Laser-Derived Interfacial Confinement Enables Planar Growth of 2D SnS2 on Graphene for High-Flux Electron/Ion Bridging in Sodium Storage
Corresponding Author: Hongqiang Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 91
Abstract
Establishing covalent heterointerfaces with face-to-face contact is promising for advanced energy storage, while challenge remains on how to inhibit the anisotropic growth of nucleated crystals on the matrix. Herein, face-to-face covalent bridging in-between the 2D-nanosheets/graphene heterostructure is constructed by intentionally prebonding of laser-manufactured amorphous and metastable nanoparticles on graphene, where the amorphous nanoparticles were designed via the competitive oxidation of Sn-O and Sn-S bonds, and metastable feature was employed to facilitate the formation of the C-S-Sn covalent bonding in-between the heterostructure. The face-to-face bridging of ultrathin SnS2 nanosheets on graphene enables the heterostructure huge covalent coupling area and high loading and thus renders unimpeded electron/ion transfer pathways and indestructible electrode structure, and impressive reversible capacity and rate capability for sodium-ion batteries, which rank among the top in records of the SnS2-based anodes. Present work thus provides an alternative of constructing heterostructures with planar interfaces for electrochemical energy storage and even beyond.
Highlights:
1 Face-to-face covalent bridging in-between 2D-nanosheets/graphene heterostructure was constructed by intentionally prebonding of laser-manufactured amorphous and metastable nanoparticles on graphene.
2 The consecutive bonding enables the robust anchoring of ultrathin SnS2 nanosheets on graphene with huge covalent coupling area as well as spontaneous charge transfer in-between the heterostructure.
3 Such laser-manufactured heterostructure is capable of guaranteeing high-flux electron/ion migration and structural integrity upon cycling, thus contributing to the unprecedented Na-storage capability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.C. Jin, S. Xin, C.H. Chuang, W.D. Li, H.Y. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370(6513), 192–197 (2020). https://doi.org/10.1126/science.aav5842
- H.T. Sun, L. Mei, J.F. Liang, Z.P. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599–604 (2017). https://doi.org/10.1126/science.aam5852
- X.L. Li, L.J. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/c7cs00871f
- J.R. Shi, Y.P. Wang, Q. Su, F.Y. Cheng, X.Z. Kong et al., N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chem. Eng. J. 353, 606–614 (2018). https://doi.org/10.1016/j.cej.2018.07.157
- X. Zhao, H.E. Wang, X.X. Chen, J. Cao, Y.D. Zhao et al., Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage. Energy Storage Mater. 11, 161–169 (2018). https://doi.org/10.1016/j.ensm.2017.10.010
- M. Zhang, D.N. Lei, X.Z. Yu, L.B. Chen, Q.H. Li et al., Graphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries. J. Mater. Chem. 22(43), 23091–23097 (2012). https://doi.org/10.1039/c2jm34864k
- S.J. Li, L.M. Zhang, W.Q. Zhao, S.H. Yuan, L. Yang et al., Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Storage Mater. 32, 477–496 (2020). https://doi.org/10.1016/j.ensm.2020.07.023
- X.S. Xu, F. Xu, C.Z. Qu, G.S. Jiang, H.Q. Yu et al., Laser-manufactured metastable supranano SnOx for efficient electron/ion bridging in SnO2-graphene heterostructure boosting lithium storage. Adv. Funct. Mater. 31(35), 2101059 (2021). https://doi.org/10.1002/adfm.202101059
- S.C. Liang, S. Zhang, Z. Liu, J. Feng, Z.M. Jiang et al., Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene. Adv. Energy Mater. 11(12), 2002600 (2021). https://doi.org/10.1002/aenm.202002600
- Y.H. Wan, K.M. Song, W.H. Chen, C.D. Qin, X.X. Zhang et al., Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew. Chem. Int. Ed. 60(60), 11481–11486 (2021). https://doi.org/10.1002/anie.202102368
- F. Wan, H.Y. Lü, X.L. Wu, X. Yan, J.Z. Guo et al., Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? Energy Storage Mater. 5, 214–222 (2016). https://doi.org/10.1016/j.ensm.2016.06.003
- H.G. Wang, Q. Wu, Y.H. Wang, X. Wang, L.L. Wu et al., Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy Mater. 9(3), 1802993 (2019). https://doi.org/10.1002/aenm.201802993
- T.Y. Hou, B.R. Liu, X.H. Sun, A.R. Fan, Z.K. Xu et al., Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS Nano 15(4), 6735–6746 (2021). https://doi.org/10.1021/acsnano.0c10121
- X.L. Wang, G. Li, M.H. Seo, F.M. Hassan, M.A. Hoque et al., Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 5(23), 1501106 (2015). https://doi.org/10.1002/aenm.201501106
- Y. Jiang, D.Y. Song, J. Wu, Z.X. Wang, S.S. Huang et al., Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano 13(8), 9100–9111 (2019). https://doi.org/10.1021/acsnano.9b03330
- X. Ou, Z.M. Xiao, J.F. Zhang, C.H. Wang, D. Wang et al., Enhancing the rapid Na+-storage performance via electron/ion bridges through GeS2/graphene heterojunction. ACS Nano 14(10), 13952–13963 (2020). https://doi.org/10.1021/acsnano.0c06371
- G.M. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li et al., Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4), 3214–3223 (2012). https://doi.org/10.1021/nn300098m
- S.B. Yang, X.L. Feng, S. Ivanovici, K. Mullen, Fabrication of graphene-encapsulated oxide nanops: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 49(45), 8408–8411 (2010). https://doi.org/10.1002/anie.201003485
- W.W. Zhou, J.X. Zhu, C.W. Cheng, J.P. Liu, H.P. Yang et al., A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage. Energy Environ. Sci. 4(12), 4954–4961 (2011). https://doi.org/10.1039/c1ee02168k
- X. Zhao, W. Cai, Y. Yang, X.D. Song, Z. Neale et al., MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
- X.H. Xiong, C.H. Yang, G.H. Wang, Y.W. Lin, X. Ou et al., SnS nanops electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10(8), 1757–1763 (2017). https://doi.org/10.1039/c7ee01628j
- Q.Y. Ren, N. Qin, B. Liu, Y. Yao, X. Zhao et al., An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: insights into the charge storage mechanism and enhanced reaction kinetics. J. Mater. Chem. A 8(6), 3450–3458 (2020). https://doi.org/10.1039/c9ta11965e
- Y. Zhao, L.P. Wang, M.T. Sougrati, Z.X. Feng, Y. Leconte et al., A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7(9), 1601424 (2017). https://doi.org/10.1002/aenm.201601424
- Z.D. Huang, H. Lu, K. Qian, Y.W. Fang, Q.C. Du et al., Interfacial engineering enables Bi@C-TiOx microspheres as superpower and long life anode for lithium-ion batteries. Nano Energy 51, 137–145 (2018). https://doi.org/10.1016/j.nanoen.2018.06.051
- Y.P. Guo, Y.Q. Wei, H.Q. Li, T.Y. Zhai, Layer structured materials for advanced energy storage and conversion. Small 13(45), 1701649 (2017). https://doi.org/10.1002/smll.201701649
- T.Y. Wang, S.Q. Chen, H. Pang, H.G. Xue, Y. Yu, MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 4(2), 1600289 (2017). https://doi.org/10.1002/advs.201600289
- X.C. Ren, J.S. Wang, D.M. Zhu, Q.W. Li, W.F. Tian et al., Sn-C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy 54, 322–330 (2018). https://doi.org/10.1016/j.nanoen.2018.10.019
- M.Z. Ma, S.P. Zhang, L.F. Wang, Y. Yao, R.W. Shao et al., Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Adv. Mater. 33(45), 2106232 (2021). https://doi.org/10.1002/adma.202106232
- Y.Q. Teng, H.L. Zhao, Z.J. Zhang, Z.L. Li, Q. Xia et al., MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10(9), 8526–8535 (2016). https://doi.org/10.1021/acsnano.6b03683
- X.S. Xu, X.B. Li, K.Q. Liu, J. Li, Q.L. Feng et al., Thermodynamics and kinetics synergetic phase-engineering of chemical vapor deposition grown single crystal MoTe2 nanosheets. Cryst. Growth Des. 18(5), 2844–2850 (2018). https://doi.org/10.1021/acs.cgd.7b01624
- S. Jeong, D. Yoo, J.T. Jang, M. Kim, J. Cheon, Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134(44), 18233–18236 (2012). https://doi.org/10.1021/ja3089845
- R.T. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y.F. Sun et al., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
- C.L. Wei, H.F. Fei, Y. Tian, Y.L. An, H.H. Guo et al., Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 26, 223–233 (2020). https://doi.org/10.1016/j.ensm.2020.01.005
- X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448
- X.S. Xu, Y.X. Xu, F. Xu, G.S. Jiang, J. Jian et al., Black BiVO4: size tailored synthesis, rich oxygen vacancies, and sodium storage performance. J. Mater. Chem. A 8(4), 1636–1645 (2020). https://doi.org/10.1039/c9ta13021g
- D.T. Ma, Y.L. Li, H.W. Mi, S. Luo, P.X. Zhang et al., Robust SnO2-x nanop-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57(29), 8901–8905 (2018). https://doi.org/10.1002/anie.201802672
- R. Jia, J.L. Yue, Q.Y. Xia, J. Xu, X.H. Zhu et al., Carbon shelled porous SnO2-δ nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303–311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009
- X. Xu, R.S. Zhao, B. Chen, L.S. Wu, C.J. Zou et al., Progressively exposing active facets of 2D nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage. Adv. Mater. 31(17), 1900526 (2019). https://doi.org/10.1002/adma.201900526
- Y.Q. Teng, H.L. Zhao, Z.J. Zhang, L.N. Zhao, Y. Zhang et al., MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 119, 91–100 (2017). https://doi.org/10.1016/j.carbon.2017.04.017
- Z.J. Zhang, H.L. Zhao, J.J. Fang, X.W. Chang, Z.L. Li et al., Tin disulfide nanosheets with active-site-enriched surface interfacially bonded on reduced graphene oxide sheets as ultra-robust anode for lithium and sodium storage. ACS Appl. Mater. Interfaces 10(34), 28533–28540 (2018). https://doi.org/10.1021/acsami.8b07741
- T.J. Wu, M.J. Jing, Y. Liu, X.B. Ji, Binding low crystalline MoS2 nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage. J. Mater. Chem. A 7(11), 6439–6449 (2019). https://doi.org/10.1039/c9ta00123a
- J. Jian, Y.X. Xu, X.K. Yang, W. Liu, M.S. Fu et al., Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 10(1), 2609 (2019). https://doi.org/10.1038/s41467-019-10543-z
- P.F. Guo, H.F. Zhu, W.H. Zhao, C. Liu, L.G. Zhu et al., Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24%. Adv. Mater. 33(36), 2101590 (2021). https://doi.org/10.1002/adma.202101590
- H.Q. Wang, K. Kawaguchi, A. Pyatenko, X.Y. Li, Z. Swiatkowska-Warkocka et al., General bottom-up construction of spherical ps by pulsed laser irradiation of colloidal nanops: a case study on CuO. Chem. Eur. J. 18(1), 163–169 (2012). https://doi.org/10.1002/chem.201102079
- A. Pyatenko, H.Q. Wang, N. Koshizaki, Growth mechanism of monodisperse spherical ps under nanosecond pulsed laser irradiation. J. Phys. Chem. C 118(8), 4495–4500 (2014). https://doi.org/10.1021/jp411958v
- X.K. Yang, W.H. Zhao, M.J. Li, L.F. Ye, P.F. Guo et al., Grain-boundaries-engineering via laser manufactured La-doped BaSnO3 nanocrystals with tailored surface states enabling perovskite solar cells with efficiency of 23.74%. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202112388
- L.P. Xu, P. Zhang, H.N. Jiang, X. Wang, F.F. Chen et al., Large-scale growth and field-effect transistors electrical engineering of atomic-layer SnS2. Small 15(46), 1904116 (2019). https://doi.org/10.1002/smll.201904116
- P.Z. Chen, N. Zhang, S.B. Wang, T.P. Zhou, Y. Tong et al., Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. PNAS 116(14), 6635–6640 (2019). https://doi.org/10.1073/pnas.1817881116
- M.J. Jing, Z.G. Chen, Z. Li, F.Y. Li, M.J. Chen et al., Facile synthesis of ZnS/N, S co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 10(1), 704–712 (2018). https://doi.org/10.1021/acsami.7b15659
- J. Srivind, V.S. Nagarethinam, M. Suganya, S. Balamurugan, K. Usharani et al., NiO coupled SnS2 nanops with improved magnetic and photocatalytic performance against the degradation of organic dyes without N=N double bond. Vacuum 163, 373–383 (2019). https://doi.org/10.1016/j.vacuum.2019.02.048
- S.W. Gao, N. Wang, S. Li, D.M. Li, Z.M. Cui et al., A multi-wall Sn/SnO2 @carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Ed. 59(6), 2465–2472 (2020). https://doi.org/10.1002/anie.201913170
- X.S. Xu, Y.Q. Qiu, J.P. Wu, B.C. Ding, Q.H. Liu et al., Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage. Chinese J. Chem. Eng. 32, 416–422 (2021). https://doi.org/10.1016/j.cjche.2020.09.055
- Z.D. Huang, T.T. Zhang, H. Lu, T. Masese, K. Yamamoto et al., Grain-boundary-rich mesoporous NiTiO3 micro-prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries. Energy Storage Mater. 13, 329–339 (2018). https://doi.org/10.1016/j.ensm.2017.08.012
- Z.D. Huang, T.T. Zhang, H. Lu, J.K. Yang, L. Bai et al., Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries. Sci. China Mater. 61(8), 1057–1066 (2018). https://doi.org/10.1007/s40843-017-9225-5
- F. Xu, B.C. Ding, Y.Q. Qiu, R.H. Dong, W.Q. Zhuang et al., Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides. Matter 3(1), 246–260 (2020). https://doi.org/10.1016/j.matt.2020.05.012
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
- F. Xu, Y.X. Zhai, E. Zhang, Q.H. Liu, G.S. Jiang et al., Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets. Angew. Chem. Int. Ed. 59(44), 19460–19467 (2020). https://doi.org/10.1002/anie.202005118
- G.S. Jiang, C.Z. Qu, F. Xu, E. Zhang, Q.Q. Lu et al., Glassy metal-organic-framework-based quasi-solid-state electrolyte for high-performance lithium-metal batteries. Adv. Funct. Mater. 31(43), 2104300 (2021). https://doi.org/10.1002/adfm.202104300
- J. Zhao, Y.Y. Zhao, W.C. Yue, S.M. Zheng, X. Li et al., Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance. CrystEngComm 23(35), 6107–6116 (2021). https://doi.org/10.1039/d1ce00704a
- G.S. Jiang, X.S. Xu, H.J. Han, C.Z. Qu, H. Repich et al., Edge-enriched MoS2 for kinetics-enhanced potassium storage. Nano Res. 13(10), 2763–2769 (2020). https://doi.org/10.1007/s12274-020-2925-3
References
H.C. Jin, S. Xin, C.H. Chuang, W.D. Li, H.Y. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370(6513), 192–197 (2020). https://doi.org/10.1126/science.aav5842
H.T. Sun, L. Mei, J.F. Liang, Z.P. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599–604 (2017). https://doi.org/10.1126/science.aam5852
X.L. Li, L.J. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/c7cs00871f
J.R. Shi, Y.P. Wang, Q. Su, F.Y. Cheng, X.Z. Kong et al., N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chem. Eng. J. 353, 606–614 (2018). https://doi.org/10.1016/j.cej.2018.07.157
X. Zhao, H.E. Wang, X.X. Chen, J. Cao, Y.D. Zhao et al., Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage. Energy Storage Mater. 11, 161–169 (2018). https://doi.org/10.1016/j.ensm.2017.10.010
M. Zhang, D.N. Lei, X.Z. Yu, L.B. Chen, Q.H. Li et al., Graphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries. J. Mater. Chem. 22(43), 23091–23097 (2012). https://doi.org/10.1039/c2jm34864k
S.J. Li, L.M. Zhang, W.Q. Zhao, S.H. Yuan, L. Yang et al., Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Storage Mater. 32, 477–496 (2020). https://doi.org/10.1016/j.ensm.2020.07.023
X.S. Xu, F. Xu, C.Z. Qu, G.S. Jiang, H.Q. Yu et al., Laser-manufactured metastable supranano SnOx for efficient electron/ion bridging in SnO2-graphene heterostructure boosting lithium storage. Adv. Funct. Mater. 31(35), 2101059 (2021). https://doi.org/10.1002/adfm.202101059
S.C. Liang, S. Zhang, Z. Liu, J. Feng, Z.M. Jiang et al., Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene. Adv. Energy Mater. 11(12), 2002600 (2021). https://doi.org/10.1002/aenm.202002600
Y.H. Wan, K.M. Song, W.H. Chen, C.D. Qin, X.X. Zhang et al., Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew. Chem. Int. Ed. 60(60), 11481–11486 (2021). https://doi.org/10.1002/anie.202102368
F. Wan, H.Y. Lü, X.L. Wu, X. Yan, J.Z. Guo et al., Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? Energy Storage Mater. 5, 214–222 (2016). https://doi.org/10.1016/j.ensm.2016.06.003
H.G. Wang, Q. Wu, Y.H. Wang, X. Wang, L.L. Wu et al., Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy Mater. 9(3), 1802993 (2019). https://doi.org/10.1002/aenm.201802993
T.Y. Hou, B.R. Liu, X.H. Sun, A.R. Fan, Z.K. Xu et al., Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS Nano 15(4), 6735–6746 (2021). https://doi.org/10.1021/acsnano.0c10121
X.L. Wang, G. Li, M.H. Seo, F.M. Hassan, M.A. Hoque et al., Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 5(23), 1501106 (2015). https://doi.org/10.1002/aenm.201501106
Y. Jiang, D.Y. Song, J. Wu, Z.X. Wang, S.S. Huang et al., Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials. ACS Nano 13(8), 9100–9111 (2019). https://doi.org/10.1021/acsnano.9b03330
X. Ou, Z.M. Xiao, J.F. Zhang, C.H. Wang, D. Wang et al., Enhancing the rapid Na+-storage performance via electron/ion bridges through GeS2/graphene heterojunction. ACS Nano 14(10), 13952–13963 (2020). https://doi.org/10.1021/acsnano.0c06371
G.M. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li et al., Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4), 3214–3223 (2012). https://doi.org/10.1021/nn300098m
S.B. Yang, X.L. Feng, S. Ivanovici, K. Mullen, Fabrication of graphene-encapsulated oxide nanops: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 49(45), 8408–8411 (2010). https://doi.org/10.1002/anie.201003485
W.W. Zhou, J.X. Zhu, C.W. Cheng, J.P. Liu, H.P. Yang et al., A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage. Energy Environ. Sci. 4(12), 4954–4961 (2011). https://doi.org/10.1039/c1ee02168k
X. Zhao, W. Cai, Y. Yang, X.D. Song, Z. Neale et al., MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
X.H. Xiong, C.H. Yang, G.H. Wang, Y.W. Lin, X. Ou et al., SnS nanops electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10(8), 1757–1763 (2017). https://doi.org/10.1039/c7ee01628j
Q.Y. Ren, N. Qin, B. Liu, Y. Yao, X. Zhao et al., An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: insights into the charge storage mechanism and enhanced reaction kinetics. J. Mater. Chem. A 8(6), 3450–3458 (2020). https://doi.org/10.1039/c9ta11965e
Y. Zhao, L.P. Wang, M.T. Sougrati, Z.X. Feng, Y. Leconte et al., A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7(9), 1601424 (2017). https://doi.org/10.1002/aenm.201601424
Z.D. Huang, H. Lu, K. Qian, Y.W. Fang, Q.C. Du et al., Interfacial engineering enables Bi@C-TiOx microspheres as superpower and long life anode for lithium-ion batteries. Nano Energy 51, 137–145 (2018). https://doi.org/10.1016/j.nanoen.2018.06.051
Y.P. Guo, Y.Q. Wei, H.Q. Li, T.Y. Zhai, Layer structured materials for advanced energy storage and conversion. Small 13(45), 1701649 (2017). https://doi.org/10.1002/smll.201701649
T.Y. Wang, S.Q. Chen, H. Pang, H.G. Xue, Y. Yu, MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 4(2), 1600289 (2017). https://doi.org/10.1002/advs.201600289
X.C. Ren, J.S. Wang, D.M. Zhu, Q.W. Li, W.F. Tian et al., Sn-C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy 54, 322–330 (2018). https://doi.org/10.1016/j.nanoen.2018.10.019
M.Z. Ma, S.P. Zhang, L.F. Wang, Y. Yao, R.W. Shao et al., Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Adv. Mater. 33(45), 2106232 (2021). https://doi.org/10.1002/adma.202106232
Y.Q. Teng, H.L. Zhao, Z.J. Zhang, Z.L. Li, Q. Xia et al., MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10(9), 8526–8535 (2016). https://doi.org/10.1021/acsnano.6b03683
X.S. Xu, X.B. Li, K.Q. Liu, J. Li, Q.L. Feng et al., Thermodynamics and kinetics synergetic phase-engineering of chemical vapor deposition grown single crystal MoTe2 nanosheets. Cryst. Growth Des. 18(5), 2844–2850 (2018). https://doi.org/10.1021/acs.cgd.7b01624
S. Jeong, D. Yoo, J.T. Jang, M. Kim, J. Cheon, Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134(44), 18233–18236 (2012). https://doi.org/10.1021/ja3089845
R.T. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y.F. Sun et al., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
C.L. Wei, H.F. Fei, Y. Tian, Y.L. An, H.H. Guo et al., Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 26, 223–233 (2020). https://doi.org/10.1016/j.ensm.2020.01.005
X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–750 (2011). https://doi.org/10.1126/science.1200448
X.S. Xu, Y.X. Xu, F. Xu, G.S. Jiang, J. Jian et al., Black BiVO4: size tailored synthesis, rich oxygen vacancies, and sodium storage performance. J. Mater. Chem. A 8(4), 1636–1645 (2020). https://doi.org/10.1039/c9ta13021g
D.T. Ma, Y.L. Li, H.W. Mi, S. Luo, P.X. Zhang et al., Robust SnO2-x nanop-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57(29), 8901–8905 (2018). https://doi.org/10.1002/anie.201802672
R. Jia, J.L. Yue, Q.Y. Xia, J. Xu, X.H. Zhu et al., Carbon shelled porous SnO2-δ nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303–311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009
X. Xu, R.S. Zhao, B. Chen, L.S. Wu, C.J. Zou et al., Progressively exposing active facets of 2D nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage. Adv. Mater. 31(17), 1900526 (2019). https://doi.org/10.1002/adma.201900526
Y.Q. Teng, H.L. Zhao, Z.J. Zhang, L.N. Zhao, Y. Zhang et al., MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 119, 91–100 (2017). https://doi.org/10.1016/j.carbon.2017.04.017
Z.J. Zhang, H.L. Zhao, J.J. Fang, X.W. Chang, Z.L. Li et al., Tin disulfide nanosheets with active-site-enriched surface interfacially bonded on reduced graphene oxide sheets as ultra-robust anode for lithium and sodium storage. ACS Appl. Mater. Interfaces 10(34), 28533–28540 (2018). https://doi.org/10.1021/acsami.8b07741
T.J. Wu, M.J. Jing, Y. Liu, X.B. Ji, Binding low crystalline MoS2 nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage. J. Mater. Chem. A 7(11), 6439–6449 (2019). https://doi.org/10.1039/c9ta00123a
J. Jian, Y.X. Xu, X.K. Yang, W. Liu, M.S. Fu et al., Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 10(1), 2609 (2019). https://doi.org/10.1038/s41467-019-10543-z
P.F. Guo, H.F. Zhu, W.H. Zhao, C. Liu, L.G. Zhu et al., Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24%. Adv. Mater. 33(36), 2101590 (2021). https://doi.org/10.1002/adma.202101590
H.Q. Wang, K. Kawaguchi, A. Pyatenko, X.Y. Li, Z. Swiatkowska-Warkocka et al., General bottom-up construction of spherical ps by pulsed laser irradiation of colloidal nanops: a case study on CuO. Chem. Eur. J. 18(1), 163–169 (2012). https://doi.org/10.1002/chem.201102079
A. Pyatenko, H.Q. Wang, N. Koshizaki, Growth mechanism of monodisperse spherical ps under nanosecond pulsed laser irradiation. J. Phys. Chem. C 118(8), 4495–4500 (2014). https://doi.org/10.1021/jp411958v
X.K. Yang, W.H. Zhao, M.J. Li, L.F. Ye, P.F. Guo et al., Grain-boundaries-engineering via laser manufactured La-doped BaSnO3 nanocrystals with tailored surface states enabling perovskite solar cells with efficiency of 23.74%. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202112388
L.P. Xu, P. Zhang, H.N. Jiang, X. Wang, F.F. Chen et al., Large-scale growth and field-effect transistors electrical engineering of atomic-layer SnS2. Small 15(46), 1904116 (2019). https://doi.org/10.1002/smll.201904116
P.Z. Chen, N. Zhang, S.B. Wang, T.P. Zhou, Y. Tong et al., Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. PNAS 116(14), 6635–6640 (2019). https://doi.org/10.1073/pnas.1817881116
M.J. Jing, Z.G. Chen, Z. Li, F.Y. Li, M.J. Chen et al., Facile synthesis of ZnS/N, S co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 10(1), 704–712 (2018). https://doi.org/10.1021/acsami.7b15659
J. Srivind, V.S. Nagarethinam, M. Suganya, S. Balamurugan, K. Usharani et al., NiO coupled SnS2 nanops with improved magnetic and photocatalytic performance against the degradation of organic dyes without N=N double bond. Vacuum 163, 373–383 (2019). https://doi.org/10.1016/j.vacuum.2019.02.048
S.W. Gao, N. Wang, S. Li, D.M. Li, Z.M. Cui et al., A multi-wall Sn/SnO2 @carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Ed. 59(6), 2465–2472 (2020). https://doi.org/10.1002/anie.201913170
X.S. Xu, Y.Q. Qiu, J.P. Wu, B.C. Ding, Q.H. Liu et al., Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage. Chinese J. Chem. Eng. 32, 416–422 (2021). https://doi.org/10.1016/j.cjche.2020.09.055
Z.D. Huang, T.T. Zhang, H. Lu, T. Masese, K. Yamamoto et al., Grain-boundary-rich mesoporous NiTiO3 micro-prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries. Energy Storage Mater. 13, 329–339 (2018). https://doi.org/10.1016/j.ensm.2017.08.012
Z.D. Huang, T.T. Zhang, H. Lu, J.K. Yang, L. Bai et al., Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries. Sci. China Mater. 61(8), 1057–1066 (2018). https://doi.org/10.1007/s40843-017-9225-5
F. Xu, B.C. Ding, Y.Q. Qiu, R.H. Dong, W.Q. Zhuang et al., Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides. Matter 3(1), 246–260 (2020). https://doi.org/10.1016/j.matt.2020.05.012
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
F. Xu, Y.X. Zhai, E. Zhang, Q.H. Liu, G.S. Jiang et al., Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets. Angew. Chem. Int. Ed. 59(44), 19460–19467 (2020). https://doi.org/10.1002/anie.202005118
G.S. Jiang, C.Z. Qu, F. Xu, E. Zhang, Q.Q. Lu et al., Glassy metal-organic-framework-based quasi-solid-state electrolyte for high-performance lithium-metal batteries. Adv. Funct. Mater. 31(43), 2104300 (2021). https://doi.org/10.1002/adfm.202104300
J. Zhao, Y.Y. Zhao, W.C. Yue, S.M. Zheng, X. Li et al., Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance. CrystEngComm 23(35), 6107–6116 (2021). https://doi.org/10.1039/d1ce00704a
G.S. Jiang, X.S. Xu, H.J. Han, C.Z. Qu, H. Repich et al., Edge-enriched MoS2 for kinetics-enhanced potassium storage. Nano Res. 13(10), 2763–2769 (2020). https://doi.org/10.1007/s12274-020-2925-3