Self-Regulated Bilateral Anchoring Enables Efficient Charge Transport Pathways for High-Performance Rigid and Flexible Perovskite Solar Cells
Corresponding Author: Xu Pan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 328
Abstract
Interface modification has been demonstrated as an effective means to enhance the performance of perovskite solar cells. However, the effect depends on the anchoring mode and strength of the interfacial molecules, which determines whether long-term robust interface for carrier viaduct can be achieved under operational light illumination. Herein, we select squaric acid (SA) as the interfacial molecule between the perovskite and SnO2 layer and propose a self-regulated bilateral anchoring strategy. The unique four-membered ring conjugated structure and dicarboxylic acid groups facilitate stable hydrogen bonds and coordination bonds at both SnO2/SA and SA/PbI2 interfaces. The self-transforming property of SA enables the dynamic bilateral anchoring at the buried interface, ultimately releasing residual stress and constructing a stable interfacial molecular bridge. The results show that SA molecular bridge not only can effectively inhibit the generation of diverse charged defects but also serves as an effective electron transport pathway, resulting in improved power conversion efficiency (PCE) from 23.19 to 25.50% and excellent stability at the maximum power point. Additionally, the PCEs of the flexible and large-area (1 cm2) devices were increased to 24.92% and 24.01%, respectively, demonstrating the universal applicability of the bilateral anchoring to PSCs based on different substrates and larger area.
Highlights:
1 Robust interface molecular bridge was constructed by employing self-transforming squaric acid (SA) to reduce residual stress and passivate defects at the buried interface.
2 Attributing to the efficient charge transport pathways, the SA-modified perovskite solar cells demonstrate high photovoltaic performance with power conversion efficiency up to 25.50% (rigid) and 24.92% (flexible).
3 The SA-modified devices demonstrate excellent stability under various environmental stress conditions, including humidity, thermal aging, light irradiation, and bending.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Chen, X. Pan, W. Liu, M. Cai, D. Kou et al., Efficient panchromatic inorganic–organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem. Commun. 49(66), 7277–7279 (2013). https://doi.org/10.1039/C3CC42297F
- M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang et al., Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics. Nano-Micro Lett. 17(1), 39 (2024). https://doi.org/10.1007/s40820-024-01538-7
- Z. Shao, Z. Wang, Z. Li, Y. Fan, H. Meng et al., A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 58(17), 5587–5591 (2019). https://doi.org/10.1002/anie.201814024
- C. Zhao, H. Zhang, A. Krishna, J. Xu, J. Yao, Interface engineering for highly efficient and stable perovskite solar cells. Adv. Opt. Mater. 12(7), 2301949 (2024). https://doi.org/10.1002/adom.202301949
- National Renewable Energy Laboratory (NREL), Best research-cell efficiencies chart. http://www.nrel.gov/pv/assets/images/efficiency-chart.png (Accessed: January 2025).
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- Y. Ren, K. Zhang, Z. Lin, X. Wei, M. Xu et al., Long-chain gemini surfactant-assisted blade coating enables large-area carbon-based perovskite solar modules with record performance. Nano-Micro Lett. 15(1), 182 (2023). https://doi.org/10.1007/s40820-023-01155-w
- Z. Shen, Q. Han, X. Luo, Y. Shen, T. Wang et al., Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy Environ. Sci. 15(3), 1078–1085 (2022). https://doi.org/10.1039/D1EE02897A
- A. Uddin, H. Yi, Progress and challenges of SnO2 electron transport layer for perovskite solar cells: a critical review. Sol. RRL 6(6), 2100983 (2022). https://doi.org/10.1002/solr.202100983
- K. Wei, J. Deng, L. Yang, C. Zhang, M. Huang et al., A Core@Dual–shell nanostructured SnO2 to modulate the buried interfaces toward stable perovskite solar cells with minimized energy losses. Adv. Energy Mater. 13(4), 2203448 (2023). https://doi.org/10.1002/aenm.202203448
- X. Liu, J. Min, Q. Chen, T. Liu, G. Qu et al., Synergy effect of a π-conjugated ionic compound: dual interfacial energy level regulation and passivation to promote voc and stability of planar perovskite solar cells. Angew. Chem. Int. Ed. 61(11), e202117303 (2022). https://doi.org/10.1002/anie.202117303
- L. Chen, Z. Liu, L. Qiu, J. Xiong, L. Song et al., Multifunctional regulation of SnO2 nanocrystals by snail mucus for preparation of rigid or flexible perovskite solar cells in air. ACS Nano 17(23), 23794–23804 (2023). https://doi.org/10.1021/acsnano.3c07784
- C. Deng, J. Wu, Y. Yang, Y. Du, R. Li et al., Modulating residual lead iodide via functionalized buried interface for efficient and stable perovskite solar cells. ACS Energy Lett. 8(1), 666–676 (2023). https://doi.org/10.1021/acsenergylett.2c02378
- Y. Xu, X. Guo, Z. Lin, Q. Wang, J. Su et al., Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62(33), e202306229 (2023). https://doi.org/10.1002/anie.202306229
- X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33(7), 2006435 (2021). https://doi.org/10.1002/adma.202006435
- Z.-W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12(20), 2104030 (2022). https://doi.org/10.1002/aenm.202104030
- Q. Fu, X. Tang, Y. Gao, H. Liu, M. Chen et al., Dimensional tuning of perylene diimide-based polymers for perovskite solar cells with over 24% efficiency. Small 19(24), 2301175 (2023). https://doi.org/10.1002/smll.202301175
- F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photonics 17(6), 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
- J. Tian, J. Wu, R. Li, Y. Lin, J. Geng et al., Cage polyamine molecule modulating the buried interface of tin oxide/perovskite in photovoltaic devices. Nano Energy 118, 108939 (2023). https://doi.org/10.1016/j.nanoen.2023.108939
- L. Yang, H. Zhou, Y. Duan, M. Wu, K. He et al., 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride. Adv. Mater. 35(16), 2211545 (2023). https://doi.org/10.1002/adma.202211545
- H. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Molecular bridge on buried interface for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62(34), e202304568 (2023). https://doi.org/10.1002/anie.202304568
- Y. Zhou, L.M. Herz, A.K. Jen, M. Saliba, Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7(9), 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5
- S. Xiong, S. Jiang, Y. Zhang, Z. Lv, R. Bai et al., Revealing buried heterointerface energetics towards highly efficient perovskite solar cells. Nano Energy 109, 108281 (2023). https://doi.org/10.1016/j.nanoen.2023.108281
- B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33(41), 2103394 (2021). https://doi.org/10.1002/adma.202103394
- C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang et al., Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 15(1), 17 (2022). https://doi.org/10.1007/s40820-022-00992-5
- X. Ji, L. Bi, Q. Fu, B. Li, J. Wang et al., Target therapy for buried interface enables stable perovskite solar cells with 2505% efficiency. Adv. Mater. 35(39), 2303665 (2023). https://doi.org/10.1002/adma.202303665
- G. Liu, H. Zheng, J. Ye, S. Xu, L. Zhang et al., Mixed-phase low-dimensional perovskite-assisted interfacial lead directional management for stable perovskite solar cells with efficiency over 24%. ACS Energy Lett. 6(12), 4395–4404 (2021). https://doi.org/10.1021/acsenergylett.1c01878
- G. Kresse, J. Hafner, Ab initiomolecular dynamics for open-shell transition metals. Phys. Rev. B 48(17), 13115–13118 (1993). https://doi.org/10.1103/physrevb.48.13115
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965). https://doi.org/10.1103/physrev.140.a1133
- V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033
- K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008). https://doi.org/10.1107/s0021889808012016
- Y. Yang, T. Zhao, M.-H. Li, X. Wu, M. Han et al., Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells. Chem. Eng. J. 451, 138962 (2023). https://doi.org/10.1016/j.cej.2022.138962
- Y. Zhang, R. Yu, M. Li, Z. He, Y. Dong et al., Amphoteric ion bridged buried interface for efficient and stable inverted perovskite solar cells. Adv. Mater. 36(1), 2310203 (2024). https://doi.org/10.1002/adma.202310203
- Y. Liu, Q. Liu, Y. Lu, J. Fu, J. Wu et al., Polyfluorinated organic diammonium induced lead iodide arrangement for efficient two-step-processed perovskite solar cells. Angew. Chem. Int. Ed. 63(26), e202402568 (2024). https://doi.org/10.1002/anie.202402568
- W. Shao, H. Wang, S. Fu, Y. Ge, H. Guan et al., Tailoring perovskite surface potential and chelation advances efficient solar cells. Adv. Mater. 36(24), e2310080 (2024). https://doi.org/10.1002/adma.202310080
- C. Shi, Q. Song, H. Wang, S. Ma, C. Wang et al., Molecular hinges stabilize formamidinium-based perovskite solar cells with compressive strain. Adv. Funct. Mater. 32(28), 2201193 (2022). https://doi.org/10.1002/adfm.202201193
- H. Xu, Z. Liang, J. Ye, Y. Zhang, Z. Wang et al., Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 16(12), 5792–5804 (2023). https://doi.org/10.1039/D3EE02591H
- G. Qu, Y. Qiao, J. Zeng, S. Cai, Q. Chen et al., Enhancing perovskite solar cell performance through dynamic hydrogen-mediated polarization of nitrogen and sulfur in phthalocyanine. Nano Energy 118, 108974 (2023). https://doi.org/10.1016/j.nanoen.2023.108974
- Z. Li, C. Wang, P.-P. Sun, Z. Zhang, Q. Zhou et al., In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the Shockley–queisser limit. Nano Energy 100, 107468 (2022). https://doi.org/10.1016/j.nanoen.2022.107468
- Z. Li, Z. Wan, C. Jia, M. Zhang, M. Zhang et al., Cross-linked polyelectrolyte reinforced SnO2 electron transport layer for robust flexible perovskite solar cells. J. Energy Chem. 85, 335–342 (2023). https://doi.org/10.1016/j.jechem.2023.06.026
- H. Ma, M. Wang, Y. Wang, Q. Dong, J. Liu et al., Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells. Chem. Eng. J. 442, 136291 (2022). https://doi.org/10.1016/j.cej.2022.136291
- X. Ji, K. Feng, S. Ma, J. Wang, Q. Liao et al., Interfacial passivation engineering for highly efficient perovskite solar cells with a fill factor over 83. ACS Nano 16(8), 11902–11911 (2022). https://doi.org/10.1021/acsnano.2c01547
- Z. Qin, Y. Chen, X. Wang, N. Wei, X. Liu et al., Zwitterion-functionalized SnO2 substrate induced sequential deposition of black-phase FAPbI3 with rearranged PbI2 residue. Adv. Mater. 34(32), 2203143 (2022). https://doi.org/10.1002/adma.202203143
- S. Li, Y. Jiang, J. Xu, D. Wang, Z. Ding et al., High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics. Nature 635(8037), 82–88 (2024). https://doi.org/10.1038/s41586-024-08103-7
- X. Li, Y. Li, Y. Feng, J. Qi, J. Shen et al., Strain regulation of mixed-halide perovskites enables high-performance wide-bandgap photovoltaics. Adv. Mater. 36(23), e2401103 (2024). https://doi.org/10.1002/adma.202401103
- T. Niu, L. Chao, Y. Xia, K. Wang, X. Ran et al., Phase-pure α-FAPbI3 perovskite solar cells via activating lead-iodine frameworks. Adv. Mater. 36(13), e2309171 (2024). https://doi.org/10.1002/adma.202309171
- Z. He, S. Zhang, Y. Gao, Q. Geng, X. Jia et al., Multi-site anchoring of single-molecule for efficient and stable perovskite solar cells with lead shielding. J. Energy Chem. 87, 390–399 (2023). https://doi.org/10.1016/j.jechem.2023.08.041
- J. Song, Q. Hu, Q. Zhang, S. Xiong, Z. Zhao et al., Manipulating the crystallization kinetics by additive engineering toward high-efficient photovoltaic performance. Adv. Funct. Mater. 31(14), 2009103 (2021). https://doi.org/10.1002/adfm.202009103
- Z. Song, Y. Gao, Y. Zou, H. Zhang, R. Wang et al., Single-crystal-assisted in situ phase reconstruction enables efficient and stable 2D/3D perovskite solar cells. J. Am. Chem. Soc. 146(2), 1657–1666 (2024). https://doi.org/10.1021/jacs.3c12446
- C. Shao, J. Ma, G. Niu, Z. Nie, Y. Zhao et al., Strain release via glass transition temperature regulation for efficient and stable perovskite solar cells. Adv. Mater. 37(10), e2417150 (2025). https://doi.org/10.1002/adma.202417150
- X. Chang, J.-X. Zhong, S. Li, Q. Yao, Y. Fang et al., Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells. Angew. Chem. Int. Ed. 62(38), e202309292 (2023). https://doi.org/10.1002/anie.202309292
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- G. Richardson, S.E.J. O’Kane, R.G. Niemann, T.A. Peltola, J.M. Foster et al., Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ. Sci. 9(4), 1476–1485 (2016). https://doi.org/10.1039/C5EE02740C
References
H. Chen, X. Pan, W. Liu, M. Cai, D. Kou et al., Efficient panchromatic inorganic–organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem. Commun. 49(66), 7277–7279 (2013). https://doi.org/10.1039/C3CC42297F
M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang et al., Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics. Nano-Micro Lett. 17(1), 39 (2024). https://doi.org/10.1007/s40820-024-01538-7
Z. Shao, Z. Wang, Z. Li, Y. Fan, H. Meng et al., A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 58(17), 5587–5591 (2019). https://doi.org/10.1002/anie.201814024
C. Zhao, H. Zhang, A. Krishna, J. Xu, J. Yao, Interface engineering for highly efficient and stable perovskite solar cells. Adv. Opt. Mater. 12(7), 2301949 (2024). https://doi.org/10.1002/adom.202301949
National Renewable Energy Laboratory (NREL), Best research-cell efficiencies chart. http://www.nrel.gov/pv/assets/images/efficiency-chart.png (Accessed: January 2025).
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
Y. Ren, K. Zhang, Z. Lin, X. Wei, M. Xu et al., Long-chain gemini surfactant-assisted blade coating enables large-area carbon-based perovskite solar modules with record performance. Nano-Micro Lett. 15(1), 182 (2023). https://doi.org/10.1007/s40820-023-01155-w
Z. Shen, Q. Han, X. Luo, Y. Shen, T. Wang et al., Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells. Energy Environ. Sci. 15(3), 1078–1085 (2022). https://doi.org/10.1039/D1EE02897A
A. Uddin, H. Yi, Progress and challenges of SnO2 electron transport layer for perovskite solar cells: a critical review. Sol. RRL 6(6), 2100983 (2022). https://doi.org/10.1002/solr.202100983
K. Wei, J. Deng, L. Yang, C. Zhang, M. Huang et al., A Core@Dual–shell nanostructured SnO2 to modulate the buried interfaces toward stable perovskite solar cells with minimized energy losses. Adv. Energy Mater. 13(4), 2203448 (2023). https://doi.org/10.1002/aenm.202203448
X. Liu, J. Min, Q. Chen, T. Liu, G. Qu et al., Synergy effect of a π-conjugated ionic compound: dual interfacial energy level regulation and passivation to promote voc and stability of planar perovskite solar cells. Angew. Chem. Int. Ed. 61(11), e202117303 (2022). https://doi.org/10.1002/anie.202117303
L. Chen, Z. Liu, L. Qiu, J. Xiong, L. Song et al., Multifunctional regulation of SnO2 nanocrystals by snail mucus for preparation of rigid or flexible perovskite solar cells in air. ACS Nano 17(23), 23794–23804 (2023). https://doi.org/10.1021/acsnano.3c07784
C. Deng, J. Wu, Y. Yang, Y. Du, R. Li et al., Modulating residual lead iodide via functionalized buried interface for efficient and stable perovskite solar cells. ACS Energy Lett. 8(1), 666–676 (2023). https://doi.org/10.1021/acsenergylett.2c02378
Y. Xu, X. Guo, Z. Lin, Q. Wang, J. Su et al., Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62(33), e202306229 (2023). https://doi.org/10.1002/anie.202306229
X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33(7), 2006435 (2021). https://doi.org/10.1002/adma.202006435
Z.-W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12(20), 2104030 (2022). https://doi.org/10.1002/aenm.202104030
Q. Fu, X. Tang, Y. Gao, H. Liu, M. Chen et al., Dimensional tuning of perylene diimide-based polymers for perovskite solar cells with over 24% efficiency. Small 19(24), 2301175 (2023). https://doi.org/10.1002/smll.202301175
F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photonics 17(6), 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
J. Tian, J. Wu, R. Li, Y. Lin, J. Geng et al., Cage polyamine molecule modulating the buried interface of tin oxide/perovskite in photovoltaic devices. Nano Energy 118, 108939 (2023). https://doi.org/10.1016/j.nanoen.2023.108939
L. Yang, H. Zhou, Y. Duan, M. Wu, K. He et al., 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride. Adv. Mater. 35(16), 2211545 (2023). https://doi.org/10.1002/adma.202211545
H. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Molecular bridge on buried interface for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62(34), e202304568 (2023). https://doi.org/10.1002/anie.202304568
Y. Zhou, L.M. Herz, A.K. Jen, M. Saliba, Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7(9), 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5
S. Xiong, S. Jiang, Y. Zhang, Z. Lv, R. Bai et al., Revealing buried heterointerface energetics towards highly efficient perovskite solar cells. Nano Energy 109, 108281 (2023). https://doi.org/10.1016/j.nanoen.2023.108281
B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33(41), 2103394 (2021). https://doi.org/10.1002/adma.202103394
C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang et al., Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 15(1), 17 (2022). https://doi.org/10.1007/s40820-022-00992-5
X. Ji, L. Bi, Q. Fu, B. Li, J. Wang et al., Target therapy for buried interface enables stable perovskite solar cells with 2505% efficiency. Adv. Mater. 35(39), 2303665 (2023). https://doi.org/10.1002/adma.202303665
G. Liu, H. Zheng, J. Ye, S. Xu, L. Zhang et al., Mixed-phase low-dimensional perovskite-assisted interfacial lead directional management for stable perovskite solar cells with efficiency over 24%. ACS Energy Lett. 6(12), 4395–4404 (2021). https://doi.org/10.1021/acsenergylett.1c01878
G. Kresse, J. Hafner, Ab initiomolecular dynamics for open-shell transition metals. Phys. Rev. B 48(17), 13115–13118 (1993). https://doi.org/10.1103/physrevb.48.13115
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965). https://doi.org/10.1103/physrev.140.a1133
V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033
K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008). https://doi.org/10.1107/s0021889808012016
Y. Yang, T. Zhao, M.-H. Li, X. Wu, M. Han et al., Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells. Chem. Eng. J. 451, 138962 (2023). https://doi.org/10.1016/j.cej.2022.138962
Y. Zhang, R. Yu, M. Li, Z. He, Y. Dong et al., Amphoteric ion bridged buried interface for efficient and stable inverted perovskite solar cells. Adv. Mater. 36(1), 2310203 (2024). https://doi.org/10.1002/adma.202310203
Y. Liu, Q. Liu, Y. Lu, J. Fu, J. Wu et al., Polyfluorinated organic diammonium induced lead iodide arrangement for efficient two-step-processed perovskite solar cells. Angew. Chem. Int. Ed. 63(26), e202402568 (2024). https://doi.org/10.1002/anie.202402568
W. Shao, H. Wang, S. Fu, Y. Ge, H. Guan et al., Tailoring perovskite surface potential and chelation advances efficient solar cells. Adv. Mater. 36(24), e2310080 (2024). https://doi.org/10.1002/adma.202310080
C. Shi, Q. Song, H. Wang, S. Ma, C. Wang et al., Molecular hinges stabilize formamidinium-based perovskite solar cells with compressive strain. Adv. Funct. Mater. 32(28), 2201193 (2022). https://doi.org/10.1002/adfm.202201193
H. Xu, Z. Liang, J. Ye, Y. Zhang, Z. Wang et al., Constructing robust heterointerfaces for carrier viaduct via interfacial molecular bridges enables efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 16(12), 5792–5804 (2023). https://doi.org/10.1039/D3EE02591H
G. Qu, Y. Qiao, J. Zeng, S. Cai, Q. Chen et al., Enhancing perovskite solar cell performance through dynamic hydrogen-mediated polarization of nitrogen and sulfur in phthalocyanine. Nano Energy 118, 108974 (2023). https://doi.org/10.1016/j.nanoen.2023.108974
Z. Li, C. Wang, P.-P. Sun, Z. Zhang, Q. Zhou et al., In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the Shockley–queisser limit. Nano Energy 100, 107468 (2022). https://doi.org/10.1016/j.nanoen.2022.107468
Z. Li, Z. Wan, C. Jia, M. Zhang, M. Zhang et al., Cross-linked polyelectrolyte reinforced SnO2 electron transport layer for robust flexible perovskite solar cells. J. Energy Chem. 85, 335–342 (2023). https://doi.org/10.1016/j.jechem.2023.06.026
H. Ma, M. Wang, Y. Wang, Q. Dong, J. Liu et al., Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells. Chem. Eng. J. 442, 136291 (2022). https://doi.org/10.1016/j.cej.2022.136291
X. Ji, K. Feng, S. Ma, J. Wang, Q. Liao et al., Interfacial passivation engineering for highly efficient perovskite solar cells with a fill factor over 83. ACS Nano 16(8), 11902–11911 (2022). https://doi.org/10.1021/acsnano.2c01547
Z. Qin, Y. Chen, X. Wang, N. Wei, X. Liu et al., Zwitterion-functionalized SnO2 substrate induced sequential deposition of black-phase FAPbI3 with rearranged PbI2 residue. Adv. Mater. 34(32), 2203143 (2022). https://doi.org/10.1002/adma.202203143
S. Li, Y. Jiang, J. Xu, D. Wang, Z. Ding et al., High-efficiency and thermally stable FACsPbI3 perovskite photovoltaics. Nature 635(8037), 82–88 (2024). https://doi.org/10.1038/s41586-024-08103-7
X. Li, Y. Li, Y. Feng, J. Qi, J. Shen et al., Strain regulation of mixed-halide perovskites enables high-performance wide-bandgap photovoltaics. Adv. Mater. 36(23), e2401103 (2024). https://doi.org/10.1002/adma.202401103
T. Niu, L. Chao, Y. Xia, K. Wang, X. Ran et al., Phase-pure α-FAPbI3 perovskite solar cells via activating lead-iodine frameworks. Adv. Mater. 36(13), e2309171 (2024). https://doi.org/10.1002/adma.202309171
Z. He, S. Zhang, Y. Gao, Q. Geng, X. Jia et al., Multi-site anchoring of single-molecule for efficient and stable perovskite solar cells with lead shielding. J. Energy Chem. 87, 390–399 (2023). https://doi.org/10.1016/j.jechem.2023.08.041
J. Song, Q. Hu, Q. Zhang, S. Xiong, Z. Zhao et al., Manipulating the crystallization kinetics by additive engineering toward high-efficient photovoltaic performance. Adv. Funct. Mater. 31(14), 2009103 (2021). https://doi.org/10.1002/adfm.202009103
Z. Song, Y. Gao, Y. Zou, H. Zhang, R. Wang et al., Single-crystal-assisted in situ phase reconstruction enables efficient and stable 2D/3D perovskite solar cells. J. Am. Chem. Soc. 146(2), 1657–1666 (2024). https://doi.org/10.1021/jacs.3c12446
C. Shao, J. Ma, G. Niu, Z. Nie, Y. Zhao et al., Strain release via glass transition temperature regulation for efficient and stable perovskite solar cells. Adv. Mater. 37(10), e2417150 (2025). https://doi.org/10.1002/adma.202417150
X. Chang, J.-X. Zhong, S. Li, Q. Yao, Y. Fang et al., Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells. Angew. Chem. Int. Ed. 62(38), e202309292 (2023). https://doi.org/10.1002/anie.202309292
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
G. Richardson, S.E.J. O’Kane, R.G. Niemann, T.A. Peltola, J.M. Foster et al., Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ. Sci. 9(4), 1476–1485 (2016). https://doi.org/10.1039/C5EE02740C