Heteroatom-Coordinated Fe–N4 Catalysts for Enhanced Oxygen Reduction in Alkaline Seawater Zinc-Air Batteries
Corresponding Author: Danlei Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 96
Abstract
Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes. However, their efficiency is hindered by the sluggish oxygen reduction reaction (ORR) and chloride-induced degradation over conventional catalysts. In this study, we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N4 single-atom seawater catalyst materials (Cl–Fe–N4 and S–Fe–N4). X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure. Systematic evaluation of catalytic activities revealed that compared with S–Fe–N4, Cl–Fe–N4 exhibits smaller electrochemical active surface area and specific surface area, yet demonstrates higher limiting current density (5.8 mA cm−2). The assembled zinc-air batteries using Cl–Fe–N4 showed superior power density (187.7 mW cm−2 at 245.1 mA cm−2), indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity. Moreover, Cl–Fe–N4 demonstrates stronger Cl− poisoning resistance in seawater environments. Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability. Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom, leading to more active reaction intermediates and increased electron density of Fe single sites, thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.
Highlights:
1 A universal synthetic strategy was proposed to construct heteroatom axially coordinated Fe–N4 single-atom seawater catalyst materials (Cl–Fe–N4 and S–Fe–N4).
2 The Cl–Fe–N4 catalyst achieves a limiting current density of 5.8 mA cm−2 and a half-wave potential of 0.931 V vs. RHE in alkaline synthetic seawater, outperforming commercial Pt/C (40 wt%).
3 The seawater-based zinc-air battery fabricated with Cl–Fe–N4 demonstrates a power density of 187.7 mW cm−2 at 245.1 mA cm−2 and maintains stable cycling performance for 200 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Zhang, M. Zhu, H. Tang, Q. Lu, T. Yang et al., A high-voltage Zn-air battery based on an asymmetric electrolyte configuration. Energy Storage Mater. 59, 102791 (2023). https://doi.org/10.1016/j.ensm.2023.102791
- X. Zou, M. Tang, Q. Lu, Y. Wang, Z. Shao et al., Carbon-based electrocatalysts for rechargeable Zn–air batteries: design concepts, recent progress and future perspectives. Energy Environ. Sci. 17(2), 386–424 (2024). https://doi.org/10.1039/d3ee03059h
- Y. Li, Y. Ding, B. Zhang, Y. Huang, H. Qi et al., N, O symmetric double coordination of an unsaturated Fe single-atom confined within a graphene framework for extraordinarily boosting oxygen reduction in Zn–air batteries. Energy Environ. Sci. 16(6), 2629–2636 (2023). https://doi.org/10.1039/d3ee00747b
- C. Yeop, K. Eun, L. Youn, P. B., K. Keun, Cobalt nanops-encapsulated holey nitrogen-doped carbon nanotubes for stable and efficient oxygen reduction and evolution reactions in rechargeable Zn-air batteries. Appl. Catal. B Environ. 325, 122386 (2023). https://doi.org/10.1016/j.apcatb.2023.122386
- Y. Zhan, Z.-B. Ding, F. He, X. Lv, W.-F. Wu et al., Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte. Chem. Eng. J. 443, 136456 (2022). https://doi.org/10.1016/j.cej.2022.136456
- G. Liu, Y. Xu, T. Yang, L. Jiang, Recent advances in electrocatalysts for seawater splitting. Nano Mater. Sci. 5(1), 101–116 (2023). https://doi.org/10.1016/j.nanoms.2020.12.003
- W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao et al., Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B Environ. 260, 118198 (2020). https://doi.org/10.1016/j.apcatb.2019.118198
- D. Deng, H. Ma, S. Wu, H. Wang, J. Qian et al., Engineering electronic density and coordination environment of Mn–NxSites via Zn cooperation for quasi-solid-state zinc-air batteries. Renewables 1(3), 362–372 (2023). https://doi.org/10.31635/renewables.023.202200020
- J. Wang, C. Hu, L. Wang, Y. Yuan, K. Zhu et al., Suppressing thermal migration by fine-tuned metal-support interaction of iron single-atom catalyst for efficient ORR. Adv. Funct. Mater. 33(43), 2304277 (2023). https://doi.org/10.1002/adfm.202304277
- F. Luo, A. Roy, L. Silvioli, D.A. Cullen, A. Zitolo et al., P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 19(11), 1215–1223 (2020). https://doi.org/10.1038/s41563-020-0717-5
- Z. Luo, L. Yin, L. Xiang, T.X. Liu, Z. Song et al., AuPt nanops/multi-walled carbon nanotubes catalyst as high active and stable oxygen reduction catalyst for Al-Air batteries. Appl. Surf. Sci. 564, 150474 (2021). https://doi.org/10.1016/j.apsusc.2021.150474
- Z. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu et al., Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 31(31), 1808115 (2019). https://doi.org/10.1002/adma.201808115
- Y. Zhao, Y. Gao, Z. Chen, Z. Li, T. Ma et al., Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B Environ. 297, 120395 (2021). https://doi.org/10.1016/j.apcatb.2021.120395
- Z. Wu, Y. Zhao, W. Xiao, Y. Fu, B. Jia et al., Metallic-bonded Pt–co for atomically dispersed Pt in the Co4N matrix as an efficient electrocatalyst for hydrogen generation. ACS Nano 16(11), 18038–18047 (2022). https://doi.org/10.1021/acsnano.2c04090
- W. Yu, Z. Chen, W. Xiao, Y. Chai, B. Dong et al., Phosphorus doped two-dimensional CoFe2O4 nanobelts decorated with Ru nanoclusters and Co–Fe hydroxide as efficient electrocatalysts toward hydrogen generation. Inorg. Chem. Front. 9(8), 1847–1855 (2022). https://doi.org/10.1039/D2QI00086E
- G.E. Fenoy, J. Scotto, J. Azcárate, M. Rafti, W.A. Marmisollé et al., Powering up the oxygen reduction reaction through the integration of O2-adsorbing metal–organic frameworks on nanocomposite electrodes. ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b01021
- Y. Guo, M. Yang, R.-C. Xie, R.G. Compton, The oxygen reduction reaction at silver electrodes in high chloride media and the implications for silver nanop toxicity. Chem. Sci. 12(1), 397–406 (2021). https://doi.org/10.1039/D0SC04295A
- Q. Wang, S. Kaushik, X. Xiao, Q. Xu, Sustainable zinc–air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 52(17), 6139–6190 (2023). https://doi.org/10.1039/d2cs00684g
- S.T. Senthilkumar, S.O. Park, J. Kim, S.M. Hwang, S.K. Kwak et al., Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J. Mater. Chem. A 5(27), 14174–14181 (2017). https://doi.org/10.1039/c7ta03298f
- G. Liu, Oxygen evolution reaction electrocatalysts for seawater splitting: a review. J. Electroanal. Chem. 923, 116805 (2022). https://doi.org/10.1016/j.jelechem.2022.116805
- C.-X. Zhao, X. Liu, J.-N. Liu, J. Wang, X. Wan et al., Inductive effect on single-atom sites. J. Am. Chem. Soc. 145(50), 27531–27538 (2023). https://doi.org/10.1021/jacs.3c09190
- J. Bai, T. Zhao, M. Xu, B. Mei, L. Yang et al., Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification. Nat. Commun. 15, 4219 (2024). https://doi.org/10.1038/s41467-024-47817-0
- X. Chen, X. Zheng, Z. Yin, J. Lu, Y. Wang et al., Pre-adsorption of chlorine enhances the oxyphilic property and oxygen reduction activity of Fe/Se-NC electrocatalyst in seawater electrolyte. Chem. Eng. J. 482, 148856 (2024). https://doi.org/10.1016/j.cej.2024.148856
- Y. Deng, J. Luo, B. Chi, H. Tang, J. Li et al., Advanced atomically dispersed metal–nitrogen–carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 11(37), 2101222 (2021). https://doi.org/10.1002/aenm.202101222
- J. Liu, W. Chen, S. Yuan, T. Liu, Q. Wang, High-coordination Fe–N4SP single-atom catalysts via the multi-shell synergistic effect for the enhanced oxygen reduction reaction of rechargeable Zn–air battery cathodes. Energy Environ. Sci. 17(1), 249–259 (2024). https://doi.org/10.1039/d3ee03183g
- S. Wu, X. Liu, H. Mao, J. Zhu, G. Zhou et al., Unraveling the tandem effect of nitrogen configuration promoting oxygen reduction reaction in alkaline seawater. Adv. Energy Mater. 14(24), 2400183 (2024). https://doi.org/10.1002/aenm.202400183
- K. Liu, J. Fu, T. Luo, G. Ni, H. Li et al., Potential-dependent active moiety of Fe–N–C catalysts for the oxygen reduction reaction. J. Phys. Chem. Lett. 14(15), 3749–3756 (2023). https://doi.org/10.1021/acs.jpclett.3c00583
- K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni et al., Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 13, 2075 (2022). https://doi.org/10.1038/s41467-022-29797-1
- Y. Wang, J. Hao, Y. Liu, M. Liu, K. Sheng et al., Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts. J. Energy Chem. 76, 601–616 (2023). https://doi.org/10.1016/j.jechem.2022.09.047
- T. He, Y. Chen, Q. Liu, B. Lu, X. Song et al., Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal-air batteries. Angew. Chem. Int. Ed. 61(27), e202201007 (2022). https://doi.org/10.1002/anie.202201007
- K. Chen, K. Liu, P. An, H. Li, Y. Lin et al., Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 11, 4173 (2020). https://doi.org/10.1038/s41467-020-18062-y
- Y. Lin, K. Liu, K. Chen, Y. Xu, H. Li et al., Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction. ACS Catal. 11(10), 6304–6315 (2021). https://doi.org/10.1021/acscatal.0c04966
- D.H. Suh, S.K. Park, P. Nakhanivej, Y. Kim, S.M. Hwang et al., Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery. J. Power. Sources 372, 31–37 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.056
- S. Kim, S. Ji, H. Yang, H. Son, H. Choi et al., Near surface electric field enhancement: Pyridinic-N rich few-layer graphene encapsulating cobalt catalysts as highly active and stable bifunctional ORR/OER catalyst for seawater batteries. Appl. Catal. B Environ. 310, 121361 (2022). https://doi.org/10.1016/j.apcatb.2022.121361
- Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma et al., Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 135(4), 1201–1204 (2013). https://doi.org/10.1021/ja310566z
- P. Zhang, B.B. Xiao, X.L. Hou, Y.F. Zhu, Q. Jiang, Layered SiC sheets: a potential catalyst for oxygen reduction reaction. Sci. Rep. 4, 3821 (2014). https://doi.org/10.1038/srep03821
- M. Chisaka, T. Iijima, Y. Ishihara, Y. Suzuki, R. Inada et al., Carbon catalyst codoped with boron and nitrogen for oxygen reduction reaction in acid media. Electrochim. Acta 85, 399–410 (2012). https://doi.org/10.1016/j.electacta.2012.07.131
- C.H. Choi, S.H. Park, S.I. Woo, Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions. Green Chem. 13(2), 406–412 (2011). https://doi.org/10.1039/C0GC00384K
- P. Sabhapathy, P. Raghunath, A. Sabbah, I. Shown, K.S. Bayikadi et al., Axial chlorine induced electron delocalization in atomically dispersed FeN4 electrocatalyst for oxygen reduction reaction with improved hydrogen peroxide tolerance. Small 19(45), 2303598 (2023). https://doi.org/10.1002/smll.202303598
- L. Wang, M. Huang, J. Zhang, Y. Han, X. Liu et al., Turn the harm into a benefit: axial Cl adsorption on curved Fe-N4 single sites for boosted oxygen reduction reaction in seawater. Small 21(12), 2411191 (2025). https://doi.org/10.1002/smll.202411191
- B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005). https://doi.org/10.1107/s0909049505012719
- P. Rao, Y. Liu, X. Shi, Y. Yu, Y. Zhou et al., Protection of Fe single-atoms by Fe clusters for chlorine-resistant oxygen reduction reaction. Adv. Funct. Mater. 34(46), 2407121 (2024). https://doi.org/10.1002/adfm.202407121
- Y. Liu, K. Li, B. Ge, L. Pu, Z. Liu, Influence of micropore and mesoporous in activated carbon air-cathode catalysts on oxygen reduction reaction in microbial fuel cells. Electrochim. Acta 214, 110–118 (2016). https://doi.org/10.1016/j.electacta.2016.08.034
- T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
- Z. Mo, W. Yang, S. Gao, J.K. Shang, Y. Ding et al., Efficient oxygen reduction reaction by a highly porous, nitrogen-doped carbon sphere electrocatalyst through space confinement effect in nanopores. J. Adv. Ceram. 10(4), 714–728 (2021). https://doi.org/10.1007/s40145-021-0466-1
- J. Wu, A. Mehmood, G. Zhang, S. Wu, G. Ali et al., Highly selective O2 reduction to H2O2 catalyzed by cobalt nanops supported on nitrogen-doped carbon in alkaline solution. ACS Catal. 11(9), 5035–5046 (2021). https://doi.org/10.1021/acscatal.0c05701
- D. Li, B. Wang, K. Zheng, H. Chen, Y. Xing et al., Precisely tuning the electronic states of organic polymer electrocatalysts via thiophene-based moieties for enhanced oxygen reduction reaction. iScience 28(3), 112007 (2025). https://doi.org/10.1016/j.isci.2025.112007
- D. Li, C. Li, L. Zhang, H. Li, L. Zhu et al., Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 142(18), 8104–8108 (2020). https://doi.org/10.1021/jacs.0c02225
- F. Li, L. Sun, Y. Luo, M. Li, Y. Xu et al., Effect of thiophene S on the enhanced ORR electrocatalytic performance of sulfur-doped graphene quantum dot/reduced graphene oxide nanocomposites. RSC Adv. 8(35), 19635–19641 (2018). https://doi.org/10.1039/c8ra02040j
- D. Malko, T. Lopes, E. Symianakis, A.R. Kucernak, The intriguing poison tolerance of non-precious metal oxygen reduction reaction (ORR) catalysts. J. Mater. Chem. A 4(1), 142–152 (2016). https://doi.org/10.1039/c5ta05794a
- Y. Liu, S. Feng, L. Shan, Y. Zhu, C. Zhou et al., Localized negatively charged interfaces for seawater electrolyte-based zinc-air batteries. Adv. Funct. Mater. 35(26), 2422874 (2025). https://doi.org/10.1002/adfm.202422874
- Q. Jing, Z. Mei, X. Sheng, X. Zou, Q. Xu et al., Tuning the bonding behavior of d-p orbitals to enhance oxygen reduction through push–pull electronic effects. Adv. Funct. Mater. 34(3), 2307002 (2024). https://doi.org/10.1002/adfm.202307002
- X. Liu, H. Mao, G. Liu, Q. Yu, S. Wu et al., Metal doping and hetero-engineering of Cu-doped CoFe/Co embedded in N-doped carbon for improving trifunctional electrocatalytic activity in alkaline seawater. Chem. Eng. J. 451, 138699 (2023). https://doi.org/10.1016/j.cej.2022.138699
- L. Qiao, X. Wang, R. Xu, C. Zhang, K. Chen et al., Nitrogen-doped carbon shell armored ‘Janus’ Co/Co9S8 heterojunction as robust bi-functional oxygen reduction reaction/oxygen evolution reaction catalysts in seawater-based rechargeable Zn-air batteries. Mater. Today Energy 37, 101398 (2023). https://doi.org/10.1016/j.mtener.2023.101398
- S. Song, W. Li, Y.-P. Deng, Y. Ruan, Y. Zhang et al., TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries. Nano Energy 67, 104208 (2020). https://doi.org/10.1016/j.nanoen.2019.104208
- L.-J. Peng, J.-P. Huang, Q.-R. Pan, Y. Liang, N. Yin et al., A simple method for the preparation of a nickel selenide and cobalt selenide mixed catalyst to enhance bifunctional oxygen activity for Zn–air batteries. RSC Adv. 11(32), 19406–19416 (2021). https://doi.org/10.1039/D1RA02861H
- B. Ji, J. Gou, Y. Zheng, X. Zhou, P. Kidkhunthod et al., Metalloid-cluster ligands enabling stable and active FeN4-ten motifs for the oxygen reduction reaction. Adv. Mater. 34(28), 2202714 (2022). https://doi.org/10.1002/adma.202202714
- R. Ma, X. Cui, X. Xu, Y. Wang, G. Xiang et al., Collaborative integration of ultrafine Fe2P nanocrystals into Fe, N, P-codoped carbon nanoshells for highly-efficient oxygen reduction. Nano Energy 108, 108179 (2023). https://doi.org/10.1016/j.nanoen.2023.108179
- Q. Miao, Z. Chen, X. Li, M. Liu, G. Liu et al., Construction of catalytic Fe2N5P sites in covalent organic framework-derived carbon for catalyzing the oxygen reduction reaction. ACS Catal. 13(16), 11127–11135 (2023). https://doi.org/10.1021/acscatal.3c02186
- D. Li, C. Batchelor-McAuley, R.G. Compton, Some thoughts about reporting the electrocatalytic performance of nanomaterials. Appl. Mater. Today 18, 100404 (2020). https://doi.org/10.1016/j.apmt.2019.05.011
References
H. Zhang, M. Zhu, H. Tang, Q. Lu, T. Yang et al., A high-voltage Zn-air battery based on an asymmetric electrolyte configuration. Energy Storage Mater. 59, 102791 (2023). https://doi.org/10.1016/j.ensm.2023.102791
X. Zou, M. Tang, Q. Lu, Y. Wang, Z. Shao et al., Carbon-based electrocatalysts for rechargeable Zn–air batteries: design concepts, recent progress and future perspectives. Energy Environ. Sci. 17(2), 386–424 (2024). https://doi.org/10.1039/d3ee03059h
Y. Li, Y. Ding, B. Zhang, Y. Huang, H. Qi et al., N, O symmetric double coordination of an unsaturated Fe single-atom confined within a graphene framework for extraordinarily boosting oxygen reduction in Zn–air batteries. Energy Environ. Sci. 16(6), 2629–2636 (2023). https://doi.org/10.1039/d3ee00747b
C. Yeop, K. Eun, L. Youn, P. B., K. Keun, Cobalt nanops-encapsulated holey nitrogen-doped carbon nanotubes for stable and efficient oxygen reduction and evolution reactions in rechargeable Zn-air batteries. Appl. Catal. B Environ. 325, 122386 (2023). https://doi.org/10.1016/j.apcatb.2023.122386
Y. Zhan, Z.-B. Ding, F. He, X. Lv, W.-F. Wu et al., Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte. Chem. Eng. J. 443, 136456 (2022). https://doi.org/10.1016/j.cej.2022.136456
G. Liu, Y. Xu, T. Yang, L. Jiang, Recent advances in electrocatalysts for seawater splitting. Nano Mater. Sci. 5(1), 101–116 (2023). https://doi.org/10.1016/j.nanoms.2020.12.003
W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao et al., Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B Environ. 260, 118198 (2020). https://doi.org/10.1016/j.apcatb.2019.118198
D. Deng, H. Ma, S. Wu, H. Wang, J. Qian et al., Engineering electronic density and coordination environment of Mn–NxSites via Zn cooperation for quasi-solid-state zinc-air batteries. Renewables 1(3), 362–372 (2023). https://doi.org/10.31635/renewables.023.202200020
J. Wang, C. Hu, L. Wang, Y. Yuan, K. Zhu et al., Suppressing thermal migration by fine-tuned metal-support interaction of iron single-atom catalyst for efficient ORR. Adv. Funct. Mater. 33(43), 2304277 (2023). https://doi.org/10.1002/adfm.202304277
F. Luo, A. Roy, L. Silvioli, D.A. Cullen, A. Zitolo et al., P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 19(11), 1215–1223 (2020). https://doi.org/10.1038/s41563-020-0717-5
Z. Luo, L. Yin, L. Xiang, T.X. Liu, Z. Song et al., AuPt nanops/multi-walled carbon nanotubes catalyst as high active and stable oxygen reduction catalyst for Al-Air batteries. Appl. Surf. Sci. 564, 150474 (2021). https://doi.org/10.1016/j.apsusc.2021.150474
Z. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu et al., Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 31(31), 1808115 (2019). https://doi.org/10.1002/adma.201808115
Y. Zhao, Y. Gao, Z. Chen, Z. Li, T. Ma et al., Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B Environ. 297, 120395 (2021). https://doi.org/10.1016/j.apcatb.2021.120395
Z. Wu, Y. Zhao, W. Xiao, Y. Fu, B. Jia et al., Metallic-bonded Pt–co for atomically dispersed Pt in the Co4N matrix as an efficient electrocatalyst for hydrogen generation. ACS Nano 16(11), 18038–18047 (2022). https://doi.org/10.1021/acsnano.2c04090
W. Yu, Z. Chen, W. Xiao, Y. Chai, B. Dong et al., Phosphorus doped two-dimensional CoFe2O4 nanobelts decorated with Ru nanoclusters and Co–Fe hydroxide as efficient electrocatalysts toward hydrogen generation. Inorg. Chem. Front. 9(8), 1847–1855 (2022). https://doi.org/10.1039/D2QI00086E
G.E. Fenoy, J. Scotto, J. Azcárate, M. Rafti, W.A. Marmisollé et al., Powering up the oxygen reduction reaction through the integration of O2-adsorbing metal–organic frameworks on nanocomposite electrodes. ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b01021
Y. Guo, M. Yang, R.-C. Xie, R.G. Compton, The oxygen reduction reaction at silver electrodes in high chloride media and the implications for silver nanop toxicity. Chem. Sci. 12(1), 397–406 (2021). https://doi.org/10.1039/D0SC04295A
Q. Wang, S. Kaushik, X. Xiao, Q. Xu, Sustainable zinc–air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 52(17), 6139–6190 (2023). https://doi.org/10.1039/d2cs00684g
S.T. Senthilkumar, S.O. Park, J. Kim, S.M. Hwang, S.K. Kwak et al., Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J. Mater. Chem. A 5(27), 14174–14181 (2017). https://doi.org/10.1039/c7ta03298f
G. Liu, Oxygen evolution reaction electrocatalysts for seawater splitting: a review. J. Electroanal. Chem. 923, 116805 (2022). https://doi.org/10.1016/j.jelechem.2022.116805
C.-X. Zhao, X. Liu, J.-N. Liu, J. Wang, X. Wan et al., Inductive effect on single-atom sites. J. Am. Chem. Soc. 145(50), 27531–27538 (2023). https://doi.org/10.1021/jacs.3c09190
J. Bai, T. Zhao, M. Xu, B. Mei, L. Yang et al., Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification. Nat. Commun. 15, 4219 (2024). https://doi.org/10.1038/s41467-024-47817-0
X. Chen, X. Zheng, Z. Yin, J. Lu, Y. Wang et al., Pre-adsorption of chlorine enhances the oxyphilic property and oxygen reduction activity of Fe/Se-NC electrocatalyst in seawater electrolyte. Chem. Eng. J. 482, 148856 (2024). https://doi.org/10.1016/j.cej.2024.148856
Y. Deng, J. Luo, B. Chi, H. Tang, J. Li et al., Advanced atomically dispersed metal–nitrogen–carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 11(37), 2101222 (2021). https://doi.org/10.1002/aenm.202101222
J. Liu, W. Chen, S. Yuan, T. Liu, Q. Wang, High-coordination Fe–N4SP single-atom catalysts via the multi-shell synergistic effect for the enhanced oxygen reduction reaction of rechargeable Zn–air battery cathodes. Energy Environ. Sci. 17(1), 249–259 (2024). https://doi.org/10.1039/d3ee03183g
S. Wu, X. Liu, H. Mao, J. Zhu, G. Zhou et al., Unraveling the tandem effect of nitrogen configuration promoting oxygen reduction reaction in alkaline seawater. Adv. Energy Mater. 14(24), 2400183 (2024). https://doi.org/10.1002/aenm.202400183
K. Liu, J. Fu, T. Luo, G. Ni, H. Li et al., Potential-dependent active moiety of Fe–N–C catalysts for the oxygen reduction reaction. J. Phys. Chem. Lett. 14(15), 3749–3756 (2023). https://doi.org/10.1021/acs.jpclett.3c00583
K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni et al., Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 13, 2075 (2022). https://doi.org/10.1038/s41467-022-29797-1
Y. Wang, J. Hao, Y. Liu, M. Liu, K. Sheng et al., Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts. J. Energy Chem. 76, 601–616 (2023). https://doi.org/10.1016/j.jechem.2022.09.047
T. He, Y. Chen, Q. Liu, B. Lu, X. Song et al., Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal-air batteries. Angew. Chem. Int. Ed. 61(27), e202201007 (2022). https://doi.org/10.1002/anie.202201007
K. Chen, K. Liu, P. An, H. Li, Y. Lin et al., Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 11, 4173 (2020). https://doi.org/10.1038/s41467-020-18062-y
Y. Lin, K. Liu, K. Chen, Y. Xu, H. Li et al., Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction. ACS Catal. 11(10), 6304–6315 (2021). https://doi.org/10.1021/acscatal.0c04966
D.H. Suh, S.K. Park, P. Nakhanivej, Y. Kim, S.M. Hwang et al., Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery. J. Power. Sources 372, 31–37 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.056
S. Kim, S. Ji, H. Yang, H. Son, H. Choi et al., Near surface electric field enhancement: Pyridinic-N rich few-layer graphene encapsulating cobalt catalysts as highly active and stable bifunctional ORR/OER catalyst for seawater batteries. Appl. Catal. B Environ. 310, 121361 (2022). https://doi.org/10.1016/j.apcatb.2022.121361
Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma et al., Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 135(4), 1201–1204 (2013). https://doi.org/10.1021/ja310566z
P. Zhang, B.B. Xiao, X.L. Hou, Y.F. Zhu, Q. Jiang, Layered SiC sheets: a potential catalyst for oxygen reduction reaction. Sci. Rep. 4, 3821 (2014). https://doi.org/10.1038/srep03821
M. Chisaka, T. Iijima, Y. Ishihara, Y. Suzuki, R. Inada et al., Carbon catalyst codoped with boron and nitrogen for oxygen reduction reaction in acid media. Electrochim. Acta 85, 399–410 (2012). https://doi.org/10.1016/j.electacta.2012.07.131
C.H. Choi, S.H. Park, S.I. Woo, Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions. Green Chem. 13(2), 406–412 (2011). https://doi.org/10.1039/C0GC00384K
P. Sabhapathy, P. Raghunath, A. Sabbah, I. Shown, K.S. Bayikadi et al., Axial chlorine induced electron delocalization in atomically dispersed FeN4 electrocatalyst for oxygen reduction reaction with improved hydrogen peroxide tolerance. Small 19(45), 2303598 (2023). https://doi.org/10.1002/smll.202303598
L. Wang, M. Huang, J. Zhang, Y. Han, X. Liu et al., Turn the harm into a benefit: axial Cl adsorption on curved Fe-N4 single sites for boosted oxygen reduction reaction in seawater. Small 21(12), 2411191 (2025). https://doi.org/10.1002/smll.202411191
B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005). https://doi.org/10.1107/s0909049505012719
P. Rao, Y. Liu, X. Shi, Y. Yu, Y. Zhou et al., Protection of Fe single-atoms by Fe clusters for chlorine-resistant oxygen reduction reaction. Adv. Funct. Mater. 34(46), 2407121 (2024). https://doi.org/10.1002/adfm.202407121
Y. Liu, K. Li, B. Ge, L. Pu, Z. Liu, Influence of micropore and mesoporous in activated carbon air-cathode catalysts on oxygen reduction reaction in microbial fuel cells. Electrochim. Acta 214, 110–118 (2016). https://doi.org/10.1016/j.electacta.2016.08.034
T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
Z. Mo, W. Yang, S. Gao, J.K. Shang, Y. Ding et al., Efficient oxygen reduction reaction by a highly porous, nitrogen-doped carbon sphere electrocatalyst through space confinement effect in nanopores. J. Adv. Ceram. 10(4), 714–728 (2021). https://doi.org/10.1007/s40145-021-0466-1
J. Wu, A. Mehmood, G. Zhang, S. Wu, G. Ali et al., Highly selective O2 reduction to H2O2 catalyzed by cobalt nanops supported on nitrogen-doped carbon in alkaline solution. ACS Catal. 11(9), 5035–5046 (2021). https://doi.org/10.1021/acscatal.0c05701
D. Li, B. Wang, K. Zheng, H. Chen, Y. Xing et al., Precisely tuning the electronic states of organic polymer electrocatalysts via thiophene-based moieties for enhanced oxygen reduction reaction. iScience 28(3), 112007 (2025). https://doi.org/10.1016/j.isci.2025.112007
D. Li, C. Li, L. Zhang, H. Li, L. Zhu et al., Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 142(18), 8104–8108 (2020). https://doi.org/10.1021/jacs.0c02225
F. Li, L. Sun, Y. Luo, M. Li, Y. Xu et al., Effect of thiophene S on the enhanced ORR electrocatalytic performance of sulfur-doped graphene quantum dot/reduced graphene oxide nanocomposites. RSC Adv. 8(35), 19635–19641 (2018). https://doi.org/10.1039/c8ra02040j
D. Malko, T. Lopes, E. Symianakis, A.R. Kucernak, The intriguing poison tolerance of non-precious metal oxygen reduction reaction (ORR) catalysts. J. Mater. Chem. A 4(1), 142–152 (2016). https://doi.org/10.1039/c5ta05794a
Y. Liu, S. Feng, L. Shan, Y. Zhu, C. Zhou et al., Localized negatively charged interfaces for seawater electrolyte-based zinc-air batteries. Adv. Funct. Mater. 35(26), 2422874 (2025). https://doi.org/10.1002/adfm.202422874
Q. Jing, Z. Mei, X. Sheng, X. Zou, Q. Xu et al., Tuning the bonding behavior of d-p orbitals to enhance oxygen reduction through push–pull electronic effects. Adv. Funct. Mater. 34(3), 2307002 (2024). https://doi.org/10.1002/adfm.202307002
X. Liu, H. Mao, G. Liu, Q. Yu, S. Wu et al., Metal doping and hetero-engineering of Cu-doped CoFe/Co embedded in N-doped carbon for improving trifunctional electrocatalytic activity in alkaline seawater. Chem. Eng. J. 451, 138699 (2023). https://doi.org/10.1016/j.cej.2022.138699
L. Qiao, X. Wang, R. Xu, C. Zhang, K. Chen et al., Nitrogen-doped carbon shell armored ‘Janus’ Co/Co9S8 heterojunction as robust bi-functional oxygen reduction reaction/oxygen evolution reaction catalysts in seawater-based rechargeable Zn-air batteries. Mater. Today Energy 37, 101398 (2023). https://doi.org/10.1016/j.mtener.2023.101398
S. Song, W. Li, Y.-P. Deng, Y. Ruan, Y. Zhang et al., TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries. Nano Energy 67, 104208 (2020). https://doi.org/10.1016/j.nanoen.2019.104208
L.-J. Peng, J.-P. Huang, Q.-R. Pan, Y. Liang, N. Yin et al., A simple method for the preparation of a nickel selenide and cobalt selenide mixed catalyst to enhance bifunctional oxygen activity for Zn–air batteries. RSC Adv. 11(32), 19406–19416 (2021). https://doi.org/10.1039/D1RA02861H
B. Ji, J. Gou, Y. Zheng, X. Zhou, P. Kidkhunthod et al., Metalloid-cluster ligands enabling stable and active FeN4-ten motifs for the oxygen reduction reaction. Adv. Mater. 34(28), 2202714 (2022). https://doi.org/10.1002/adma.202202714
R. Ma, X. Cui, X. Xu, Y. Wang, G. Xiang et al., Collaborative integration of ultrafine Fe2P nanocrystals into Fe, N, P-codoped carbon nanoshells for highly-efficient oxygen reduction. Nano Energy 108, 108179 (2023). https://doi.org/10.1016/j.nanoen.2023.108179
Q. Miao, Z. Chen, X. Li, M. Liu, G. Liu et al., Construction of catalytic Fe2N5P sites in covalent organic framework-derived carbon for catalyzing the oxygen reduction reaction. ACS Catal. 13(16), 11127–11135 (2023). https://doi.org/10.1021/acscatal.3c02186
D. Li, C. Batchelor-McAuley, R.G. Compton, Some thoughts about reporting the electrocatalytic performance of nanomaterials. Appl. Mater. Today 18, 100404 (2020). https://doi.org/10.1016/j.apmt.2019.05.011