Cerium Methacrylate Assisted Preparation of Highly Thermally Conductive and Anticorrosive Multifunctional Coatings for Heat Conduction Metals Protection
Corresponding Author: Huaiyuan Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 201
Abstract
Preparing polymeric coatings with well corrosion resistance and high thermal conductivity (TC) to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task. Here we report a multifunctional epoxy composite coating (F-CB/CEP) by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through "cation-π" interaction. The prepared F-CB/CEP coating presents a high TC of 4.29 W m−1 K−1, which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating. Meanwhile, the low-frequency impedance remains at 5.1 × 1011 Ω cm2 even after 181 days of immersion in 3.5 wt% NaCl solution. Besides, the coating also exhibits well hydrophobicity, self-cleaning properties, temperature resistance and adhesion. This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials, especially for heat conduction metals protection.
Highlights:
1 Cerium methacrylate was prepared and ingeniously used as curing agent for epoxy, surface modifier for BN, and effective corrosion inhibitor.
2 The coating integrates high thermal conductivity (4.29 W m−1 K−1), corrosion resistance (low-frequency impedance is 5.1 × 1011 Ω cm2 at 181 day), hydrophobicity (WCA: ~ 148.35° and WSA: ~ 20°), temperature resistance and adhesion.
3 The coating can extend service life of metal materials without sacrificing their inherent heat conduction property.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5g base stations and thermoelectric generators. Nano-Micro Lett. 15(1), 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- H. Zhao, L. Ran, Y. Xie, F. Sun, L. Yi et al., Achieving highly anisotropic thermal and electrical conductivities via synergistic distribution of boron nitride and graphene nanosheets in multilayered composites. J. Alloys Compd. 935, 167971 (2023). https://doi.org/10.1016/j.jallcom.2022.167971
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13(1), 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- Z. Barani, A. Mohammadzadeh, A. Geremew, C.Y. Huang, D. Coleman et al., Thermal properties of the binary-filler hybrid composites with graphene and copper nanops. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201904008
- G. Xie, M. Forslund, J. Pan, Direct electrochemical synthesis of reduced graphene oxide (rgo)/copper composite films and their electrical/electroactive properties. ACS Appl. Mater. Interfaces 6(10), 7444–7455 (2014). https://doi.org/10.1021/am500768g
- M. Attaei, L.M. Calado, Y. Morozov, M.G. Taryba, R.A. Shakoor et al., Smart epoxy coating modified with isophorone diisocyanate microcapsules and cerium organophosphate for multilevel corrosion protection of carbon steel. Prog. Org. Coat. 147, 105864 (2020). https://doi.org/10.1016/j.porgcoat.2020.105864
- W. Jiang, J. He, F. Xiao, S. Yuan, H. Lu et al., Preparation and antiscaling application of superhydrophobic anodized cuo nanowire surfaces. Ind. Eng. Chem. Res. 54(27), 6874–6883 (2015). https://doi.org/10.1021/acs.iecr.5b00444
- J. Wei, B. Li, L. Jing, N. Tian, X. Zhao et al., Efficient protection of mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating. Chem. Eng. J. 390, 124562 (2020). https://doi.org/10.1016/j.cej.2020.124562
- X. Liu, T.C. Zhang, H. He, L. Ouyang, S. Yuan, A stearic acid/CeO2 bilayer coating on az31b magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition. J. Alloys Compd. 834, 155210 (2020). https://doi.org/10.1016/j.jallcom.2020.155210
- Y. Zou, Y. Wang, S. Xu, T. Jin, D. Wei et al., Superhydrophobic double-layer coating for efficient heat dissipation and corrosion protection. Chem. Eng. J. 362, 638–649 (2019). https://doi.org/10.1016/j.cej.2019.01.086
- F. Xu, M. Zhang, Y. Cui, D. Bao, J. Peng et al., A novel polymer composite coating with high thermal conductivity and unique anti-corrosion performance. Chem. Eng. J. 439, 135660 (2022). https://doi.org/10.1016/j.cej.2022.135660
- C. Chen, Y. Xue, Z. Li, Y. Wen, X. Li et al., Construction of 3d boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanops. Chem. Eng. J. 369, 1150–1160 (2019). https://doi.org/10.1016/j.cej.2019.03.150
- D. Pan, X. Zhang, G. Yang, Y. Shang, F. Su et al., Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets. Ind. Eng. Chem. Res. 59(46), 20371–20381 (2020). https://doi.org/10.1021/acs.iecr.0c04510
- T. Huang, X. Zhang, T. Wang, H. Zhang, Y. Li et al., Self-modifying nanointerface driving ultrahigh bidirectional thermal conductivity boron nitride-based composite flexible films. Nano-Micro Lett. 15(1), 2 (2022). https://doi.org/10.1007/s40820-022-00972-9
- Y. Wu, Y. He, T. Zhou, C. Chen, F. Zhong et al., Synergistic functionalization of h-bn by mechanical exfoliation and pei chemical modification for enhancing the corrosion resistance of waterborne epoxy coating. Prog. Org. Coat. 142, 105541 (2020). https://doi.org/10.1016/j.porgcoat.2020.105541
- A. Bashir, M. Maqbool, R. Lv, A. Usman, H. Guo et al., Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite. Compos. B 218, 108871 (2021). https://doi.org/10.1016/j.compositesb.2021.108871
- Z. Zheng, M. Cox, B. Li, Surface modification of hexagonal boron nitride nanomaterials: a review. J. Mater. Sci. 53(1), 66–99 (2017). https://doi.org/10.1007/s10853-017-1472-0
- J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun et al., Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of bn. ACS Appl. Mater. Interfaces 9(15), 13544–13553 (2017). https://doi.org/10.1021/acsami.7b02410
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- A. Demongeot, S.J. Mougnier, S. Okada, C. Soulié-Ziakovic, F. Tournilhac, Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym. Chem-UK 7(27), 4486–4493 (2016). https://doi.org/10.1039/c6py00752j
- S. Akbarzadeh, M. Ramezanzadeh, B. Ramezanzadeh, G. Bahlakeh, A green assisted route for the fabrication of a high-efficiency self-healing anti-corrosion coating through graphene oxide nanoplatform reduction by tamarindus indiaca extract. J. Hazard. Mater. 390, 122147 (2020). https://doi.org/10.1016/j.jhazmat.2020.122147
- Y. Lin, K. Liu, Y. Chen, L. Liu, Influence of graphene functionalized with zinc dimethacrylate on the mechanical and thermal properties of natural rubber nanocomposites. Polym. Composite 36(10), 1775–1785 (2015). https://doi.org/10.1002/pc.23021
- C. Chen, F. Zhang, C. Lin, J. Pan, Corrosion protection and self-healing of a nanocomposite film of mussel adhesive protein and CeO2 nanops on carbon steel. J. Electrochem. Soc. 163(9), C545–C552 (2016). https://doi.org/10.1149/2.0521609jes
- K. An, Y. Sui, Y. Wang, Y. Qing, C. Long et al., Synergistic control of wetting resistance and corrosion inhibition by cerium to enhance corrosion resistance of superhydrophobic coating. Colloid. Surface A 653, 129874 (2022). https://doi.org/10.1016/j.colsurfa.2022.129874
- Y. Shi, Y. Hong, J. Hong, A. Yu, M.W. Lee et al., Bio-based boronic ester vitrimer for realizing sustainable and highly thermally conducting nanocomposites. Compos. B 244, 110181 (2022). https://doi.org/10.1016/j.compositesb.2022.110181
- A.S. Mahadevi, G.N. Sastry, Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 113(3), 2100–2138 (2012). https://doi.org/10.1021/cr300222d
- P. Najmi, N. Keshmiri, M. Ramezanzadeh, B. Ramezanzadeh, Synthesis and application of zn-doped polyaniline modified multi-walled carbon nanotubes as stimuli-responsive nanocarrier in the epoxy matrix for achieving excellent barrier-self-healing corrosion protection potency. Chem. Eng. J. 412, 128637 (2021). https://doi.org/10.1016/j.cej.2021.128637
- H. Yuan, Y. Wang, T. Li, Y. Wang, P. Ma et al., Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network. Nanoscale 11(23), 11360–11368 (2019). https://doi.org/10.1039/c9nr02491c
- H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016).
- Y. Bao, Y. Sun, F. Jiao, W. Hu, Recent advances in multicomponent organic composite thermoelectric materials. Adv. Electron. Mater. (2023). https://doi.org/10.1002/aelm.202201310
- C. Tian, Y. Yang, Q. Liu, Y. Bai, F. Zhao et al., Molecular regulation of flexible composite solid-solid phase change materials with controllable isotropic thermal conductivity for thermal energy storage. ACS Appl. Mater. Interfaces 15(10), 13165–13175 (2023). https://doi.org/10.1021/acsami.3c00169
- A. Trentin, S.V. Harb, M.C. Uvida, K. Marcoen, S.H. Pulcinelli et al., Effect of Ce(iii) and Ce(iv) ions on the structure and active protection of pmma-silica coatings on AA7075 alloy. Corros. Sci. 189, 109581 (2021). https://doi.org/10.1016/j.corsci.2021.109581
- T. Liu, H. Zhao, J. Li, D. Zhang, W. Zheng et al., Poss-tetraaniline based giant molecule: Synthesis, self-assembly, and active corrosion protection of epoxy-based organic coatings. Corros. Sci. 168, 108555 (2020). https://doi.org/10.1016/j.corsci.2020.108555
- H. Liu, Y. Wang, J. Huang, Z. Chen, G. Chen et al., Bioinspired surfaces with superamphiphobic properties: Concepts, synthesis, and applications. Adv. Funct. Mater. 28(19), 1707415 (2018). https://doi.org/10.1002/adfm.201707415
References
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5g base stations and thermoelectric generators. Nano-Micro Lett. 15(1), 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
H. Zhao, L. Ran, Y. Xie, F. Sun, L. Yi et al., Achieving highly anisotropic thermal and electrical conductivities via synergistic distribution of boron nitride and graphene nanosheets in multilayered composites. J. Alloys Compd. 935, 167971 (2023). https://doi.org/10.1016/j.jallcom.2022.167971
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13(1), 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
Z. Barani, A. Mohammadzadeh, A. Geremew, C.Y. Huang, D. Coleman et al., Thermal properties of the binary-filler hybrid composites with graphene and copper nanops. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201904008
G. Xie, M. Forslund, J. Pan, Direct electrochemical synthesis of reduced graphene oxide (rgo)/copper composite films and their electrical/electroactive properties. ACS Appl. Mater. Interfaces 6(10), 7444–7455 (2014). https://doi.org/10.1021/am500768g
M. Attaei, L.M. Calado, Y. Morozov, M.G. Taryba, R.A. Shakoor et al., Smart epoxy coating modified with isophorone diisocyanate microcapsules and cerium organophosphate for multilevel corrosion protection of carbon steel. Prog. Org. Coat. 147, 105864 (2020). https://doi.org/10.1016/j.porgcoat.2020.105864
W. Jiang, J. He, F. Xiao, S. Yuan, H. Lu et al., Preparation and antiscaling application of superhydrophobic anodized cuo nanowire surfaces. Ind. Eng. Chem. Res. 54(27), 6874–6883 (2015). https://doi.org/10.1021/acs.iecr.5b00444
J. Wei, B. Li, L. Jing, N. Tian, X. Zhao et al., Efficient protection of mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating. Chem. Eng. J. 390, 124562 (2020). https://doi.org/10.1016/j.cej.2020.124562
X. Liu, T.C. Zhang, H. He, L. Ouyang, S. Yuan, A stearic acid/CeO2 bilayer coating on az31b magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition. J. Alloys Compd. 834, 155210 (2020). https://doi.org/10.1016/j.jallcom.2020.155210
Y. Zou, Y. Wang, S. Xu, T. Jin, D. Wei et al., Superhydrophobic double-layer coating for efficient heat dissipation and corrosion protection. Chem. Eng. J. 362, 638–649 (2019). https://doi.org/10.1016/j.cej.2019.01.086
F. Xu, M. Zhang, Y. Cui, D. Bao, J. Peng et al., A novel polymer composite coating with high thermal conductivity and unique anti-corrosion performance. Chem. Eng. J. 439, 135660 (2022). https://doi.org/10.1016/j.cej.2022.135660
C. Chen, Y. Xue, Z. Li, Y. Wen, X. Li et al., Construction of 3d boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanops. Chem. Eng. J. 369, 1150–1160 (2019). https://doi.org/10.1016/j.cej.2019.03.150
D. Pan, X. Zhang, G. Yang, Y. Shang, F. Su et al., Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets. Ind. Eng. Chem. Res. 59(46), 20371–20381 (2020). https://doi.org/10.1021/acs.iecr.0c04510
T. Huang, X. Zhang, T. Wang, H. Zhang, Y. Li et al., Self-modifying nanointerface driving ultrahigh bidirectional thermal conductivity boron nitride-based composite flexible films. Nano-Micro Lett. 15(1), 2 (2022). https://doi.org/10.1007/s40820-022-00972-9
Y. Wu, Y. He, T. Zhou, C. Chen, F. Zhong et al., Synergistic functionalization of h-bn by mechanical exfoliation and pei chemical modification for enhancing the corrosion resistance of waterborne epoxy coating. Prog. Org. Coat. 142, 105541 (2020). https://doi.org/10.1016/j.porgcoat.2020.105541
A. Bashir, M. Maqbool, R. Lv, A. Usman, H. Guo et al., Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite. Compos. B 218, 108871 (2021). https://doi.org/10.1016/j.compositesb.2021.108871
Z. Zheng, M. Cox, B. Li, Surface modification of hexagonal boron nitride nanomaterials: a review. J. Mater. Sci. 53(1), 66–99 (2017). https://doi.org/10.1007/s10853-017-1472-0
J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun et al., Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of bn. ACS Appl. Mater. Interfaces 9(15), 13544–13553 (2017). https://doi.org/10.1021/acsami.7b02410
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
A. Demongeot, S.J. Mougnier, S. Okada, C. Soulié-Ziakovic, F. Tournilhac, Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym. Chem-UK 7(27), 4486–4493 (2016). https://doi.org/10.1039/c6py00752j
S. Akbarzadeh, M. Ramezanzadeh, B. Ramezanzadeh, G. Bahlakeh, A green assisted route for the fabrication of a high-efficiency self-healing anti-corrosion coating through graphene oxide nanoplatform reduction by tamarindus indiaca extract. J. Hazard. Mater. 390, 122147 (2020). https://doi.org/10.1016/j.jhazmat.2020.122147
Y. Lin, K. Liu, Y. Chen, L. Liu, Influence of graphene functionalized with zinc dimethacrylate on the mechanical and thermal properties of natural rubber nanocomposites. Polym. Composite 36(10), 1775–1785 (2015). https://doi.org/10.1002/pc.23021
C. Chen, F. Zhang, C. Lin, J. Pan, Corrosion protection and self-healing of a nanocomposite film of mussel adhesive protein and CeO2 nanops on carbon steel. J. Electrochem. Soc. 163(9), C545–C552 (2016). https://doi.org/10.1149/2.0521609jes
K. An, Y. Sui, Y. Wang, Y. Qing, C. Long et al., Synergistic control of wetting resistance and corrosion inhibition by cerium to enhance corrosion resistance of superhydrophobic coating. Colloid. Surface A 653, 129874 (2022). https://doi.org/10.1016/j.colsurfa.2022.129874
Y. Shi, Y. Hong, J. Hong, A. Yu, M.W. Lee et al., Bio-based boronic ester vitrimer for realizing sustainable and highly thermally conducting nanocomposites. Compos. B 244, 110181 (2022). https://doi.org/10.1016/j.compositesb.2022.110181
A.S. Mahadevi, G.N. Sastry, Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 113(3), 2100–2138 (2012). https://doi.org/10.1021/cr300222d
P. Najmi, N. Keshmiri, M. Ramezanzadeh, B. Ramezanzadeh, Synthesis and application of zn-doped polyaniline modified multi-walled carbon nanotubes as stimuli-responsive nanocarrier in the epoxy matrix for achieving excellent barrier-self-healing corrosion protection potency. Chem. Eng. J. 412, 128637 (2021). https://doi.org/10.1016/j.cej.2021.128637
H. Yuan, Y. Wang, T. Li, Y. Wang, P. Ma et al., Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network. Nanoscale 11(23), 11360–11368 (2019). https://doi.org/10.1039/c9nr02491c
H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016).
Y. Bao, Y. Sun, F. Jiao, W. Hu, Recent advances in multicomponent organic composite thermoelectric materials. Adv. Electron. Mater. (2023). https://doi.org/10.1002/aelm.202201310
C. Tian, Y. Yang, Q. Liu, Y. Bai, F. Zhao et al., Molecular regulation of flexible composite solid-solid phase change materials with controllable isotropic thermal conductivity for thermal energy storage. ACS Appl. Mater. Interfaces 15(10), 13165–13175 (2023). https://doi.org/10.1021/acsami.3c00169
A. Trentin, S.V. Harb, M.C. Uvida, K. Marcoen, S.H. Pulcinelli et al., Effect of Ce(iii) and Ce(iv) ions on the structure and active protection of pmma-silica coatings on AA7075 alloy. Corros. Sci. 189, 109581 (2021). https://doi.org/10.1016/j.corsci.2021.109581
T. Liu, H. Zhao, J. Li, D. Zhang, W. Zheng et al., Poss-tetraaniline based giant molecule: Synthesis, self-assembly, and active corrosion protection of epoxy-based organic coatings. Corros. Sci. 168, 108555 (2020). https://doi.org/10.1016/j.corsci.2020.108555
H. Liu, Y. Wang, J. Huang, Z. Chen, G. Chen et al., Bioinspired surfaces with superamphiphobic properties: Concepts, synthesis, and applications. Adv. Funct. Mater. 28(19), 1707415 (2018). https://doi.org/10.1002/adfm.201707415