intercalation of bilayered V2O5 by electronically coupled PEDOT for greatly improved kinetic performance of magnesium ion battery cathodes. Chem. Eng. J. 460, 141706 (2023). https://doi.org/10.1016/j.cej.2023.141706
- X. Du, G. Huang, Y. Qin, L. Wang, Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries. RSC Adv. 5, 76352–76355 (2015). https://doi.org/10.1039/C5RA15284D
- X.-F. Ma, H.-Y. Li, W. Ren, D. Gao, F. Chen et al., A critical review of vanadium-based electrode materials for rechargeable magnesium batteries. J. Mater. Sci. Technol. 153, 56–74 (2023). https://doi.org/10.1016/j.jmst.2022.12.052
- Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv. Energy Mater. 13, 2370120 (2023). https://doi.org/10.1002/aenm.202370120
- M. Kotobuki, B. Yan, L. Lu, Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Mater. 54, 227–253 (2023). https://doi.org/10.1016/j.ensm.2022.10.034
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- X. Peng, X. Zhang, L. Wang, L. Hu, S.H.-S. Cheng et al., Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 26, 784–791 (2016). https://doi.org/10.1002/adfm.201503859
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
- Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong et al., Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 5, 1194–1209 (2019). https://doi.org/10.1016/j.chempr.2019.02.014
- N. Sa, T.L. Kinnibrugh, H. Wang, G. Sai Gautam, K.W. Chapman et al., Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material. Chem. Mater. 28, 2962–2969 (2016). https://doi.org/10.1021/acs.chemmater.6b00026
- X. Deng, Y. Xu, Q. An, F. Xiong, S. Tan et al., Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. J. Mater. Chem. A 7, 10644–10650 (2019). https://doi.org/10.1039/C8TA11236C
- C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
- C. Zuo, Y. Xiao, X. Pan, F. Xiong, W. Zhang et al., Organic-inorganic superlattices of vanadium Oxide@Polyaniline for high-performance magnesium-ion batteries. ChemSusChem 14, 2093–2099 (2021). https://doi.org/10.1002/cssc.202100263
- Z. Yao, Y. Yu, Q. Wu, M. Cui, X. Zhou et al., Maximizing magnesiation capacity of nanowire cluster oxides by conductive macromolecule pillaring and multication intercalation. Small 17, e2102168 (2021). https://doi.org/10.1002/smll.202102168
- Z. Liu, H. Sun, L. Qin, X. Cao, J. Zhou et al., Interlayer doping in layered vanadium oxides for low-cost energy storage: sodium-ion batteries and aqueous zinc-ion batteries. ChemNanoMat 6, 1553–1566 (2020). https://doi.org/10.1002/cnma.202000384
- X. Liang, L. Yan, W. Li, Y. Bai, C. Zhu et al., Flexible high-energy and stable rechargeable vanadium-zinc battery based on oxygen defect modulated V2O5 cathode. Nano Energy 87, 106164 (2021). https://doi.org/10.1016/j.nanoen.2021.106164
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33, 2305659 (2023). https://doi.org/10.1002/adfm.202305659
- J. Yang, X. Wang, J. Wang, X. Dong, L. Zhu et al., Ab initio investigations on metal ion pre-intercalation strategy of layered V2O5 cathode for magnesium-ion batteries. Appl. Surf. Sci. 569, 150983 (2021). https://doi.org/10.1016/j.apsusc.2021.150983
- H. Tang, F. Xiong, Y. Jiang, C. Pei, S. Tan et al., Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 58, 347–354 (2019). https://doi.org/10.1016/j.nanoen.2019.01.053
- Z. Li, Y. Xu, L. Wu, J. Cui, H. Dou et al., Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells. Nat. Commun. 14, 6816 (2023). https://doi.org/10.1038/s41467-023-42492-z
- Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15, 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
- B. Zhang, X. Han, W. Kang, D. Sun, Structure and oxygen-defect regulation of hydrated vanadium oxide for enhanced zinc ion storage via interlayer doping strategy. Nano Res. 16, 6094–6103 (2023). https://doi.org/10.1007/s12274-022-4834-0
- Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu et al., Dual effects of metal and organic ions co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 13, 2301480 (2023). https://doi.org/10.1002/aenm.202301480
- S. Li, X. Xu, W. Chen, J. Zhao, K. Wang et al., Synergetic impact of oxygen and vanadium defects endows NH4V4O10 cathode with superior performances for aqueous zinc-ion battery. Energy Storage Mater. 65, 103108 (2024). https://doi.org/10.1016/j.ensm.2023.103108
- M.-X. Wang, Q. Liu, Z.-F. Li, H.-F. Sun, E.A. Stach et al., Structural modification of graphene sheets to create a dense network of defect sites. J. Phys. Chem. Lett. 4, 1484–1488 (2013). https://doi.org/10.1021/jz4001664
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- Y. Zhang, L. Xu, H. Jiang, Y. Liu, C. Meng, Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries. J. Colloid Interface Sci. 603, 641–650 (2021). https://doi.org/10.1016/j.jcis.2021.06.141
- X. Zhao, L. Li, L. Zheng, L. Fan, Y. Yi et al., 3d-orbital regulation of transition metal intercalated vanadate as optimized cathodes for calcium-ion batteries. Adv. Funct. Mater. 34, 2309753 (2024). https://doi.org/10.1002/adfm.202309753
- Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14, 5581–5589 (2020). https://doi.org/10.1021/acsnano.9b09963
- H.-H. Huang, K.K.H. De Silva, G.R.A. Kumara, M. Yoshimura, Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 8, 6849 (2018). https://doi.org/10.1038/s41598-018-25194-1
- P. Zhang, Z. Li, S. Zhang, G. Shao, Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ. Mater. 1, 5–12 (2018). https://doi.org/10.1002/eem2.12001
- S. Liu, H. Xu, X. Bian, J. Feng, J. Liu et al., Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano 12, 7380–7387 (2018). https://doi.org/10.1021/acsnano.8b04075
- C.A. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han, Y. Xu, Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16, 1 (2024). https://doi.org/10.1007/s40820-023-01222-2
- Z. Tan, X. Chen, Y. Li, X. Xi, S. Hao et al., Enabling superior cycling stability of LiNi0.9Co0.05Mn0.05O2 with controllable internal strain. Adv. Funct. Mater. 33, 2215123 (2023). https://doi.org/10.1002/adfm.202215123
- S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-MnO2@Graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13, 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
- Q. Wang, H. Li, R. Zhang, Z. Liu, H. Deng et al., Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy Storage Mater. 51, 630–637 (2022). https://doi.org/10.1016/j.ensm.2022.07.012
- P.W. Ruch, D. Cericola, M. Hahn, R. Kötz, A. Wokaun, On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions. J. Electroanal. Chem. 636, 128–131 (2009). https://doi.org/10.1016/j.jelechem.2009.09.007
- D. Wu, Y. Zhuang, F. Wang, Y. Yang, J. Zeng et al., High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16, 4880–4887 (2023). https://doi.org/10.1007/s12274-021-3679-2
- J.J. Wang, S.S. Tan, G.B. Zhang, Y.L. Jiang, Y.M. Yin et al., Fast and stable Mg2+ intercalation in a high voltage NaV2O2(PO4)2F/rGO cathode material for magnesium-ion batteries. Sci. China Mater. 63(9), 1651–1662 (2020). https://doi.org/10.1007/s40843-020-1311-1
- X.-F. Ma, H.-Y. Li, X. Zhu, W. Ren, X. Zhang et al., Switchable and strain-releasable Mg-ion diffusion nanohighway enables high-capacity and long-life pyrovanadate cathode. Small 18, e2202250 (2022). https://doi.org/10.1002/smll.202202250
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018). https://doi.org/10.1002/adma.201703725
- L. Wei, R. Lian, D. Wang, Y. Zhao, D. Yang et al., Magnesium ion storage properties in a layered (NH4)2V6O16·1.5H2O nanobelt cathode material activated by lattice water. ACS Appl. Mater. Interfaces 13, 30625–30632 (2021). https://doi.org/10.1021/acsami.1c06398
- R. Sun, X. Ji, C. Luo, S. Hou, P. Hu et al., Water-pillared sodium vanadium bronze nanowires for enhanced rechargeable magnesium ion storage. Small 16, 2000741 (2020). https://doi.org/10.1002/smll.202000741
- Y. Du, Y. Chen, S. Tan, J. Chen, X. Huang et al., Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping. Energy Storage Mater. 62, 102939 (2023). https://doi.org/10.1016/j.ensm.2023.102939
- J. Xiao, X. Zhang, H. Fan, Y. Zhao, Y. Su et al., Stable solid electrolyte interphase in situ formed on magnesium-metal anode by using a perfluorinated alkoxide-based all-magnesium salt electrolyte. Adv. Mater. 34, e2203783 (2022). https://doi.org/10.1002/adma.202203783
- Y. Cheng, Y. Shao, V. Raju, X. Ji, B.L. Mehdi et al., Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater. 26, 3446–3453 (2016). https://doi.org/10.1002/adfm.201505501
- M. Rashad, H. Zhang, M. Asif, K. Feng, X. Li et al., Low-cost room-temperature synthesis of NaV3O8·1.69H2O nanobelts for Mg batteries. ACS Appl. Mater. Interfaces 10, 4757–4766 (2018). https://doi.org/10.1021/acsami.7b18682
- C. Wu, G. Zhao, X. Yu, C. Liu, P. Lyu et al., MoS2/graphene heterostructure with facilitated Mg-diffusion kinetics for high-performance rechargeable magnesium batteries. Chem. Eng. J. 412, 128736 (2021). https://doi.org/10.1016/j.cej.2021.128736
- J.H. Ha, B. Lee, J.H. Kim, B.W. Cho, S.-O. Kim et al., Silver chalcogenides (Ag2X, X=S, Se) nanops embedded in carbon matrix for facile magnesium storage via conve-rsion chemistry. Energy Storage Mater. 27, 459–465 (2020). https://doi.org/10.1016/j.ensm.2019.12.008
- F. Liu, Y. Liu, X. Zhao, X. Liu, L.-Z. Fan, Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J. Mater. Chem. A 7, 16712–16719 (2019). https://doi.org/10.1039/c9ta02212k
References
C. Wei, L. Tan, Y. Zhang, Z. Wang, J. Feng et al., Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 52, 299–319 (2022). https://doi.org/10.1016/j.ensm.2022.08.014
F. Liu, G. Cao, J. Ban, H. Lei, Y. Zhang et al., Recent advances based on Mg anodes and their interfacial modulation in Mg batteries. J. Magnes. Alloys 10, 2699–2716 (2022). https://doi.org/10.1016/j.jma.2022.09.004
Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16, 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
H. Duan, Y. You, G. Wang, X. Ou, J. Wen et al., Lithium-ion charged polymer channels flattening lithium metal anode. Nano-Micro Lett. 16, 78 (2024). https://doi.org/10.1007/s40820-023-01300-5
Y. Zhu, G. Huang, J. Yin, Y. Lei, A.-H. Emwas et al., Hydrated MgxV5O12 cathode with improved Mg2+ storage performance. Adv. Energy Mater. 10, 2002128 (2020). https://doi.org/10.1002/aenm.202002128
L. Wang, Z. Li, Z. Meng, Y. Xiu, B. Dasari et al., Designing gel polymer electrolyte with synergetic properties for rechargeable magnesium batteries. Energy Storage Mater. 48, 155–163 (2022). https://doi.org/10.1016/j.ensm.2022.03.006
S.-B. Son, T. Gao, S.P. Harvey, K.X. Steirer, A. Stokes et al., An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532–539 (2018). https://doi.org/10.1038/s41557-018-0019-6
X. Wang, X. Zhang, G. Zhao, H. Hong, Z. Tang et al., Ether-water hybrid electrolyte contributing to excellent Mg ion storage in layered sodium vanadate. ACS Nano 16, 6093–6102 (2022). https://doi.org/10.1021/acsnano.1c11590
L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. Xiong et al., Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 30, e1801984 (2018). https://doi.org/10.1002/adma.201801984
Y.S. Joe, M.S. Kang, G. Jang, S.J. Lee, P. Nakhanivei et al., Intercalation of bilayered V2O5 by electronically coupled PEDOT for greatly improved kinetic performance of magnesium ion battery cathodes. Chem. Eng. J. 460, 141706 (2023). https://doi.org/10.1016/j.cej.2023.141706
X. Du, G. Huang, Y. Qin, L. Wang, Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries. RSC Adv. 5, 76352–76355 (2015). https://doi.org/10.1039/C5RA15284D
X.-F. Ma, H.-Y. Li, W. Ren, D. Gao, F. Chen et al., A critical review of vanadium-based electrode materials for rechargeable magnesium batteries. J. Mater. Sci. Technol. 153, 56–74 (2023). https://doi.org/10.1016/j.jmst.2022.12.052
Z. Li, J. Häcker, M. Fichtner, Z. Zhao-Karger, Cathode materials and chemistries for magnesium batteries: challenges and opportunities. Adv. Energy Mater. 13, 2370120 (2023). https://doi.org/10.1002/aenm.202370120
M. Kotobuki, B. Yan, L. Lu, Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Mater. 54, 227–253 (2023). https://doi.org/10.1016/j.ensm.2022.10.034
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
X. Peng, X. Zhang, L. Wang, L. Hu, S.H.-S. Cheng et al., Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 26, 784–791 (2016). https://doi.org/10.1002/adfm.201503859
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11, 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong et al., Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 5, 1194–1209 (2019). https://doi.org/10.1016/j.chempr.2019.02.014
N. Sa, T.L. Kinnibrugh, H. Wang, G. Sai Gautam, K.W. Chapman et al., Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material. Chem. Mater. 28, 2962–2969 (2016). https://doi.org/10.1021/acs.chemmater.6b00026
X. Deng, Y. Xu, Q. An, F. Xiong, S. Tan et al., Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. J. Mater. Chem. A 7, 10644–10650 (2019). https://doi.org/10.1039/C8TA11236C
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
C. Zuo, Y. Xiao, X. Pan, F. Xiong, W. Zhang et al., Organic-inorganic superlattices of vanadium Oxide@Polyaniline for high-performance magnesium-ion batteries. ChemSusChem 14, 2093–2099 (2021). https://doi.org/10.1002/cssc.202100263
Z. Yao, Y. Yu, Q. Wu, M. Cui, X. Zhou et al., Maximizing magnesiation capacity of nanowire cluster oxides by conductive macromolecule pillaring and multication intercalation. Small 17, e2102168 (2021). https://doi.org/10.1002/smll.202102168
Z. Liu, H. Sun, L. Qin, X. Cao, J. Zhou et al., Interlayer doping in layered vanadium oxides for low-cost energy storage: sodium-ion batteries and aqueous zinc-ion batteries. ChemNanoMat 6, 1553–1566 (2020). https://doi.org/10.1002/cnma.202000384
X. Liang, L. Yan, W. Li, Y. Bai, C. Zhu et al., Flexible high-energy and stable rechargeable vanadium-zinc battery based on oxygen defect modulated V2O5 cathode. Nano Energy 87, 106164 (2021). https://doi.org/10.1016/j.nanoen.2021.106164
P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. Fan et al., Manipulating oxygen vacancies to spur ion kinetics in V2O5 structures for superior aqueous zinc-ion batteries. Adv. Funct. Mater. 33, 2305659 (2023). https://doi.org/10.1002/adfm.202305659
J. Yang, X. Wang, J. Wang, X. Dong, L. Zhu et al., Ab initio investigations on metal ion pre-intercalation strategy of layered V2O5 cathode for magnesium-ion batteries. Appl. Surf. Sci. 569, 150983 (2021). https://doi.org/10.1016/j.apsusc.2021.150983
H. Tang, F. Xiong, Y. Jiang, C. Pei, S. Tan et al., Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 58, 347–354 (2019). https://doi.org/10.1016/j.nanoen.2019.01.053
Z. Li, Y. Xu, L. Wu, J. Cui, H. Dou et al., Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells. Nat. Commun. 14, 6816 (2023). https://doi.org/10.1038/s41467-023-42492-z
Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15, 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
B. Zhang, X. Han, W. Kang, D. Sun, Structure and oxygen-defect regulation of hydrated vanadium oxide for enhanced zinc ion storage via interlayer doping strategy. Nano Res. 16, 6094–6103 (2023). https://doi.org/10.1007/s12274-022-4834-0
Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu et al., Dual effects of metal and organic ions co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 13, 2301480 (2023). https://doi.org/10.1002/aenm.202301480
S. Li, X. Xu, W. Chen, J. Zhao, K. Wang et al., Synergetic impact of oxygen and vanadium defects endows NH4V4O10 cathode with superior performances for aqueous zinc-ion battery. Energy Storage Mater. 65, 103108 (2024). https://doi.org/10.1016/j.ensm.2023.103108
M.-X. Wang, Q. Liu, Z.-F. Li, H.-F. Sun, E.A. Stach et al., Structural modification of graphene sheets to create a dense network of defect sites. J. Phys. Chem. Lett. 4, 1484–1488 (2013). https://doi.org/10.1021/jz4001664
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
Y. Zhang, L. Xu, H. Jiang, Y. Liu, C. Meng, Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries. J. Colloid Interface Sci. 603, 641–650 (2021). https://doi.org/10.1016/j.jcis.2021.06.141
X. Zhao, L. Li, L. Zheng, L. Fan, Y. Yi et al., 3d-orbital regulation of transition metal intercalated vanadate as optimized cathodes for calcium-ion batteries. Adv. Funct. Mater. 34, 2309753 (2024). https://doi.org/10.1002/adfm.202309753
Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14, 5581–5589 (2020). https://doi.org/10.1021/acsnano.9b09963
H.-H. Huang, K.K.H. De Silva, G.R.A. Kumara, M. Yoshimura, Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 8, 6849 (2018). https://doi.org/10.1038/s41598-018-25194-1
P. Zhang, Z. Li, S. Zhang, G. Shao, Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ. Mater. 1, 5–12 (2018). https://doi.org/10.1002/eem2.12001
S. Liu, H. Xu, X. Bian, J. Feng, J. Liu et al., Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano 12, 7380–7387 (2018). https://doi.org/10.1021/acsnano.8b04075
C.A. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han, Y. Xu, Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16, 1 (2024). https://doi.org/10.1007/s40820-023-01222-2
Z. Tan, X. Chen, Y. Li, X. Xi, S. Hao et al., Enabling superior cycling stability of LiNi0.9Co0.05Mn0.05O2 with controllable internal strain. Adv. Funct. Mater. 33, 2215123 (2023). https://doi.org/10.1002/adfm.202215123
S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-MnO2@Graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13, 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
Q. Wang, H. Li, R. Zhang, Z. Liu, H. Deng et al., Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy Storage Mater. 51, 630–637 (2022). https://doi.org/10.1016/j.ensm.2022.07.012
P.W. Ruch, D. Cericola, M. Hahn, R. Kötz, A. Wokaun, On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions. J. Electroanal. Chem. 636, 128–131 (2009). https://doi.org/10.1016/j.jelechem.2009.09.007
D. Wu, Y. Zhuang, F. Wang, Y. Yang, J. Zeng et al., High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16, 4880–4887 (2023). https://doi.org/10.1007/s12274-021-3679-2
J.J. Wang, S.S. Tan, G.B. Zhang, Y.L. Jiang, Y.M. Yin et al., Fast and stable Mg2+ intercalation in a high voltage NaV2O2(PO4)2F/rGO cathode material for magnesium-ion batteries. Sci. China Mater. 63(9), 1651–1662 (2020). https://doi.org/10.1007/s40843-020-1311-1
X.-F. Ma, H.-Y. Li, X. Zhu, W. Ren, X. Zhang et al., Switchable and strain-releasable Mg-ion diffusion nanohighway enables high-capacity and long-life pyrovanadate cathode. Small 18, e2202250 (2022). https://doi.org/10.1002/smll.202202250
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018). https://doi.org/10.1002/adma.201703725
L. Wei, R. Lian, D. Wang, Y. Zhao, D. Yang et al., Magnesium ion storage properties in a layered (NH4)2V6O16·1.5H2O nanobelt cathode material activated by lattice water. ACS Appl. Mater. Interfaces 13, 30625–30632 (2021). https://doi.org/10.1021/acsami.1c06398
R. Sun, X. Ji, C. Luo, S. Hou, P. Hu et al., Water-pillared sodium vanadium bronze nanowires for enhanced rechargeable magnesium ion storage. Small 16, 2000741 (2020). https://doi.org/10.1002/smll.202000741
Y. Du, Y. Chen, S. Tan, J. Chen, X. Huang et al., Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping. Energy Storage Mater. 62, 102939 (2023). https://doi.org/10.1016/j.ensm.2023.102939
J. Xiao, X. Zhang, H. Fan, Y. Zhao, Y. Su et al., Stable solid electrolyte interphase in situ formed on magnesium-metal anode by using a perfluorinated alkoxide-based all-magnesium salt electrolyte. Adv. Mater. 34, e2203783 (2022). https://doi.org/10.1002/adma.202203783
Y. Cheng, Y. Shao, V. Raju, X. Ji, B.L. Mehdi et al., Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater. 26, 3446–3453 (2016). https://doi.org/10.1002/adfm.201505501
M. Rashad, H. Zhang, M. Asif, K. Feng, X. Li et al., Low-cost room-temperature synthesis of NaV3O8·1.69H2O nanobelts for Mg batteries. ACS Appl. Mater. Interfaces 10, 4757–4766 (2018). https://doi.org/10.1021/acsami.7b18682
C. Wu, G. Zhao, X. Yu, C. Liu, P. Lyu et al., MoS2/graphene heterostructure with facilitated Mg-diffusion kinetics for high-performance rechargeable magnesium batteries. Chem. Eng. J. 412, 128736 (2021). https://doi.org/10.1016/j.cej.2021.128736
J.H. Ha, B. Lee, J.H. Kim, B.W. Cho, S.-O. Kim et al., Silver chalcogenides (Ag2X, X=S, Se) nanops embedded in carbon matrix for facile magnesium storage via conve-rsion chemistry. Energy Storage Mater. 27, 459–465 (2020). https://doi.org/10.1016/j.ensm.2019.12.008
F. Liu, Y. Liu, X. Zhao, X. Liu, L.-Z. Fan, Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J. Mater. Chem. A 7, 16712–16719 (2019). https://doi.org/10.1039/c9ta02212k