Rational Design of High-Performance PEO/Ceramic Composite Solid Electrolytes for Lithium Metal Batteries
Corresponding Author: Hongqiang Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 82
Abstract
Composite solid electrolytes (CSEs) with poly(ethylene oxide) (PEO) have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li+ solvating capability, flexible processability and low cost. However, unsatisfactory room-temperature ionic conductivity, weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress. Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture, spatial distribution and content, which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes. Unfortunately, a comprehensive review exclusively discussing the design, preparation and application of PEO/ceramic-based CSEs is largely lacking, in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics. Consequently, this review targets recent advances in PEO/ceramic-based CSEs, starting with a brief introduction, followed by their ionic conduction mechanism, preparation methods, and then an emphasis on resolving ionic conductivity and interfacial compatibility. Afterward, their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized. Finally, a summary and outlook on existing challenges and future research directions are proposed.
Highlights:
1 The design, preparation and application of poly(ethylene oxide) (PEO)/ceramic composite solid electrolytes (CSEs) are summarized from “ceramic in polymer” and “polymer in ceramic”.
2 The summary and outlook on existing challenges and future research directions of PEO/ceramic CSEs for lithium metal batteries are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.A. Barreto, Fossil fuels, alternative energy and economic growth. Econ. Model. 75, 196–220 (2018). https://doi.org/10.1016/j.econmod.2018.06.019
- X.Q. Zhang, X.B. Cheng, Q. Zhang, Nanostructured energy materials for electrochemical energy conversion and storage: a review. J. Energy Chem. 25, 967–984 (2016). https://doi.org/10.1016/j.jechem.2016.11.003
- Q. Zhang, L. Suresh, Q.J. Liang, Y.X. Zhang, L. Yang et al., Emerging technologies for green energy conversion and storage. Adv. Sustain. Syst. 5, 2000152 (2021). https://doi.org/10.1002/adsu.202000152
- Y.L. Gao, Z.H. Pan, J.G. Sun, Z.L. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- T.Z. Xu, D. Wang, Z.W. Li, Z.Y. Chen, J.H. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
- G.E. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017). https://doi.org/10.1149/2.0251701jes
- M. Li, J. Lu, Z.W. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
- C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond-a 2030 vision. Nat. Commun. 11, 6279 (2020). https://doi.org/10.1038/s41467-020-19991-4
- T. Placke, R. Kloepsch, S. Dühnen, M. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electr. 21, 1939–1964 (2017). https://doi.org/10.1007/s10008-017-3610-7
- Q.Y. Wang, B. Liu, Y.H. Shen, J.K. Wu, Z.Q. Zhao et al., Confronting the challenges in lithium anodes for lithium metal batteries. Adv. Sci. 8, 2101111 (2021). https://doi.org/10.1002/advs.202101111
- W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k
- X.Q. Min, G.J. Xu, B. Xie, P. Guan, M.L. Sun et al., Challenges of prelithiation strategies for next generation high energy lithium-ion batteries. Energy Storage Mater. 47, 297–318 (2022). https://doi.org/10.1016/j.ensm.2022.02.005
- J.M. Wang, B.C. Ge, H. Li, M. Yang, J. Wang et al., Challenges and progresses of lithium-metal batteries. Chem. Eng. J. 420, 129739 (2021). https://doi.org/10.1016/j.cej.2021.129739
- H.S. Wang, Z.A. Yu, X. Kong, S.C. Kim, D.T. Boyle et al., Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 6, 588–616 (2022). https://doi.org/10.1016/j.joule.2021.12.018
- S.J. Tan, W.P. Wang, Y.F. Tian, S. Xin, Y.G. Guo, Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: progress and prospects. Adv. Funct. Mater. 31, 2105253 (2021). https://doi.org/10.1002/adfm.202105253
- T.C. Liu, J.L. Wang, Y. Xu, Y.F. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
- Z.A. Yu, Y. Cui, Z.N. Bao, Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020). https://doi.org/10.1016/j.xcrp.2020.100119
- X.L. Fan, C.S. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021). https://doi.org/10.1039/d1cs00450f
- H. Lee, P. Oh, J. Kim, H. Cha, S. Chae et al., Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries. Adv. Mater. 31, 1900376 (2019). https://doi.org/10.1002/adma.201900376
- Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 30, 56–74 (2019). https://doi.org/10.1016/j.mattod.2019.09.018
- W.B. Wu, Y.Y. Bo, D.P. Li, Y.H. Liang, J.C. Zhang et al., Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Lett. 14, 44 (2022). https://doi.org/10.1007/s40820-021-00780-7
- W.H. Ren, C.F. Ding, X.W. Fu, Y. Huang, Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives. Energy Storage Mater. 34, 515–535 (2021). https://doi.org/10.1016/j.ensm.2020.10.018
- X.Y. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14, 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
- J.G. Yi, L. Chen, Y.C. Liu, H.X. Geng, L.Z. Fan, High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte. ACS Appl. Mater. Interfaces 11, 36774–36781 (2019). https://doi.org/10.1021/acsami.9b12846
- Y. Lu, X.Y. Meng, J.A. Alonso, M.T. Fernández-Díaz, C.W. Sun, Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 2042–2049 (2019). https://doi.org/10.1021/acsami.8b17656
- Z.Y. Lin, X.W. Guo, Y.B. Yang, M.X. Tang, Q. Wei et al., Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery. J. Energy Chem. 52, 67–74 (2021). https://doi.org/10.1016/j.jechem.2020.04.052
- Z.C. Tian, D. Kim, A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery. J. Energy Chem. 68, 603–611 (2022). https://doi.org/10.1016/j.jechem.2021.12.035
- S. Wang, Q.F. Sun, W.X. Peng, Y. Ma, Y. Zhou et al., Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J. Energy Chem. 58, 85–93 (2021). https://doi.org/10.1016/j.jechem.2020.09.033
- S. Li, S.Q. Zhang, L. Shen, Q. Liu, J.B. Ma et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7, 1903088 (2020). https://doi.org/10.1002/advs.201903088
- C.T. Zhao, Q. Sun, J. Luo, J.N. Liang, Y.L. Liu et al., 3D porous garnet/gel polymer hybrid electrolyte for safe solid-state Li–O2 batteries with long lifetimes. Chem. Mater. 32, 10113–10119 (2020). https://doi.org/10.1021/acs.chemmater.0c03529
- X.Y. Liu, X.R. Li, H.X. Li, H.B. Wu, Recent progress of hybrid solid-state electrolytes for lithium batteries. Chem. Eur. J. 24, 18293–18306 (2018). https://doi.org/10.1002/chem.201803616
- J. Wan, J. Xie, D.G. Mackanic, W. Burke, Z. Bao et al., Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Mater. Today Nano 4, 1–16 (2018). https://doi.org/10.1016/j.mtnano.2018.12.003
- Q.Q. Zhang, K. Liu, F. Ding, X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 10, 4139–4174 (2017). https://doi.org/10.1007/s12274-017-1763-4
- S.V. Ganesan, K.K. Mothilal, S. Selvasekarapandian, T.K. Ganesan, The effect of titanium dioxide nano-filler on the conductivity, morphology and thermal stability of poly(methyl methacrylate)-poly(styrene-co-acrylonitrile) based composite solid polymer electrolytes. J. Mater. Sci. Mater. Electron. 29, 8089–8099 (2018). https://doi.org/10.1007/s10854-018-8815-8
- F. Pei, S.Q. Dai, B.F. Guo, H. Xie, C.W. Zhao et al., Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities. Energy Environ. Sci. 14, 975–985 (2021). https://doi.org/10.1039/d0ee03005h
- D.C. Zhang, Z.B. Liu, Y.W. Wu, S.M. Ji, Z.X. Yuan et al., In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries. Adv. Sci. 9, 2104277 (2022). https://doi.org/10.1002/advs.202104277
- W. Fan, X.L. Zhang, C.J. Li, S.Y. Zha, J. Wang, UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-metal battery. ACS Appl. Energy Mater. 2, 4513–4520 (2019). https://doi.org/10.1021/acsaem.9b00766
- Y.Y. Yan, J.W. Ju, S.M. Dong, Y.T. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8, 2003887 (2021). https://doi.org/10.1002/advs.202003887
- S. Li, J.Z. Lu, Z. Geng, Y. Chen, X.Q. Yu et al., Solid polymer electrolyte reinforced with a Li1.3Al0.3Ti1.7(PO4)3-coated separator for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 14, 1195–1202 (2022). https://doi.org/10.1021/acsami.1c21804
- B. Chen, Z. Huang, X.T. Chen, Y.R. Zhao, Q. Xu et al., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim. Acta 210, 905–914 (2016). https://doi.org/10.1016/j.electacta.2016.06.025
- M. Keller, G.B. Appetecchi, G.T. Kim, V. Sharova, M. Schneider et al., Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J. Power Sources 353, 287–297 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.014
- W.P. Chen, H. Duan, J.L. Shi, Y.M. Qian, J. Wan et al., Bridging interp Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 143, 5717–5726 (2021). https://doi.org/10.1021/jacs.0c12965
- B. Huang, B.Y. Xu, J.X. Zhang, Z.H. Li, Z.Y. Huang et al., Li-ion conductivity and stability of hot-pressed LiTa2PO8 solid electrolyte for all-solid-state batteries. J. Mater. Sci. 56, 2425–2434 (2020). https://doi.org/10.1007/s10853-020-05324-9
- A.J. Blake, R.R. Kohlmeyer, J.O. Hardin, E.A. Carmona, B. Maruyama et al., 3D printable ceramic-polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv. Energy Mater. 7, 1602920 (2017). https://doi.org/10.1002/aenm.201602920
- P.C. Yao, B. Zhu, H.W. Zhai, X.B. Liao, Y.X. Zhu et al., PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113–6120 (2018). https://doi.org/10.1021/acs.nanolett.8b01421
- B.Y. Xu, X.Y. Li, C. Yang, Y.T. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
- O.W. Sheng, H.L. Hu, T.F. Liu, Z.J. Ju, G.X. Lu et al., Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2111026 (2021). https://doi.org/10.1002/adfm.202111026
- Y. Xia, X.L. Wang, X.H. Xia, R.C. Xu, S.Z. Zhang et al., A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF–HFP) for enhanced solid-state lithium-sulfur batteries. Chemistry 23, 15203–15209 (2017). https://doi.org/10.1002/chem.201703464
- X.R. Yu, L.L. Wang, J. Ma, X.W. Sun, X.H. Zhou et al., Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv. Energy Mater. 10, 1903939 (2020). https://doi.org/10.1002/aenm.201903939
- M.J. Lee, J.H. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
- Y. Zhang, W. Feng, Y.C. Zhen, P.Y. Zhao, X.H. Wang et al., Effects of lithium salts on PEO-based solid polymer electrolytes and their all-solid-state lithium-ion batteries. Ionics 28, 2751–2758 (2022). https://doi.org/10.1007/s11581-022-04525-3
- R.A. Tong, L.H. Chen, B.B. Fan, G. Shao, R.P. Liu et al., Solvent-free process for blended PVDF–HFP/PEO and LLZTO composite solid electrolytes with enhanced mechanical and electrochemical properties for lithium metal batteries. ACS Appl. Energy Mater. 4, 11802–11812 (2021). https://doi.org/10.1021/acsaem.1c02566
- Y.X. Ma, J.Y. Wan, Y.F. Yang, Y.S. Ye, X. Xiao et al., Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 12, 2103720 (2022). https://doi.org/10.1002/aenm.202103720
- D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973). https://doi.org/10.1016/0032-3861(73)90146-8
- S. Lascaud, M. Perrier, A. Vallée, S. Besner, J. Prud’homme, Phase diagrams and conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes. Macromolecules 27, 7469–7477 (1994). https://doi.org/10.1021/ma00103a034
- E. Quartarone, P. Mustarelli, A. Magistris, PEO-based composite polymer electrolytes. Solid State Ionics 110, 1–14 (1998). https://doi.org/10.1016/S0167-2738(98)00114-3
- P. Fan, H. Liu, V. Marosz, N.T. Samuels, S.L. Suib et al., High performance composite polymer electrolytes for lithium-ion batteries. Adv. Funct. Mater. 31, 2101380 (2021). https://doi.org/10.1002/adfm.202101380
- J.L. Qiu, X.Y. Liu, R.S. Chen, Q.H. Li, Y. Wang et al., Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 30, 1909392 (2020). https://doi.org/10.1002/adfm.201909392
- K.H. Nie, X.L. Wang, J.L. Qiu, Y. Wang, Q. Yang et al., Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett. 5, 826–832 (2020). https://doi.org/10.1021/acsenergylett.9b02739
- F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). https://doi.org/10.1038/28818
- J.Y. Wu, L.X. Yuan, W.X. Zhang, Z. Li, X.L. Xie et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 4, 12–36 (2021). https://doi.org/10.1039/d0ee02241a
- J. Popovic, D. Brandell, S. Ohno, K.B. Hatzel, J. Zheng et al., Polymer-based hybrid battery electrolytes: theoretical insights, recent advances and challenges. J. Mater. Chem. A 9, 6050–6069 (2021). https://doi.org/10.1039/d0ta11679c
- X.E. Wang, R. Kerr, F.F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, 1905219 (2020). https://doi.org/10.1002/adma.201905219
- L.L. Du, B. Zhang, X.F. Wang, C.H. Dong, L.Q. Mai et al., 3D frameworks in composite polymer electrolytes: synthesis, mechanisms, and applications. Chem. Eng. J. 451, 138787 (2023). https://doi.org/10.1016/j.cej.2022.138787
- N. Meng, X.G. Zhu, F. Lian, Ps in composite polymer electrolyte for solid-state lithium batteries: a review. Particuology 60, 14–36 (2022). https://doi.org/10.1016/j.partic.2021.04.002
- Z.C. Shen, Y.F. Cheng, S.H. Sun, X. Ke, L.Y. Liu et al., The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy 3, 482–508 (2021). https://doi.org/10.1002/cey2.108
- J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8, 2 (2021). https://doi.org/10.1186/s40580-020-00252-5
- L.Z. Fan, H.C. He, C.W. Nan, Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
- Y. Zheng, Y.Z. Yao, J.H. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
- S. Tang, W. Guo, Y.Z. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11, 2000802 (2020). https://doi.org/10.1002/aenm.202000802
- S. Kalnaus, A.S. Sabau, W.E. Tenhaeff, N.J. Dudney, C. Daniel, Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. J. Power Sources 201, 280–287 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.020
- J. Zheng, P.B. Wang, H.Y. Liu, Y.Y. Hu, Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2, 1452–1459 (2019). https://doi.org/10.1021/acsaem.8b02008
- J. Zheng, H. Dang, X.Y. Feng, P.H. Chien, Y.Y. Hu, Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide-tetraethylene glycol dimethyl ether. J. Mater. Chem. A 5, 18457–18463 (2017). https://doi.org/10.1039/c7ta05832b
- S.L. Liu, W.Y. Liu, D.L. Ba, Y.Z. Zhao, Y.H. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, 2110423 (2023). https://doi.org/10.1002/adma.202110423
- L. Chen, Y.T. Li, S.P. Li, L.Z. Fan, C.W. Nan et al., PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46, 176–184 (2018). https://doi.org/10.1016/j.nanoen.2017.12.037
- C. Wang, T.Q. Yang, W.K. Zhang, H. Huang, Y.P. Gan et al., Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries. J. Mater. Chem. A 10, 3400–3408 (2022). https://doi.org/10.1039/d1ta10607d
- J. Zheng, Y.Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018). https://doi.org/10.1021/acsami.7b17301
- N. Wu, P.H. Chien, Y.T. Li, A. Dolocan, H.H. Xu et al., Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 142, 2497–2505 (2020). https://doi.org/10.1021/jacs.9b12233
- H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3, 929–956 (2021). https://doi.org/10.1002/cey2.146
- Y.X. Su, F. Xu, Y.Q. Qiu, J.B. Zhang, X.R. Zhang et al., Electrolyte based on laser-generated nano-garnet in poly(ethylene oxide) for solid-state lithium metal batteries. Chem. Eng. J. 443, 136418 (2022). https://doi.org/10.1016/j.cej.2022.136418
- Q.W. Pan, Y.W. Zheng, S. Kota, W.C. Huang, S.J. Wang et al., 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 1, 395–402 (2019). https://doi.org/10.1039/c8na00206a
- X.K. Zhang, J. Xie, F.F. Shi, D.C. Lin, Y.Y. Liu et al., Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
- R. Fan, C. Liu, K.Q. He, S.H. Cheng, D.Z. Chen et al., Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces 12, 7222–7231 (2020). https://doi.org/10.1021/acsami.9b20104
- W. Liu, S.W. Lee, D.C. Lin, F.F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
- Z.J. Sun, Y.H. Li, S.Y. Zhang, L. Shi, H. Wu et al., g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 7, 11069–11076 (2019). https://doi.org/10.1039/c9ta00634f
- H.W. An, Q.S. Liu, J.L. An, S.T. Liang, X.F. Wang et al., Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries. Energy Storage Mater. 43, 358–364 (2021). https://doi.org/10.1016/j.ensm.2021.09.019
- Y.Z. Shi, B. Li, Q. Zhu, K. Shen, W.J. Tang et al., MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv. Energy Mater. 10, 1903534 (2020). https://doi.org/10.1002/aenm.201903534
- W.J. Tang, S. Tang, C.J. Zhang, Q.T. Ma, Q. Xiang et al., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 8, 1800866 (2018). https://doi.org/10.1002/aenm.201800866
- J. Cheng, G.M. Hou, Q. Chen, D.P. Li, K.K. Li et al., Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chem. Eng. J. 429, 132343 (2022). https://doi.org/10.1016/j.cej.2021.132343
- Y.H. Li, Z.J. Sun, D.Y. Liu, Y.Y. Gao, Y.K. Wang et al., A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries. J. Mater. Chem. A 8, 2021–2032 (2020). https://doi.org/10.1039/c9ta11542k
- T. Li, B. Ding, J. Wang, Z.Y. Qin, J.F.S. Fernando et al., Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 14993–15001 (2020). https://doi.org/10.1021/acsami.9b18883
- X.W. Yu, A. Manthiram, A long cycle life, all-solid-state lithium battery with a ceramic-polymer composite electrolyte. ACS Appl. Energ. Mater. 3, 2916–2924 (2020). https://doi.org/10.1021/acsaem.9b02547
- J. Cheng, G.M. Hou, Q. Sun, Z. Liang, X.Y. Xu et al., Cold-pressing PEO/LAGP composite electrolyte for integrated all-solid-state lithium metal battery. Solid State Ion. 345, 115156 (2020). https://doi.org/10.1016/j.ssi.2019.115156
- G.M. Hou, M.Q. Zhang, Y.F. Huang, W.H. Ruan, A TiO2/PEO composite incorporated with in situ synthesized hyper-branched poly(amine-ester) and its application as a polymer electrolyte. RSC Adv. 6, 83406–83411 (2016). https://doi.org/10.1039/c6ra15351h
- J.A. Isaac, D. Devaux, R. Bouchet, Dense inorganic electrolyte ps as a lever to promote composite electrolyte conductivity. Nat. Mater. 21, 1412–1418 (2022). https://doi.org/10.1038/s41563-022-01343-w
- J.X. Zhang, N. Zhao, M. Zhang, Y.Q. Li, P.K. Chu et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanops in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). https://doi.org/10.1016/j.nanoen.2016.09.002
- K.Q. He, S.H. Cheng, J.Y. Hu, Y.Q. Zhang, H.W. Yang et al., In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 60, 12116–12123 (2021). https://doi.org/10.1002/anie.202103403
- W.W. Li, C.Z. Sun, J. Jin, Y.P. Li, C.H. Chen et al., Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 7, 27304–27312 (2019). https://doi.org/10.1039/c9ta10400c
- N. Wu, P.H. Chien, Y.M. Qian, Y.T. Li, H.H. Xu et al., Enhanced surface interactions enable fast Li+ conduction in oxide-polymer composite electrolyte. Angew. Chem. Int. Ed. 59, 4131–4137 (2020). https://doi.org/10.1002/anie.201914478
- D.C. Lin, P.Y. Yuen, Y.Y. Liu, W. Liu, N. Liu et al., A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30, 1802661 (2018). https://doi.org/10.1002/adma.201802661
- Z. Li, W.X. Sha, X. Guo, Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl. Mater. Interfaces 11, 26920–26927 (2019). https://doi.org/10.1021/acsami.9b07830
- J. ZagóRski, J.M.L.P.D. Amo, M.J. Cordill, Fdr Aguesse, L. Buannic et al., Garnet-polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl. Energy Mater. 2, 1724–1746 (2019). https://doi.org/10.1021/acsaem.8b01850
- M. Liu, S. Ganapathy, M. Wagemaker, A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state electrolytes. Acc. Chem. Res. 55, 333–344 (2022). https://doi.org/10.1021/acs.accounts.1c00618
- J. Zheng, M.X. Tang, Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12–polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
- M.R. Li, M. Kolek, J.E. Frerichs, W. Sun, X. Hou et al., Investigation of polymer/ceramic composite solid electrolyte system: the case of PEO/LGPS composite electrolytes. ACS Sustain. Chem. Eng. 9, 11314–11322 (2021). https://doi.org/10.1021/acssuschemeng.1c00904
- Y.Z. Zhu, X.F. He, Y.F. Mo, First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016). https://doi.org/10.1039/c5ta08574h
- S.S. Chi, Y.C. Liu, N. Zhao, X.X. Guo, C.W. Nan et al., Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater. 17, 309–316 (2019). https://doi.org/10.1016/j.ensm.2018.07.004
- S.J. Pennycook, C.J. Li, M.S. Li, C.H. Tang, E. Okunishi et al., Material structure, properties, and dynamics through scanning transmission electron microscopy. J. Anal. Sci. Technol. 9, 11 (2018). https://doi.org/10.1186/s40543-018-0142-4
- Q. Cheng, A.J. Li, N. Li, S. Li, A. Zangiabadi et al., Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 3, 1510–1522 (2019). https://doi.org/10.1016/j.joule.2019.03.022
- M. Liu, C. Wang, Z. Cheng, S. Ganapathy, L.A. Haverkate et al., Controlling the lithium-metal growth to enable low-lithium-metal-excess all-solid-state lithium-metal batteries. ACS Mater. Lett. 2, 665–670 (2020). https://doi.org/10.1021/acsmaterialslett.0c00152
- Y. Cheng, L.Q. Zhang, Q.B. Zhang, J. Li, Y.F. Tang et al., Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Mater. Today 42, 137–161 (2020). https://doi.org/10.1016/j.mattod.2020.09.003
- C.C. Zhang, Y.Z. Feng, Z. Han, S. Gao, M.Y. Wang et al., Electrochemical and structural analysis in all-solid-state lithium batteries by analytical electron microscopy: progress and perspectives. Adv. Mater. 32, 1903747 (2019). https://doi.org/10.1002/adma.201903747
- H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen et al., Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10, 2000049 (2020). https://doi.org/10.1002/aenm.202000049
- H.H. Xu, P.H. Chien, J.J. Shi, Y.T. Lia, N. Wu et al., High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. USA 116, 18815–18821 (2019). https://doi.org/10.1073/pnas.1907507116
- X. Li, D.H. Wang, H.C. Wang, H.F. Yan, Z.L. Gong et al., Poly(ethylene oxide)–Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl. Mater. Interfaces 11, 22745–22753 (2019). https://doi.org/10.1021/acsami.9b05212
- G. Piana, F. Bella, F. Geobaldo, G. Meligrana, C. Gerbaldi, PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J. Energy Storage 26, 100947 (2019). https://doi.org/10.1016/j.est.2019.100947
- Z.P. Wan, D.N. Lei, W. Yang, C. Liu, K. Shi et al., Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide(PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29, 1805301 (2019). https://doi.org/10.1002/adfm.201805301
- Y.T. Li, B.Y. Xu, H.H. Xu, H.N. Duan, X.J. Lv et al., Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753–756 (2017). https://doi.org/10.1002/anie.201608924
- M.R. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium-sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30, 1910123 (2020). https://doi.org/10.1002/adfm.201910123
- Z.Y. Huang, R.A. Tong, J. Zhang, L.H. Chen, C.A. Wang, Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by haake rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte. J. Power Sources 451, 227797 (2020). https://doi.org/10.1016/j.jpowsour.2020.227797
- R.A. Tong, L.H. Chen, G. Shao, H.L. Wang, C.A. Wang, An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide) solid electrolytes: enhanced compatibility and cycle performance. J. Power Sources 492, 229672 (2021). https://doi.org/10.1016/j.jpowsour.2021.229672
- R.A. Tong, H.L. Luo, L.H. Chen, J.X. Zhang, G. Shao et al., Constructing the lithium polymeric salt interfacial phase in composite solid-state electrolytes for enhancing cycle performance of lithium metal batteries. Chem. Eng. J. 442, 136154 (2022). https://doi.org/10.1016/j.cej.2022.136154
- Z.Y. Huang, W.Y. Pang, P. Liang, Z.H. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7, 16425–16436 (2019). https://doi.org/10.1039/c9ta03395e
- L. Chen, X.M. Qiu, Z.M. Bai, L.Z. Fan, Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J. Energy Chem. 52, 210–217 (2021). https://doi.org/10.1016/j.jechem.2020.03.052
- Y.L. Ni’mah, Z.H. Muhaiminah, S. Suprapto, Increase of solid polymer electrolyte ionic conductivity using Nano-SiO2 synthesized from sugarcane bagasse as filler. Polymers 13, 4240 (2021). https://doi.org/10.3390/polym13234240
- X. Wang, H.W. Zhai, B.Y. Qie, Q. Cheng, A.J. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanop/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051
- P. Pan, M.M. Zhang, Z.L. Cheng, L.Y. Jiang, J.T. Mao et al., Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable all-solid-state lithium metal batteries. Energy Storage Mater. 47, 279–287 (2022). https://doi.org/10.1016/j.ensm.2022.02.018
- R.G. Li, S.T. Guo, L. Yu, L.B. Wang, D.B. Wu et al., Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6, 1900200 (2019). https://doi.org/10.1002/admi.201900200
- J.Q. Dai, K. Fu, Y.H. Gong, J.W. Song, C.J. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1, 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
- Y.H. Gong, K. Fu, S.M. Xu, J.Q. Dai, T.R. Hamann et al., Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Mater. Today 21, 594–601 (2018). https://doi.org/10.1016/j.mattod.2018.01.001
- S.D. Song, X.H. Qin, Y.L. Ruan, W.J. Li, Y.Q. Xu et al., Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte. J. Power Sources 461, 228146 (2020). https://doi.org/10.1016/j.jpowsour.2020.228146
- X.L. Fu, Y.C. Li, C.Z. Liao, W.P. Gong, M.Y. Yang et al., Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network. Compos. Sci. Technol. 184, 107863 (2019). https://doi.org/10.1016/j.compscitech.2019.107863
- C. Liu, J.X. Wang, W.J. Kou, Z.H. Yang, P.F. Zhai et al., A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem. Eng. J. 404, 126517 (2021). https://doi.org/10.1016/j.cej.2020.126517
- S. Zekoll, C. Marriner-Edwards, A.K.O. Hekselman, J. Kasemchainan, C. Kuss et al., Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018). https://doi.org/10.1039/c7ee02723k
- Z.Y. Wang, L. Shen, S.G. Deng, P. Cui, X.Y. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33, 2100353 (2021). https://doi.org/10.1002/adma.202100353
- H. Xie, C.P. Yang, K. Fu, Y.G. Yao, F. Jiang et al., Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv. Energy Mater. 8, 1703474 (2018). https://doi.org/10.1002/aenm.201703474
- H.W. Zhai, P.Y. Xu, M.Q. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17, 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
- Y.H. Li, Z.Y. Fu, S.Y. Lu, X. Sun, X.R. Zhang et al., Polymer nanofibers framework composite solid electrolyte with lithium dendrite suppression for long life all-solid-state lithium metal battery. Chem. Eng. J. 440, 135816 (2022). https://doi.org/10.1016/j.cej.2022.135816
- M.M. Zhang, P. Pan, Z.L. Cheng, J.T. Mao, L.Y. Jiang et al., Flexible, mechanically robust, solid-state electrolyte membrane with conducting oxide-enhanced 3D nanofiber networks for lithium batteries. Nano Lett. 21, 7070–7078 (2021). https://doi.org/10.1021/acs.nanolett.1c01704
- Z.J. Zhang, Q. Wang, Z.H. Li, Y.C. Jiang, B. Zhao et al., Well-aligned BaTiO3 nanofibers via solution blow spinning and their application in lithium composite solid-state electrolyte. Mater. Express 9, 993–1000 (2019). https://doi.org/10.1166/mex.2019.1589
- F. He, W.J. Tang, X.Y. Zhang, L.J. Deng, J.Y. Luo, High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 33, 2105329 (2021). https://doi.org/10.1002/adma.202105329
- L.X. Gao, B. Tang, H.Y. Jiang, Z.J. Xie, J.P. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2021). https://doi.org/10.1002/adsu.202100389
- M.A. Navarra, L. Lombardo, P. Bruni, L. Morelli, A. Tsurumaki, S. Panero et al., Gel polymer electrolytes based on silica-added poly(ethylene oxide) electrospun membranes for lithium batteries. Membranes 8, 126 (2018). https://doi.org/10.3390/membranes8040126
- J.W. Zha, N. Huang, K.Q. He, Z.M. Dang, C.Y. Shi et al., Electrospun poly(ethylene oxide) nanofibrous composites with enhanced ionic conductivity as flexible solid polymer electrolytes. High Volt. 2, 25–31 (2017). https://doi.org/10.1049/hve.2016.0069
- W. Liu, N. Liu, J. Sun, P.C. Hsu, Y.Z. Li et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
- K. Fu, Y.H. Gong, J.Q. Dai, A. Gong, X.G. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 113, 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
- X.Z. Wang, Y.B. Zhang, X. Zhang, T. Liu, Y.H. Lin et al., Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018). https://doi.org/10.1021/acsami.8b06658
- J.M. Yu, C. Wang, S.H. Li, N. Liu, J. Zhu et al., Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte. Small 15, 1902729 (2019). https://doi.org/10.1002/smll.201902729
- J.Y. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
- Y. Cui, J.Y. Wan, Y.S. Ye, K. Liu, L.Y. Chou et al., A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries. Nano Lett. 20, 1686–1692 (2020). https://doi.org/10.1021/acs.nanolett.9b04815
- J.Y. Wu, Z.X. Rao, Z.X. Cheng, L.X. Yuan, Z. Li et al., Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019). https://doi.org/10.1002/aenm.201902767
- J. Bae, Y.T. Li, J. Zhang, X.Y. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
- J. Bae, Y.T. Li, F. Zhao, X.Y. Zhou, Y. Ding et al., Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 15, 46–52 (2018). https://doi.org/10.1016/j.ensm.2018.03.016
- M. Falco, L. Castro, J.R. Nair, F. Bella, F. Bardé et al., UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl. Energy Mater. 2, 1600–1607 (2019). https://doi.org/10.1021/acsaem.8b02185
- S.H. Siyal, M.S. Javed, A.H. Jatoi, J.L. Lan, Y.H. Yu et al., In situ curing technology for dual ceramic composed by organic-inorganic functional polymer gel electrolyte for dendritic-free and robust lithium-metal batteries. Adv. Mater. Interfaces 7, 2000830 (2020). https://doi.org/10.1002/admi.202000830
- S.H. Siyal, M.J. Li, H. Li, J.L. Lan, Y.H. Yu et al., Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Appl. Surf. Sci. 494, 1119–1126 (2019). https://doi.org/10.1016/j.apsusc.2019.07.179
- J. Shi, H.G. Xiong, Y.F. Yang, H.X. Shao, Nano-sized oxide filled composite PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium and sodium batteries. Solid State Ion. 326, 136–144 (2018). https://doi.org/10.1016/j.ssi.2018.09.019
- Y.T. Wang, J.W. Ju, S.M. Dong, Y.Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: In situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021). https://doi.org/10.1002/adfm.202101523
- R.L. Wang, Q. Dong, C.W. Wang, M. Hong, J.L. Gao et al., High-temperature ultrafast sintering: Exploiting a new kinetic region to fabricate porous solid-state electrolyte scaffolds. Adv. Mater. 33, 2100726 (2021). https://doi.org/10.1002/adma.202100726
- K. Zhang, F. Wu, X.R. Wang, S.T. Weng, X.Y. Yang et al., 8.5 µm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv. Energy Mater. 12, 2200368 (2022). https://doi.org/10.1002/aenm.202200368
- J. Yu, X.D. Lin, J.P. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932 (2021). https://doi.org/10.1002/aenm.202102932
- Y. Chen, F. Huo, S.M. Chen, W.B. Cai, S.J. Zhang, In-built quasi-solid-state poly-ether electrolytes enabling stable cycling of high-voltage and wide-temperature Li metal batteries. Adv. Funct. Mater. 31, 2102347 (2021). https://doi.org/10.1002/adfm.202102347
- D.L. Chen, T. Zhu, M. Zhu, S.Q. Yuan, P.B. Kang et al., In-situ constructing “ceramer” electrolytes with robust-flexible interfaces enabling long-cycling lithium metal batteries. Energy Storage Mater. (2022). https://doi.org/10.1016/j.ensm.2022.09.022
- J.X. Yang, X. Liu, Y. Wang, X.W. Zhou, L.T. Weng et al., Electrolytes polymerization-induced cathode-electrolyte-interphase for high voltage lithium-ion batteries. Adv. Energy Mater. 11, 2101956 (2021). https://doi.org/10.1002/aenm.202101956
- H. Shen, E. Yi, S. Heywood, D.Y. Parkinson, G.Y. Chen et al., Scalable freeze-tape-casting fabrication and pore structure analysis of 3D LLZO solid-state electrolytes. ACS Appl. Mater. Interfaces 12, 3494–3501 (2020). https://doi.org/10.1021/acsami.9b11780
- E. Yi, H. Shen, S. Heywood, J. Alvarado, D.Y. Parkinson et al., All-solid-state batteries using rationally designed garnet electrolyte frameworks. ACS Appl. Energy Mater. 3, 170–175 (2020). https://doi.org/10.1021/acsaem.9b02101
- T.L. Jiang, P.G. He, G.X. Wang, Y. Shen, C.W. Nan et al., Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10, 1903376 (2020). https://doi.org/10.1002/aenm.201903376
- J.J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nanomicro Lett. 14, 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
- O.W. Sheng, C.P. Jin, J.M. Luo, H.D. Yuan, C. Fang et al., Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 5, 12934–12942 (2017). https://doi.org/10.1039/c7ta03699j
- J. Cao, L. Wang, X.M. He, M. Fang, J. Gao et al., In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 1, 5955–5961 (2013). https://doi.org/10.1039/c3ta00086a
- H.Y. Huo, N. Zhao, J.Y. Sun, F.M. Du, Y.Q. Li et al., Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J. Power Sources 372, 1–7 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.059
- F.D. Han, A.S. Westover, J. Yue, X.L. Fan, F. Wang et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z
- E. Kuhnert, L. Ladenstein, A. Jodlbauer, C. Slugovc, G. Trimmel et al., Lowering the interfacial resistance in Li6.4La3Zr1.4Ta0.6O12|poly(ethylene oxide) composite electrolytes. Cell Rep. Phys. Sci. 1, 100214 (2020). https://doi.org/10.1016/j.xcrp.2020.100214
- Y.H. Zhu, J. Cao, H. Chen, Q.P. Yu, B.H. Li, High electrochemical stability of 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 7, 6832–6839 (2013). https://doi.org/10.1039/C9TA00560A
- Y. Kim, S.J. Kwon, H.K. Jang, B.M. Jung, S.B. Lee et al., High ion conducting nanohybrid solid polymer electrolytes via single-ion conducting mesoporous organosilica in poly(ethylene oxide). Chem. Mater. 29, 4401–4410 (2017). https://doi.org/10.1021/acs.chemmater.7b00879
- S. Choudhury, S. Stalin, Y. Deng, L.A. Archer, Soft colloidal glasses as solid-state electrolytes. Chem. Mater. 30, 5996–6004 (2018). https://doi.org/10.1021/acs.chemmater.8b02227
- D.C. Lin, W. Liu, Y.Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
- X.J. Tan, Y.M. Wu, W.P. Tang, S.F. Song, J.Y. Yao et al., Preparation of nanocomposite polymer electrolyte via in situ synthesis of SiO2 nanops in PEO. Nanomaterials 10, 157 (2020). https://doi.org/10.3390/nano10010157
- K.C. Pan, L. Zhang, W.W. Qian, X.K. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, 2000399 (2020). https://doi.org/10.1002/adma.202000399
- W.D. Bao, L.Q. Zhao, H.J. Zhao, L.X. Su, X.C. Cai et al., Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater. 43, 258–265 (2021). https://doi.org/10.1016/j.ensm.2021.09.010
- X.N. Ma, Y.L. Xu, B.F. Zhang, X. Xue, C. Wang et al., Garnet Si-Li7La3Zr2O12 electrolyte with a durable, low resistance interface layer for all-solid-state lithium metal batteries. J. Power Sources 453, 227881 (2020). https://doi.org/10.1016/j.jpowsour.2020.227881
- L.H. Chen, J. Zhang, R.A. Tong, J.X. Zhang, H.L. Wang et al., Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small 18, e2106142 (2022). https://doi.org/10.1002/smll.202106142
- K. Liu, R.H. Zhang, J. Sun, M.C. Wu, T.S. Zhao, Polyoxyethylene (PEO)|PEO−Perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11, 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936
- J.N. Liang, Q. Sun, Y. Zhao, Y.P. Sun, C.H. Wang et al., Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition. J. Mater. Chem. A 6, 23712–23719 (2018). https://doi.org/10.1039/c8ta09069f
- L.H. Chen, Y.B. Su, J. Zhang, H.J. Zhang, B.B. Fan et al., Nanosecond laser cleaning method to reduce the surface inert layer and activate the garnet electrolyte for a solid-state Li metal battery. ACS Appl. Mater. Interfaces 13, 37082–37090 (2021). https://doi.org/10.1021/acsami.1c08509
- H.C. Yang, Y.M. Zhang, M.J. Tennenbaum, Z. Althouse, Y. Ma et al., Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer lithium metal batteries. ACS Appl. Mater. Interfaces 11, 27906–27912 (2019). https://doi.org/10.1021/acsami.9b08285
- C.H. Wang, G.L. Bai, Y.F. Yang, X.J. Liu, H.X. Shao, Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 12, 217–223 (2019). https://doi.org/10.1007/s12274-018-2205-7
- W.D. Zhou, Z.X. Wang, Y. Pu, Y.T. Li, S. Xin et al., Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater. 31, 1805574 (2018). https://doi.org/10.1002/adma.201805574
- S.Z. Zhang, T.B. Liang, D.H. Wang, Y.J. Xu, Y.L. Cui et al., A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Adv. Sci. 8, 2003241 (2021). https://doi.org/10.1002/advs.202003241
- X.Y. Xu, Y.Y. Liu, O.O. Kapitanova, Z.X. Song, J. Sun et al., Electro-chemo-mechanical failure of solid electrolytes induced by growth of internal lithium filaments. Adv. Mater. 34, 2207232 (2022). https://doi.org/10.1002/adma.202207232
- Y.Y. Liu, X.Y. Xu, O.O. Kapitanova, P.V. Evdokimov, Z.X. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12, 2103589 (2022). https://doi.org/10.1002/aenm.202103589
- L. Liu, L. Yang, M. Liu, X.Y. Wang, X.L. Li et al., A flexible tysonite-type La0.95Ba0.05F2.95@PEO-based composite electrolyte for the application of advanced fluoride ion battery. J. Energy Storage 25, 100886 (2019). https://doi.org/10.1016/j.est.2019.100886
- X.F. Yang, M. Jiang, X.J. Gao, D.N. Bao, Q. Sun et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ. Sci. 13, 1318–1325 (2020). https://doi.org/10.1039/d0ee00342e
- R. Fan, W.C. Liao, S.X. Fan, D.Z. Chen, J.N. Tang et al., Regulating interfacial Li-ion transport via an integrated corrugated 3D skeleton in solid composite electrolyte for all-solid-state lithium metal batteries. Adv. Sci. 9, 2104506 (2022). https://doi.org/10.1002/advs.202104506
- S.J. Liu, H.R. Shan, S.H. Xia, J.H. Yan, J.Y. Yu et al., Polymer template synthesis of flexible SiO2 nanofibers to upgrade composite electrolytes. ACS Appl. Mater. Interfaces 12, 31439–31447 (2020). https://doi.org/10.1021/acsami.0c06922
- J.Q. Sun, C.H. He, X.M. Yao, A.Q. Song, Y.G. Li et al., Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries. Adv. Funct. Mater. 31, 2006381 (2020). https://doi.org/10.1002/adfm.202006381
- X. Wen, Q.H. Zeng, J.Z. Guan, W. Wen, P.P. Chen et al., 3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries. J. Mater. Chem. A 10, 707–718 (2022). https://doi.org/10.1039/d1ta07252h
- J. Lopez, D.G. Mackanic, Y. Cui, Z.N. Bao, Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019). https://doi.org/10.1038/s41578-019-0103-6
- X. Judez, H. Zhang, C.M. Li, G.G. Eshetu, Y. Zhang et al., Polymer-rich composite electrolytes for all-solid-state Li-S cells. J. Phys. Chem. Lett. 8, 3473–3477 (2017). https://doi.org/10.1021/acs.jpclett.7b01321
- R.Y. Fang, H.H. Xu, B.Y. Xu, X.Y. Li, Y.T. Li et al., Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv. Funct. Mater. 31, 2001812 (2020). https://doi.org/10.1002/adfm.202001812
- F. Lee, M.C. Tsai, M.H. Lin, Y.L. Ni’mah, S. Hy et al., Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide. J. Mater. Chem. A 5, 6708–6715 (2017). https://doi.org/10.1039/c6ta10755a
- X.Y. Tao, Y.Y. Liu, W. Liu, G.M. Zhou, J. Zhao et al., Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
- Y.B. Zhang, R.J. Chen, S. Wang, T. Liu, B.Q. Xu et al., Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater. 25, 145–153 (2020). https://doi.org/10.1016/j.ensm.2019.10.020
References
R.A. Barreto, Fossil fuels, alternative energy and economic growth. Econ. Model. 75, 196–220 (2018). https://doi.org/10.1016/j.econmod.2018.06.019
X.Q. Zhang, X.B. Cheng, Q. Zhang, Nanostructured energy materials for electrochemical energy conversion and storage: a review. J. Energy Chem. 25, 967–984 (2016). https://doi.org/10.1016/j.jechem.2016.11.003
Q. Zhang, L. Suresh, Q.J. Liang, Y.X. Zhang, L. Yang et al., Emerging technologies for green energy conversion and storage. Adv. Sustain. Syst. 5, 2000152 (2021). https://doi.org/10.1002/adsu.202000152
Y.L. Gao, Z.H. Pan, J.G. Sun, Z.L. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
T.Z. Xu, D. Wang, Z.W. Li, Z.Y. Chen, J.H. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
G.E. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017). https://doi.org/10.1149/2.0251701jes
M. Li, J. Lu, Z.W. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond-a 2030 vision. Nat. Commun. 11, 6279 (2020). https://doi.org/10.1038/s41467-020-19991-4
T. Placke, R. Kloepsch, S. Dühnen, M. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electr. 21, 1939–1964 (2017). https://doi.org/10.1007/s10008-017-3610-7
Q.Y. Wang, B. Liu, Y.H. Shen, J.K. Wu, Z.Q. Zhao et al., Confronting the challenges in lithium anodes for lithium metal batteries. Adv. Sci. 8, 2101111 (2021). https://doi.org/10.1002/advs.202101111
W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k
X.Q. Min, G.J. Xu, B. Xie, P. Guan, M.L. Sun et al., Challenges of prelithiation strategies for next generation high energy lithium-ion batteries. Energy Storage Mater. 47, 297–318 (2022). https://doi.org/10.1016/j.ensm.2022.02.005
J.M. Wang, B.C. Ge, H. Li, M. Yang, J. Wang et al., Challenges and progresses of lithium-metal batteries. Chem. Eng. J. 420, 129739 (2021). https://doi.org/10.1016/j.cej.2021.129739
H.S. Wang, Z.A. Yu, X. Kong, S.C. Kim, D.T. Boyle et al., Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 6, 588–616 (2022). https://doi.org/10.1016/j.joule.2021.12.018
S.J. Tan, W.P. Wang, Y.F. Tian, S. Xin, Y.G. Guo, Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: progress and prospects. Adv. Funct. Mater. 31, 2105253 (2021). https://doi.org/10.1002/adfm.202105253
T.C. Liu, J.L. Wang, Y. Xu, Y.F. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13, 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
Z.A. Yu, Y. Cui, Z.N. Bao, Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020). https://doi.org/10.1016/j.xcrp.2020.100119
X.L. Fan, C.S. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021). https://doi.org/10.1039/d1cs00450f
H. Lee, P. Oh, J. Kim, H. Cha, S. Chae et al., Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries. Adv. Mater. 31, 1900376 (2019). https://doi.org/10.1002/adma.201900376
Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 30, 56–74 (2019). https://doi.org/10.1016/j.mattod.2019.09.018
W.B. Wu, Y.Y. Bo, D.P. Li, Y.H. Liang, J.C. Zhang et al., Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Lett. 14, 44 (2022). https://doi.org/10.1007/s40820-021-00780-7
W.H. Ren, C.F. Ding, X.W. Fu, Y. Huang, Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives. Energy Storage Mater. 34, 515–535 (2021). https://doi.org/10.1016/j.ensm.2020.10.018
X.Y. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14, 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
J.G. Yi, L. Chen, Y.C. Liu, H.X. Geng, L.Z. Fan, High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte. ACS Appl. Mater. Interfaces 11, 36774–36781 (2019). https://doi.org/10.1021/acsami.9b12846
Y. Lu, X.Y. Meng, J.A. Alonso, M.T. Fernández-Díaz, C.W. Sun, Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 2042–2049 (2019). https://doi.org/10.1021/acsami.8b17656
Z.Y. Lin, X.W. Guo, Y.B. Yang, M.X. Tang, Q. Wei et al., Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery. J. Energy Chem. 52, 67–74 (2021). https://doi.org/10.1016/j.jechem.2020.04.052
Z.C. Tian, D. Kim, A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery. J. Energy Chem. 68, 603–611 (2022). https://doi.org/10.1016/j.jechem.2021.12.035
S. Wang, Q.F. Sun, W.X. Peng, Y. Ma, Y. Zhou et al., Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J. Energy Chem. 58, 85–93 (2021). https://doi.org/10.1016/j.jechem.2020.09.033
S. Li, S.Q. Zhang, L. Shen, Q. Liu, J.B. Ma et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7, 1903088 (2020). https://doi.org/10.1002/advs.201903088
C.T. Zhao, Q. Sun, J. Luo, J.N. Liang, Y.L. Liu et al., 3D porous garnet/gel polymer hybrid electrolyte for safe solid-state Li–O2 batteries with long lifetimes. Chem. Mater. 32, 10113–10119 (2020). https://doi.org/10.1021/acs.chemmater.0c03529
X.Y. Liu, X.R. Li, H.X. Li, H.B. Wu, Recent progress of hybrid solid-state electrolytes for lithium batteries. Chem. Eur. J. 24, 18293–18306 (2018). https://doi.org/10.1002/chem.201803616
J. Wan, J. Xie, D.G. Mackanic, W. Burke, Z. Bao et al., Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Mater. Today Nano 4, 1–16 (2018). https://doi.org/10.1016/j.mtnano.2018.12.003
Q.Q. Zhang, K. Liu, F. Ding, X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 10, 4139–4174 (2017). https://doi.org/10.1007/s12274-017-1763-4
S.V. Ganesan, K.K. Mothilal, S. Selvasekarapandian, T.K. Ganesan, The effect of titanium dioxide nano-filler on the conductivity, morphology and thermal stability of poly(methyl methacrylate)-poly(styrene-co-acrylonitrile) based composite solid polymer electrolytes. J. Mater. Sci. Mater. Electron. 29, 8089–8099 (2018). https://doi.org/10.1007/s10854-018-8815-8
F. Pei, S.Q. Dai, B.F. Guo, H. Xie, C.W. Zhao et al., Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities. Energy Environ. Sci. 14, 975–985 (2021). https://doi.org/10.1039/d0ee03005h
D.C. Zhang, Z.B. Liu, Y.W. Wu, S.M. Ji, Z.X. Yuan et al., In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries. Adv. Sci. 9, 2104277 (2022). https://doi.org/10.1002/advs.202104277
W. Fan, X.L. Zhang, C.J. Li, S.Y. Zha, J. Wang, UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-metal battery. ACS Appl. Energy Mater. 2, 4513–4520 (2019). https://doi.org/10.1021/acsaem.9b00766
Y.Y. Yan, J.W. Ju, S.M. Dong, Y.T. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8, 2003887 (2021). https://doi.org/10.1002/advs.202003887
S. Li, J.Z. Lu, Z. Geng, Y. Chen, X.Q. Yu et al., Solid polymer electrolyte reinforced with a Li1.3Al0.3Ti1.7(PO4)3-coated separator for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 14, 1195–1202 (2022). https://doi.org/10.1021/acsami.1c21804
B. Chen, Z. Huang, X.T. Chen, Y.R. Zhao, Q. Xu et al., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim. Acta 210, 905–914 (2016). https://doi.org/10.1016/j.electacta.2016.06.025
M. Keller, G.B. Appetecchi, G.T. Kim, V. Sharova, M. Schneider et al., Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J. Power Sources 353, 287–297 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.014
W.P. Chen, H. Duan, J.L. Shi, Y.M. Qian, J. Wan et al., Bridging interp Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 143, 5717–5726 (2021). https://doi.org/10.1021/jacs.0c12965
B. Huang, B.Y. Xu, J.X. Zhang, Z.H. Li, Z.Y. Huang et al., Li-ion conductivity and stability of hot-pressed LiTa2PO8 solid electrolyte for all-solid-state batteries. J. Mater. Sci. 56, 2425–2434 (2020). https://doi.org/10.1007/s10853-020-05324-9
A.J. Blake, R.R. Kohlmeyer, J.O. Hardin, E.A. Carmona, B. Maruyama et al., 3D printable ceramic-polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability. Adv. Energy Mater. 7, 1602920 (2017). https://doi.org/10.1002/aenm.201602920
P.C. Yao, B. Zhu, H.W. Zhai, X.B. Liao, Y.X. Zhu et al., PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113–6120 (2018). https://doi.org/10.1021/acs.nanolett.8b01421
B.Y. Xu, X.Y. Li, C. Yang, Y.T. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
O.W. Sheng, H.L. Hu, T.F. Liu, Z.J. Ju, G.X. Lu et al., Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2111026 (2021). https://doi.org/10.1002/adfm.202111026
Y. Xia, X.L. Wang, X.H. Xia, R.C. Xu, S.Z. Zhang et al., A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF–HFP) for enhanced solid-state lithium-sulfur batteries. Chemistry 23, 15203–15209 (2017). https://doi.org/10.1002/chem.201703464
X.R. Yu, L.L. Wang, J. Ma, X.W. Sun, X.H. Zhou et al., Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv. Energy Mater. 10, 1903939 (2020). https://doi.org/10.1002/aenm.201903939
M.J. Lee, J.H. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
Y. Zhang, W. Feng, Y.C. Zhen, P.Y. Zhao, X.H. Wang et al., Effects of lithium salts on PEO-based solid polymer electrolytes and their all-solid-state lithium-ion batteries. Ionics 28, 2751–2758 (2022). https://doi.org/10.1007/s11581-022-04525-3
R.A. Tong, L.H. Chen, B.B. Fan, G. Shao, R.P. Liu et al., Solvent-free process for blended PVDF–HFP/PEO and LLZTO composite solid electrolytes with enhanced mechanical and electrochemical properties for lithium metal batteries. ACS Appl. Energy Mater. 4, 11802–11812 (2021). https://doi.org/10.1021/acsaem.1c02566
Y.X. Ma, J.Y. Wan, Y.F. Yang, Y.S. Ye, X. Xiao et al., Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 12, 2103720 (2022). https://doi.org/10.1002/aenm.202103720
D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973). https://doi.org/10.1016/0032-3861(73)90146-8
S. Lascaud, M. Perrier, A. Vallée, S. Besner, J. Prud’homme, Phase diagrams and conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes. Macromolecules 27, 7469–7477 (1994). https://doi.org/10.1021/ma00103a034
E. Quartarone, P. Mustarelli, A. Magistris, PEO-based composite polymer electrolytes. Solid State Ionics 110, 1–14 (1998). https://doi.org/10.1016/S0167-2738(98)00114-3
P. Fan, H. Liu, V. Marosz, N.T. Samuels, S.L. Suib et al., High performance composite polymer electrolytes for lithium-ion batteries. Adv. Funct. Mater. 31, 2101380 (2021). https://doi.org/10.1002/adfm.202101380
J.L. Qiu, X.Y. Liu, R.S. Chen, Q.H. Li, Y. Wang et al., Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 30, 1909392 (2020). https://doi.org/10.1002/adfm.201909392
K.H. Nie, X.L. Wang, J.L. Qiu, Y. Wang, Q. Yang et al., Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett. 5, 826–832 (2020). https://doi.org/10.1021/acsenergylett.9b02739
F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). https://doi.org/10.1038/28818
J.Y. Wu, L.X. Yuan, W.X. Zhang, Z. Li, X.L. Xie et al., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 4, 12–36 (2021). https://doi.org/10.1039/d0ee02241a
J. Popovic, D. Brandell, S. Ohno, K.B. Hatzel, J. Zheng et al., Polymer-based hybrid battery electrolytes: theoretical insights, recent advances and challenges. J. Mater. Chem. A 9, 6050–6069 (2021). https://doi.org/10.1039/d0ta11679c
X.E. Wang, R. Kerr, F.F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, 1905219 (2020). https://doi.org/10.1002/adma.201905219
L.L. Du, B. Zhang, X.F. Wang, C.H. Dong, L.Q. Mai et al., 3D frameworks in composite polymer electrolytes: synthesis, mechanisms, and applications. Chem. Eng. J. 451, 138787 (2023). https://doi.org/10.1016/j.cej.2022.138787
N. Meng, X.G. Zhu, F. Lian, Ps in composite polymer electrolyte for solid-state lithium batteries: a review. Particuology 60, 14–36 (2022). https://doi.org/10.1016/j.partic.2021.04.002
Z.C. Shen, Y.F. Cheng, S.H. Sun, X. Ke, L.Y. Liu et al., The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy 3, 482–508 (2021). https://doi.org/10.1002/cey2.108
J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8, 2 (2021). https://doi.org/10.1186/s40580-020-00252-5
L.Z. Fan, H.C. He, C.W. Nan, Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
Y. Zheng, Y.Z. Yao, J.H. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
S. Tang, W. Guo, Y.Z. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11, 2000802 (2020). https://doi.org/10.1002/aenm.202000802
S. Kalnaus, A.S. Sabau, W.E. Tenhaeff, N.J. Dudney, C. Daniel, Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. J. Power Sources 201, 280–287 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.020
J. Zheng, P.B. Wang, H.Y. Liu, Y.Y. Hu, Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2, 1452–1459 (2019). https://doi.org/10.1021/acsaem.8b02008
J. Zheng, H. Dang, X.Y. Feng, P.H. Chien, Y.Y. Hu, Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide-tetraethylene glycol dimethyl ether. J. Mater. Chem. A 5, 18457–18463 (2017). https://doi.org/10.1039/c7ta05832b
S.L. Liu, W.Y. Liu, D.L. Ba, Y.Z. Zhao, Y.H. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, 2110423 (2023). https://doi.org/10.1002/adma.202110423
L. Chen, Y.T. Li, S.P. Li, L.Z. Fan, C.W. Nan et al., PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy 46, 176–184 (2018). https://doi.org/10.1016/j.nanoen.2017.12.037
C. Wang, T.Q. Yang, W.K. Zhang, H. Huang, Y.P. Gan et al., Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries. J. Mater. Chem. A 10, 3400–3408 (2022). https://doi.org/10.1039/d1ta10607d
J. Zheng, Y.Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018). https://doi.org/10.1021/acsami.7b17301
N. Wu, P.H. Chien, Y.T. Li, A. Dolocan, H.H. Xu et al., Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 142, 2497–2505 (2020). https://doi.org/10.1021/jacs.9b12233
H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3, 929–956 (2021). https://doi.org/10.1002/cey2.146
Y.X. Su, F. Xu, Y.Q. Qiu, J.B. Zhang, X.R. Zhang et al., Electrolyte based on laser-generated nano-garnet in poly(ethylene oxide) for solid-state lithium metal batteries. Chem. Eng. J. 443, 136418 (2022). https://doi.org/10.1016/j.cej.2022.136418
Q.W. Pan, Y.W. Zheng, S. Kota, W.C. Huang, S.J. Wang et al., 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 1, 395–402 (2019). https://doi.org/10.1039/c8na00206a
X.K. Zhang, J. Xie, F.F. Shi, D.C. Lin, Y.Y. Liu et al., Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
R. Fan, C. Liu, K.Q. He, S.H. Cheng, D.Z. Chen et al., Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces 12, 7222–7231 (2020). https://doi.org/10.1021/acsami.9b20104
W. Liu, S.W. Lee, D.C. Lin, F.F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
Z.J. Sun, Y.H. Li, S.Y. Zhang, L. Shi, H. Wu et al., g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 7, 11069–11076 (2019). https://doi.org/10.1039/c9ta00634f
H.W. An, Q.S. Liu, J.L. An, S.T. Liang, X.F. Wang et al., Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries. Energy Storage Mater. 43, 358–364 (2021). https://doi.org/10.1016/j.ensm.2021.09.019
Y.Z. Shi, B. Li, Q. Zhu, K. Shen, W.J. Tang et al., MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv. Energy Mater. 10, 1903534 (2020). https://doi.org/10.1002/aenm.201903534
W.J. Tang, S. Tang, C.J. Zhang, Q.T. Ma, Q. Xiang et al., Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 8, 1800866 (2018). https://doi.org/10.1002/aenm.201800866
J. Cheng, G.M. Hou, Q. Chen, D.P. Li, K.K. Li et al., Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chem. Eng. J. 429, 132343 (2022). https://doi.org/10.1016/j.cej.2021.132343
Y.H. Li, Z.J. Sun, D.Y. Liu, Y.Y. Gao, Y.K. Wang et al., A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries. J. Mater. Chem. A 8, 2021–2032 (2020). https://doi.org/10.1039/c9ta11542k
T. Li, B. Ding, J. Wang, Z.Y. Qin, J.F.S. Fernando et al., Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 14993–15001 (2020). https://doi.org/10.1021/acsami.9b18883
X.W. Yu, A. Manthiram, A long cycle life, all-solid-state lithium battery with a ceramic-polymer composite electrolyte. ACS Appl. Energ. Mater. 3, 2916–2924 (2020). https://doi.org/10.1021/acsaem.9b02547
J. Cheng, G.M. Hou, Q. Sun, Z. Liang, X.Y. Xu et al., Cold-pressing PEO/LAGP composite electrolyte for integrated all-solid-state lithium metal battery. Solid State Ion. 345, 115156 (2020). https://doi.org/10.1016/j.ssi.2019.115156
G.M. Hou, M.Q. Zhang, Y.F. Huang, W.H. Ruan, A TiO2/PEO composite incorporated with in situ synthesized hyper-branched poly(amine-ester) and its application as a polymer electrolyte. RSC Adv. 6, 83406–83411 (2016). https://doi.org/10.1039/c6ra15351h
J.A. Isaac, D. Devaux, R. Bouchet, Dense inorganic electrolyte ps as a lever to promote composite electrolyte conductivity. Nat. Mater. 21, 1412–1418 (2022). https://doi.org/10.1038/s41563-022-01343-w
J.X. Zhang, N. Zhao, M. Zhang, Y.Q. Li, P.K. Chu et al., Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanops in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). https://doi.org/10.1016/j.nanoen.2016.09.002
K.Q. He, S.H. Cheng, J.Y. Hu, Y.Q. Zhang, H.W. Yang et al., In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 60, 12116–12123 (2021). https://doi.org/10.1002/anie.202103403
W.W. Li, C.Z. Sun, J. Jin, Y.P. Li, C.H. Chen et al., Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 7, 27304–27312 (2019). https://doi.org/10.1039/c9ta10400c
N. Wu, P.H. Chien, Y.M. Qian, Y.T. Li, H.H. Xu et al., Enhanced surface interactions enable fast Li+ conduction in oxide-polymer composite electrolyte. Angew. Chem. Int. Ed. 59, 4131–4137 (2020). https://doi.org/10.1002/anie.201914478
D.C. Lin, P.Y. Yuen, Y.Y. Liu, W. Liu, N. Liu et al., A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater. 30, 1802661 (2018). https://doi.org/10.1002/adma.201802661
Z. Li, W.X. Sha, X. Guo, Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl. Mater. Interfaces 11, 26920–26927 (2019). https://doi.org/10.1021/acsami.9b07830
J. ZagóRski, J.M.L.P.D. Amo, M.J. Cordill, Fdr Aguesse, L. Buannic et al., Garnet-polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl. Energy Mater. 2, 1724–1746 (2019). https://doi.org/10.1021/acsaem.8b01850
M. Liu, S. Ganapathy, M. Wagemaker, A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state electrolytes. Acc. Chem. Res. 55, 333–344 (2022). https://doi.org/10.1021/acs.accounts.1c00618
J. Zheng, M.X. Tang, Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12–polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016). https://doi.org/10.1002/anie.201607539
M.R. Li, M. Kolek, J.E. Frerichs, W. Sun, X. Hou et al., Investigation of polymer/ceramic composite solid electrolyte system: the case of PEO/LGPS composite electrolytes. ACS Sustain. Chem. Eng. 9, 11314–11322 (2021). https://doi.org/10.1021/acssuschemeng.1c00904
Y.Z. Zhu, X.F. He, Y.F. Mo, First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016). https://doi.org/10.1039/c5ta08574h
S.S. Chi, Y.C. Liu, N. Zhao, X.X. Guo, C.W. Nan et al., Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater. 17, 309–316 (2019). https://doi.org/10.1016/j.ensm.2018.07.004
S.J. Pennycook, C.J. Li, M.S. Li, C.H. Tang, E. Okunishi et al., Material structure, properties, and dynamics through scanning transmission electron microscopy. J. Anal. Sci. Technol. 9, 11 (2018). https://doi.org/10.1186/s40543-018-0142-4
Q. Cheng, A.J. Li, N. Li, S. Li, A. Zangiabadi et al., Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 3, 1510–1522 (2019). https://doi.org/10.1016/j.joule.2019.03.022
M. Liu, C. Wang, Z. Cheng, S. Ganapathy, L.A. Haverkate et al., Controlling the lithium-metal growth to enable low-lithium-metal-excess all-solid-state lithium-metal batteries. ACS Mater. Lett. 2, 665–670 (2020). https://doi.org/10.1021/acsmaterialslett.0c00152
Y. Cheng, L.Q. Zhang, Q.B. Zhang, J. Li, Y.F. Tang et al., Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Mater. Today 42, 137–161 (2020). https://doi.org/10.1016/j.mattod.2020.09.003
C.C. Zhang, Y.Z. Feng, Z. Han, S. Gao, M.Y. Wang et al., Electrochemical and structural analysis in all-solid-state lithium batteries by analytical electron microscopy: progress and perspectives. Adv. Mater. 32, 1903747 (2019). https://doi.org/10.1002/adma.201903747
H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen et al., Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 10, 2000049 (2020). https://doi.org/10.1002/aenm.202000049
H.H. Xu, P.H. Chien, J.J. Shi, Y.T. Lia, N. Wu et al., High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. USA 116, 18815–18821 (2019). https://doi.org/10.1073/pnas.1907507116
X. Li, D.H. Wang, H.C. Wang, H.F. Yan, Z.L. Gong et al., Poly(ethylene oxide)–Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl. Mater. Interfaces 11, 22745–22753 (2019). https://doi.org/10.1021/acsami.9b05212
G. Piana, F. Bella, F. Geobaldo, G. Meligrana, C. Gerbaldi, PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J. Energy Storage 26, 100947 (2019). https://doi.org/10.1016/j.est.2019.100947
Z.P. Wan, D.N. Lei, W. Yang, C. Liu, K. Shi et al., Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide(PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29, 1805301 (2019). https://doi.org/10.1002/adfm.201805301
Y.T. Li, B.Y. Xu, H.H. Xu, H.N. Duan, X.J. Lv et al., Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753–756 (2017). https://doi.org/10.1002/anie.201608924
M.R. Li, J.E. Frerichs, M. Kolek, W. Sun, D. Zhou et al., Solid-state lithium-sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30, 1910123 (2020). https://doi.org/10.1002/adfm.201910123
Z.Y. Huang, R.A. Tong, J. Zhang, L.H. Chen, C.A. Wang, Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by haake rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte. J. Power Sources 451, 227797 (2020). https://doi.org/10.1016/j.jpowsour.2020.227797
R.A. Tong, L.H. Chen, G. Shao, H.L. Wang, C.A. Wang, An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide) solid electrolytes: enhanced compatibility and cycle performance. J. Power Sources 492, 229672 (2021). https://doi.org/10.1016/j.jpowsour.2021.229672
R.A. Tong, H.L. Luo, L.H. Chen, J.X. Zhang, G. Shao et al., Constructing the lithium polymeric salt interfacial phase in composite solid-state electrolytes for enhancing cycle performance of lithium metal batteries. Chem. Eng. J. 442, 136154 (2022). https://doi.org/10.1016/j.cej.2022.136154
Z.Y. Huang, W.Y. Pang, P. Liang, Z.H. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7, 16425–16436 (2019). https://doi.org/10.1039/c9ta03395e
L. Chen, X.M. Qiu, Z.M. Bai, L.Z. Fan, Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. J. Energy Chem. 52, 210–217 (2021). https://doi.org/10.1016/j.jechem.2020.03.052
Y.L. Ni’mah, Z.H. Muhaiminah, S. Suprapto, Increase of solid polymer electrolyte ionic conductivity using Nano-SiO2 synthesized from sugarcane bagasse as filler. Polymers 13, 4240 (2021). https://doi.org/10.3390/polym13234240
X. Wang, H.W. Zhai, B.Y. Qie, Q. Cheng, A.J. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanop/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051
P. Pan, M.M. Zhang, Z.L. Cheng, L.Y. Jiang, J.T. Mao et al., Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable all-solid-state lithium metal batteries. Energy Storage Mater. 47, 279–287 (2022). https://doi.org/10.1016/j.ensm.2022.02.018
R.G. Li, S.T. Guo, L. Yu, L.B. Wang, D.B. Wu et al., Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6, 1900200 (2019). https://doi.org/10.1002/admi.201900200
J.Q. Dai, K. Fu, Y.H. Gong, J.W. Song, C.J. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1, 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
Y.H. Gong, K. Fu, S.M. Xu, J.Q. Dai, T.R. Hamann et al., Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Mater. Today 21, 594–601 (2018). https://doi.org/10.1016/j.mattod.2018.01.001
S.D. Song, X.H. Qin, Y.L. Ruan, W.J. Li, Y.Q. Xu et al., Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte. J. Power Sources 461, 228146 (2020). https://doi.org/10.1016/j.jpowsour.2020.228146
X.L. Fu, Y.C. Li, C.Z. Liao, W.P. Gong, M.Y. Yang et al., Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network. Compos. Sci. Technol. 184, 107863 (2019). https://doi.org/10.1016/j.compscitech.2019.107863
C. Liu, J.X. Wang, W.J. Kou, Z.H. Yang, P.F. Zhai et al., A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem. Eng. J. 404, 126517 (2021). https://doi.org/10.1016/j.cej.2020.126517
S. Zekoll, C. Marriner-Edwards, A.K.O. Hekselman, J. Kasemchainan, C. Kuss et al., Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018). https://doi.org/10.1039/c7ee02723k
Z.Y. Wang, L. Shen, S.G. Deng, P. Cui, X.Y. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33, 2100353 (2021). https://doi.org/10.1002/adma.202100353
H. Xie, C.P. Yang, K. Fu, Y.G. Yao, F. Jiang et al., Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv. Energy Mater. 8, 1703474 (2018). https://doi.org/10.1002/aenm.201703474
H.W. Zhai, P.Y. Xu, M.Q. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17, 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
Y.H. Li, Z.Y. Fu, S.Y. Lu, X. Sun, X.R. Zhang et al., Polymer nanofibers framework composite solid electrolyte with lithium dendrite suppression for long life all-solid-state lithium metal battery. Chem. Eng. J. 440, 135816 (2022). https://doi.org/10.1016/j.cej.2022.135816
M.M. Zhang, P. Pan, Z.L. Cheng, J.T. Mao, L.Y. Jiang et al., Flexible, mechanically robust, solid-state electrolyte membrane with conducting oxide-enhanced 3D nanofiber networks for lithium batteries. Nano Lett. 21, 7070–7078 (2021). https://doi.org/10.1021/acs.nanolett.1c01704
Z.J. Zhang, Q. Wang, Z.H. Li, Y.C. Jiang, B. Zhao et al., Well-aligned BaTiO3 nanofibers via solution blow spinning and their application in lithium composite solid-state electrolyte. Mater. Express 9, 993–1000 (2019). https://doi.org/10.1166/mex.2019.1589
F. He, W.J. Tang, X.Y. Zhang, L.J. Deng, J.Y. Luo, High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 33, 2105329 (2021). https://doi.org/10.1002/adma.202105329
L.X. Gao, B. Tang, H.Y. Jiang, Z.J. Xie, J.P. Wei et al., Fiber-reinforced composite polymer electrolytes for solid-state lithium batteries. Adv. Sustain. Syst. 6, 2100389 (2021). https://doi.org/10.1002/adsu.202100389
M.A. Navarra, L. Lombardo, P. Bruni, L. Morelli, A. Tsurumaki, S. Panero et al., Gel polymer electrolytes based on silica-added poly(ethylene oxide) electrospun membranes for lithium batteries. Membranes 8, 126 (2018). https://doi.org/10.3390/membranes8040126
J.W. Zha, N. Huang, K.Q. He, Z.M. Dang, C.Y. Shi et al., Electrospun poly(ethylene oxide) nanofibrous composites with enhanced ionic conductivity as flexible solid polymer electrolytes. High Volt. 2, 25–31 (2017). https://doi.org/10.1049/hve.2016.0069
W. Liu, N. Liu, J. Sun, P.C. Hsu, Y.Z. Li et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015). https://doi.org/10.1021/acs.nanolett.5b00600
K. Fu, Y.H. Gong, J.Q. Dai, A. Gong, X.G. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 113, 7094–7099 (2016). https://doi.org/10.1073/pnas.1600422113
X.Z. Wang, Y.B. Zhang, X. Zhang, T. Liu, Y.H. Lin et al., Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 24791–24798 (2018). https://doi.org/10.1021/acsami.8b06658
J.M. Yu, C. Wang, S.H. Li, N. Liu, J. Zhu et al., Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte. Small 15, 1902729 (2019). https://doi.org/10.1002/smll.201902729
J.Y. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
Y. Cui, J.Y. Wan, Y.S. Ye, K. Liu, L.Y. Chou et al., A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries. Nano Lett. 20, 1686–1692 (2020). https://doi.org/10.1021/acs.nanolett.9b04815
J.Y. Wu, Z.X. Rao, Z.X. Cheng, L.X. Yuan, Z. Li et al., Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019). https://doi.org/10.1002/aenm.201902767
J. Bae, Y.T. Li, J. Zhang, X.Y. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
J. Bae, Y.T. Li, F. Zhao, X.Y. Zhou, Y. Ding et al., Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 15, 46–52 (2018). https://doi.org/10.1016/j.ensm.2018.03.016
M. Falco, L. Castro, J.R. Nair, F. Bella, F. Bardé et al., UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl. Energy Mater. 2, 1600–1607 (2019). https://doi.org/10.1021/acsaem.8b02185
S.H. Siyal, M.S. Javed, A.H. Jatoi, J.L. Lan, Y.H. Yu et al., In situ curing technology for dual ceramic composed by organic-inorganic functional polymer gel electrolyte for dendritic-free and robust lithium-metal batteries. Adv. Mater. Interfaces 7, 2000830 (2020). https://doi.org/10.1002/admi.202000830
S.H. Siyal, M.J. Li, H. Li, J.L. Lan, Y.H. Yu et al., Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Appl. Surf. Sci. 494, 1119–1126 (2019). https://doi.org/10.1016/j.apsusc.2019.07.179
J. Shi, H.G. Xiong, Y.F. Yang, H.X. Shao, Nano-sized oxide filled composite PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium and sodium batteries. Solid State Ion. 326, 136–144 (2018). https://doi.org/10.1016/j.ssi.2018.09.019
Y.T. Wang, J.W. Ju, S.M. Dong, Y.Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: In situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021). https://doi.org/10.1002/adfm.202101523
R.L. Wang, Q. Dong, C.W. Wang, M. Hong, J.L. Gao et al., High-temperature ultrafast sintering: Exploiting a new kinetic region to fabricate porous solid-state electrolyte scaffolds. Adv. Mater. 33, 2100726 (2021). https://doi.org/10.1002/adma.202100726
K. Zhang, F. Wu, X.R. Wang, S.T. Weng, X.Y. Yang et al., 8.5 µm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries. Adv. Energy Mater. 12, 2200368 (2022). https://doi.org/10.1002/aenm.202200368
J. Yu, X.D. Lin, J.P. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932 (2021). https://doi.org/10.1002/aenm.202102932
Y. Chen, F. Huo, S.M. Chen, W.B. Cai, S.J. Zhang, In-built quasi-solid-state poly-ether electrolytes enabling stable cycling of high-voltage and wide-temperature Li metal batteries. Adv. Funct. Mater. 31, 2102347 (2021). https://doi.org/10.1002/adfm.202102347
D.L. Chen, T. Zhu, M. Zhu, S.Q. Yuan, P.B. Kang et al., In-situ constructing “ceramer” electrolytes with robust-flexible interfaces enabling long-cycling lithium metal batteries. Energy Storage Mater. (2022). https://doi.org/10.1016/j.ensm.2022.09.022
J.X. Yang, X. Liu, Y. Wang, X.W. Zhou, L.T. Weng et al., Electrolytes polymerization-induced cathode-electrolyte-interphase for high voltage lithium-ion batteries. Adv. Energy Mater. 11, 2101956 (2021). https://doi.org/10.1002/aenm.202101956
H. Shen, E. Yi, S. Heywood, D.Y. Parkinson, G.Y. Chen et al., Scalable freeze-tape-casting fabrication and pore structure analysis of 3D LLZO solid-state electrolytes. ACS Appl. Mater. Interfaces 12, 3494–3501 (2020). https://doi.org/10.1021/acsami.9b11780
E. Yi, H. Shen, S. Heywood, J. Alvarado, D.Y. Parkinson et al., All-solid-state batteries using rationally designed garnet electrolyte frameworks. ACS Appl. Energy Mater. 3, 170–175 (2020). https://doi.org/10.1021/acsaem.9b02101
T.L. Jiang, P.G. He, G.X. Wang, Y. Shen, C.W. Nan et al., Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 10, 1903376 (2020). https://doi.org/10.1002/aenm.201903376
J.J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nanomicro Lett. 14, 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
O.W. Sheng, C.P. Jin, J.M. Luo, H.D. Yuan, C. Fang et al., Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 5, 12934–12942 (2017). https://doi.org/10.1039/c7ta03699j
J. Cao, L. Wang, X.M. He, M. Fang, J. Gao et al., In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 1, 5955–5961 (2013). https://doi.org/10.1039/c3ta00086a
H.Y. Huo, N. Zhao, J.Y. Sun, F.M. Du, Y.Q. Li et al., Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J. Power Sources 372, 1–7 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.059
F.D. Han, A.S. Westover, J. Yue, X.L. Fan, F. Wang et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z
E. Kuhnert, L. Ladenstein, A. Jodlbauer, C. Slugovc, G. Trimmel et al., Lowering the interfacial resistance in Li6.4La3Zr1.4Ta0.6O12|poly(ethylene oxide) composite electrolytes. Cell Rep. Phys. Sci. 1, 100214 (2020). https://doi.org/10.1016/j.xcrp.2020.100214
Y.H. Zhu, J. Cao, H. Chen, Q.P. Yu, B.H. Li, High electrochemical stability of 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 7, 6832–6839 (2013). https://doi.org/10.1039/C9TA00560A
Y. Kim, S.J. Kwon, H.K. Jang, B.M. Jung, S.B. Lee et al., High ion conducting nanohybrid solid polymer electrolytes via single-ion conducting mesoporous organosilica in poly(ethylene oxide). Chem. Mater. 29, 4401–4410 (2017). https://doi.org/10.1021/acs.chemmater.7b00879
S. Choudhury, S. Stalin, Y. Deng, L.A. Archer, Soft colloidal glasses as solid-state electrolytes. Chem. Mater. 30, 5996–6004 (2018). https://doi.org/10.1021/acs.chemmater.8b02227
D.C. Lin, W. Liu, Y.Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016). https://doi.org/10.1021/acs.nanolett.5b04117
X.J. Tan, Y.M. Wu, W.P. Tang, S.F. Song, J.Y. Yao et al., Preparation of nanocomposite polymer electrolyte via in situ synthesis of SiO2 nanops in PEO. Nanomaterials 10, 157 (2020). https://doi.org/10.3390/nano10010157
K.C. Pan, L. Zhang, W.W. Qian, X.K. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32, 2000399 (2020). https://doi.org/10.1002/adma.202000399
W.D. Bao, L.Q. Zhao, H.J. Zhao, L.X. Su, X.C. Cai et al., Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater. 43, 258–265 (2021). https://doi.org/10.1016/j.ensm.2021.09.010
X.N. Ma, Y.L. Xu, B.F. Zhang, X. Xue, C. Wang et al., Garnet Si-Li7La3Zr2O12 electrolyte with a durable, low resistance interface layer for all-solid-state lithium metal batteries. J. Power Sources 453, 227881 (2020). https://doi.org/10.1016/j.jpowsour.2020.227881
L.H. Chen, J. Zhang, R.A. Tong, J.X. Zhang, H.L. Wang et al., Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small 18, e2106142 (2022). https://doi.org/10.1002/smll.202106142
K. Liu, R.H. Zhang, J. Sun, M.C. Wu, T.S. Zhao, Polyoxyethylene (PEO)|PEO−Perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11, 46930–46937 (2019). https://doi.org/10.1021/acsami.9b16936
J.N. Liang, Q. Sun, Y. Zhao, Y.P. Sun, C.H. Wang et al., Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition. J. Mater. Chem. A 6, 23712–23719 (2018). https://doi.org/10.1039/c8ta09069f
L.H. Chen, Y.B. Su, J. Zhang, H.J. Zhang, B.B. Fan et al., Nanosecond laser cleaning method to reduce the surface inert layer and activate the garnet electrolyte for a solid-state Li metal battery. ACS Appl. Mater. Interfaces 13, 37082–37090 (2021). https://doi.org/10.1021/acsami.1c08509
H.C. Yang, Y.M. Zhang, M.J. Tennenbaum, Z. Althouse, Y. Ma et al., Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer lithium metal batteries. ACS Appl. Mater. Interfaces 11, 27906–27912 (2019). https://doi.org/10.1021/acsami.9b08285
C.H. Wang, G.L. Bai, Y.F. Yang, X.J. Liu, H.X. Shao, Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 12, 217–223 (2019). https://doi.org/10.1007/s12274-018-2205-7
W.D. Zhou, Z.X. Wang, Y. Pu, Y.T. Li, S. Xin et al., Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater. 31, 1805574 (2018). https://doi.org/10.1002/adma.201805574
S.Z. Zhang, T.B. Liang, D.H. Wang, Y.J. Xu, Y.L. Cui et al., A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Adv. Sci. 8, 2003241 (2021). https://doi.org/10.1002/advs.202003241
X.Y. Xu, Y.Y. Liu, O.O. Kapitanova, Z.X. Song, J. Sun et al., Electro-chemo-mechanical failure of solid electrolytes induced by growth of internal lithium filaments. Adv. Mater. 34, 2207232 (2022). https://doi.org/10.1002/adma.202207232
Y.Y. Liu, X.Y. Xu, O.O. Kapitanova, P.V. Evdokimov, Z.X. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12, 2103589 (2022). https://doi.org/10.1002/aenm.202103589
L. Liu, L. Yang, M. Liu, X.Y. Wang, X.L. Li et al., A flexible tysonite-type La0.95Ba0.05F2.95@PEO-based composite electrolyte for the application of advanced fluoride ion battery. J. Energy Storage 25, 100886 (2019). https://doi.org/10.1016/j.est.2019.100886
X.F. Yang, M. Jiang, X.J. Gao, D.N. Bao, Q. Sun et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ. Sci. 13, 1318–1325 (2020). https://doi.org/10.1039/d0ee00342e
R. Fan, W.C. Liao, S.X. Fan, D.Z. Chen, J.N. Tang et al., Regulating interfacial Li-ion transport via an integrated corrugated 3D skeleton in solid composite electrolyte for all-solid-state lithium metal batteries. Adv. Sci. 9, 2104506 (2022). https://doi.org/10.1002/advs.202104506
S.J. Liu, H.R. Shan, S.H. Xia, J.H. Yan, J.Y. Yu et al., Polymer template synthesis of flexible SiO2 nanofibers to upgrade composite electrolytes. ACS Appl. Mater. Interfaces 12, 31439–31447 (2020). https://doi.org/10.1021/acsami.0c06922
J.Q. Sun, C.H. He, X.M. Yao, A.Q. Song, Y.G. Li et al., Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries. Adv. Funct. Mater. 31, 2006381 (2020). https://doi.org/10.1002/adfm.202006381
X. Wen, Q.H. Zeng, J.Z. Guan, W. Wen, P.P. Chen et al., 3D structural lithium alginate-based gel polymer electrolytes with superior high-rate long cycling performance for high-energy lithium metal batteries. J. Mater. Chem. A 10, 707–718 (2022). https://doi.org/10.1039/d1ta07252h
J. Lopez, D.G. Mackanic, Y. Cui, Z.N. Bao, Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019). https://doi.org/10.1038/s41578-019-0103-6
X. Judez, H. Zhang, C.M. Li, G.G. Eshetu, Y. Zhang et al., Polymer-rich composite electrolytes for all-solid-state Li-S cells. J. Phys. Chem. Lett. 8, 3473–3477 (2017). https://doi.org/10.1021/acs.jpclett.7b01321
R.Y. Fang, H.H. Xu, B.Y. Xu, X.Y. Li, Y.T. Li et al., Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv. Funct. Mater. 31, 2001812 (2020). https://doi.org/10.1002/adfm.202001812
F. Lee, M.C. Tsai, M.H. Lin, Y.L. Ni’mah, S. Hy et al., Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide. J. Mater. Chem. A 5, 6708–6715 (2017). https://doi.org/10.1039/c6ta10755a
X.Y. Tao, Y.Y. Liu, W. Liu, G.M. Zhou, J. Zhao et al., Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
Y.B. Zhang, R.J. Chen, S. Wang, T. Liu, B.Q. Xu et al., Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater. 25, 145–153 (2020). https://doi.org/10.1016/j.ensm.2019.10.020