Grain Boundaries Contribute to the Performance of Perovskite Solar Cells by Promoting Charge Separations
Corresponding Author: Wenming Tian
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 285
Abstract
Historically seen as a limitation, grain boundaries (GBs) within polycrystalline metal halide perovskite (MHP) films are thought to impede charge transport, adversely impacting the efficiency of perovskite solar cells (PSCs). In this study, we employ home-built confocal photoluminescence microscopy, combined with photocurrent detection modules, to directly visualize the carrier dynamics in the MHP film of PSCs under real operating conditions. Our findings suggest that GBs in high-efficiency PSCs function as carrier transport channels, where a notable enhancement in photocurrent is observed. Femtosecond transient absorption and Kelvin probe force microscopy measurements further validate the existence of a built-in electric field in the vicinity of GBs, offering additional driving force for charge separation and establishing channels for swift carrier transport along the GBs, thereby expediting subsequent charge collection processes. This study elucidates the pivotal role of GBs in operational PSCs and provides valuable insights for the fabrication of high-efficiency PSCs.
Highlights:
1 Sub-micrometer-resolved photocurrent mapping in operational perovskite solar cells, achieved through our home-built photoluminescence and photocurrent imaging microscopy, reveals enhanced photocurrent at grain boundaries compared to grain interiors.
2 Local pump-probe femtosecond transient absorption and Kelvin probe force microscopy measurements corroborate the presence of a built-in electric field in the vicinity of grain boundaries that promotes electron–hole separation and the subsequent charge collection, thereby contributing to the performance of perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Köhler, M. Pomaska, P. Procel, R. Santbergen, A. Zamchiy et al., A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 6(5), 529–537 (2021). https://doi.org/10.1038/s41560-021-00806-9
- J. Zheng, Z. Ying, Z. Yang, Z. Lin, H. Wei et al., Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells. Nat. Energy 8(11), 1250–1261 (2023). https://doi.org/10.1038/s41560-023-01382-w
- Y. Chen, N. Yang, G. Zheng, F. Pei, W. Zhou et al., Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385(6708), 554–560 (2024). https://doi.org/10.1126/science.ado9104
- C. Yu, Q. Zou, Q. Wang, Y. Zhao, X. Ran et al., Silicon solar cell with undoped tin oxide transparent electrode. Nat. Energy 8(10), 1119–1125 (2023). https://doi.org/10.1038/s41560-023-01331-7
- E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
- W.K. Metzger, S. Grover, D. Lu, E. Colegrove, J. Moseley et al., Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 4(10), 837–845 (2019). https://doi.org/10.1038/s41560-019-0446-7
- J. Kwon, M. Seol, J. Yoo, H. Ryu, D.-S. Ko et al., 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nat. Electron. 7(5), 356–364 (2024). https://doi.org/10.1038/s41928-024-01158-4
- Y. Magari, T. Kataoka, W. Yeh, M. Furuta, High-mobility hydrogenated polycrystalline In2O3 (In2O3: H) thin-film transistors. Nat. Commun. 13(1), 1078 (2022). https://doi.org/10.1038/s41467-022-28480-9
- Y.-S. Shiah, K. Sim, Y. Shi, K. Abe, S. Ueda et al., Mobility–stability trade-off in oxide thin-film transistors. Nat. Electron. 4(11), 800–807 (2021). https://doi.org/10.1038/s41928-021-00671-0
- H. Wu, Q. Wang, A. Zhang, G. Niu, M. Nikl et al., One-dimensional scintillator film with benign grain boundaries for high-resolution and fast X-ray imaging. Sci. Adv. 9(30), eadh1789 (2023). https://doi.org/10.1126/sciadv.adh1789
- D. Yang, X.L. Shi, M. Li, M. Nisar, A. Mansoor et al., Flexible power generators by Ag2Se thin films with record-high thermoelectric performance. Nat. Commun. 15(1), 923 (2024). https://doi.org/10.1038/s41467-024-45092-7
- D. Wang, J. Ding, Y. Ma, C. Xu, Z. Li et al., Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 632(8025), 528–535 (2024). https://doi.org/10.1038/s41586-024-07724-2
- O. Auciello, D.M. Aslam, Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies. J. Mater. Sci. 56(12), 7171–7230 (2021). https://doi.org/10.1007/s10853-020-05699-9
- L. Zhao, P. Tang, D. Luo, M.I. Dar, F.T. Eickemeyer et al., Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Sci. Adv. 8(35), eabo3733 (2022). https://doi.org/10.1126/sciadv.abo3733
- W.D. Callister Jr., D.G. Rethwisch, Materials science and engineering: an introduction (John wiley & sons, Hoboken, 2020), pp.106–109
- Y. Zou, X. Bai, S. Kahmann, L. Dai, S. Yuan et al., A practical approach toward highly reproducible and high-quality perovskite films based on an aging treatment. Adv. Mater. 36(1), 2307024 (2024). https://doi.org/10.1002/adma.202307024
- Z. Chu, M. Yang, P. Schulz, D. Wu, X. Ma et al., Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8(1), 2230 (2017). https://doi.org/10.1038/s41467-017-02331-4
- Y. Zhou, O.S. Game, S. Pang, N.P. Padture, Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J. Phys. Chem. Lett. 6(23), 4827–4839 (2015). https://doi.org/10.1021/acs.jpclett.5b01843
- M.U. Rothmann, J.S. Kim, J. Borchert, K.B. Lohmann, C.M. O’Leary et al., Atomic-scale microstructure of metal halide perovskite. Science 370(6516), 5940 (2020). https://doi.org/10.1126/science.abb5940
- S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15(1), 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
- T. Xiao, M. Hao, T. Duan, Y. Li, Y. Zhang et al., Elimination of grain surface concavities for improved perovskite thin-film interfaces. Nat. Energy 9(8), 999–1010 (2024). https://doi.org/10.1038/s41560-024-01567-x
- J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
- D.W. DeQuilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon et al., Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348(6235), 683–686 (2015). https://doi.org/10.1126/science.aaa5333
- Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang et al., Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9(5), 592–601 (2024). https://doi.org/10.1038/s41560-024-01491-0
- Y. Zhou, L.M. Herz, A.K. Jen, M. Saliba, Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7(9), 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5
- L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15(1), 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
- K. Almasabi, X. Zheng, B. Turedi, A.Y. Alsalloum, M.N. Lintangpradipto et al., Hole-transporting self-assembled monolayer enables efficient single-crystal perovskite solar cells with enhanced stability. ACS Energy Lett. 8(2), 950–956 (2023). https://doi.org/10.1021/acsenergylett.2c02333
- N. Tsvetkov, D. Koo, D. Kim, H. Park, H. Min, Advances in single-crystal perovskite solar cells: from materials to performance. Nano Energy 130, 110069 (2024). https://doi.org/10.1016/j.nanoen.2024.110069
- W. Li, Y. Ma, S. Yang, J. Gong, S. Zhang et al., Nanoscopic study of the compositions, structures, and electronic properties of grain boundaries in Cu(InGa)Se2 photovoltaic thin films. Nano Energy 33, 157–167 (2017). https://doi.org/10.1016/j.nanoen.2017.01.041
- D.-Y. Son, J.-W. Lee, Y.J. Choi, I.-H. Jang, S. Lee et al., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016). https://doi.org/10.1038/nenergy.2016.81
- T.-X. Qin, E.-M. You, M.-X. Zhang, P. Zheng, X.-F. Huang et al., Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light Sci. Appl. 10(1), 84 (2021). https://doi.org/10.1038/s41377-021-00524-7
- V.L. Pool, B. Dou, D.G. Van Campen, T.R. Klein-Stockert, F.S. Barnes et al., Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD. Nat. Commun. 8, 14075 (2017). https://doi.org/10.1038/ncomms14075
- X. Wang, Y. Sun, Y. Wang, X.-C. Ai, J.-P. Zhang, Lewis base plays a double-edged-sword role in trap state engineering of perovskite polycrystals. J. Phys. Chem. Lett. 13(6), 1571–1577 (2022). https://doi.org/10.1021/acs.jpclett.2c00167
- Y. Wang, Y. Cheng, C. Yin, J. Zhang, J. You et al., Manipulating crystal growth and secondary phase PbI2 to enable efficient and stable perovskite solar cells with natural additives. Nano-Micro Lett. 16(1), 183 (2024). https://doi.org/10.1007/s40820-024-01400-w
- Y. Kutes, Y. Zhou, J.L. Bosse, J. Steffes, N.P. Padture et al., Mapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscale. Nano Lett. 16(6), 3434–3441 (2016). https://doi.org/10.1021/acs.nanolett.5b04157
- M.I. Saidaminov, K. Williams, M. Wei, A. Johnston, R. Quintero-Bermudez et al., Multi-cation perovskites prevent carrier reflection from grain surfaces. Nat. Mater. 19(4), 412–418 (2020). https://doi.org/10.1038/s41563-019-0602-2
- W. Tian, R. Cui, J. Leng, J. Liu, Y. Li et al., Limiting perovskite solar cell performance by heterogeneous carrier extraction. Angew. Chem. Int. Ed. 55(42), 13067–13071 (2016). https://doi.org/10.1002/anie.201606574
- P. Jia, L. Qin, D. Zhao, Y. Tang, B. Song et al., The trapped charges at grain boundaries in perovskite solar cells. Adv. Funct. Mater. 31(49), 2107125 (2021). https://doi.org/10.1002/adfm.202107125
- L. Zhang, B. Lv, H. Yang, R. Xu, X. Wang et al., Quantum-confined stark effect in the ensemble of phase-pure CdSe/CdS quantum dots. Nanoscale 11(26), 12619–12625 (2019). https://doi.org/10.1039/C9NR03061A
- S. Wang, J. Leng, Y. Yin, J. Liu, K. Wu et al., Ultrafast dopant-induced exciton auger-like recombination in Mn-doped perovskite nanocrystals. ACS Energy Lett. 5(1), 328–334 (2020). https://doi.org/10.1021/acsenergylett.9b02678
- K. Wu, G. Liang, Q. Shang, Y. Ren, D. Kong et al., Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 137(40), 12792–12795 (2015). https://doi.org/10.1021/jacs.5b08520
- C. Chakraborty, K.M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier et al., Quantum-confined stark effect of individual defects in a van der waals heterostructure. Nano Lett. 17(4), 2253–2258 (2017). https://doi.org/10.1021/acs.nanolett.6b04889
- X. Chen, R.T. Pekarek, J. Gu, A. Zakutayev, K.E. Hurst et al., Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces 12(36), 40339–40346 (2020). https://doi.org/10.1021/acsami.0c11474
- X. Yan, B. Wu, C. Chen, F. Sun, H. Bao et al., Elucidating the impact of electron accumulation in quantum-dot light-emitting diodes. Nano Lett. 24(42), 13374–13380 (2024). https://doi.org/10.1021/acs.nanolett.4c03967
- J. Leng, J. Liu, J. Zhang, S. Jin, Decoupling interfacial charge transfer from bulk diffusion unravels its intrinsic role for efficient charge extraction in perovskite solar cells. J. Phys. Chem. Lett. 7(24), 5056–5061 (2016). https://doi.org/10.1021/acs.jpclett.6b02309
References
M. Köhler, M. Pomaska, P. Procel, R. Santbergen, A. Zamchiy et al., A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 6(5), 529–537 (2021). https://doi.org/10.1038/s41560-021-00806-9
J. Zheng, Z. Ying, Z. Yang, Z. Lin, H. Wei et al., Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells. Nat. Energy 8(11), 1250–1261 (2023). https://doi.org/10.1038/s41560-023-01382-w
Y. Chen, N. Yang, G. Zheng, F. Pei, W. Zhou et al., Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385(6708), 554–560 (2024). https://doi.org/10.1126/science.ado9104
C. Yu, Q. Zou, Q. Wang, Y. Zhao, X. Ran et al., Silicon solar cell with undoped tin oxide transparent electrode. Nat. Energy 8(10), 1119–1125 (2023). https://doi.org/10.1038/s41560-023-01331-7
E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
W.K. Metzger, S. Grover, D. Lu, E. Colegrove, J. Moseley et al., Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 4(10), 837–845 (2019). https://doi.org/10.1038/s41560-019-0446-7
J. Kwon, M. Seol, J. Yoo, H. Ryu, D.-S. Ko et al., 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nat. Electron. 7(5), 356–364 (2024). https://doi.org/10.1038/s41928-024-01158-4
Y. Magari, T. Kataoka, W. Yeh, M. Furuta, High-mobility hydrogenated polycrystalline In2O3 (In2O3: H) thin-film transistors. Nat. Commun. 13(1), 1078 (2022). https://doi.org/10.1038/s41467-022-28480-9
Y.-S. Shiah, K. Sim, Y. Shi, K. Abe, S. Ueda et al., Mobility–stability trade-off in oxide thin-film transistors. Nat. Electron. 4(11), 800–807 (2021). https://doi.org/10.1038/s41928-021-00671-0
H. Wu, Q. Wang, A. Zhang, G. Niu, M. Nikl et al., One-dimensional scintillator film with benign grain boundaries for high-resolution and fast X-ray imaging. Sci. Adv. 9(30), eadh1789 (2023). https://doi.org/10.1126/sciadv.adh1789
D. Yang, X.L. Shi, M. Li, M. Nisar, A. Mansoor et al., Flexible power generators by Ag2Se thin films with record-high thermoelectric performance. Nat. Commun. 15(1), 923 (2024). https://doi.org/10.1038/s41467-024-45092-7
D. Wang, J. Ding, Y. Ma, C. Xu, Z. Li et al., Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 632(8025), 528–535 (2024). https://doi.org/10.1038/s41586-024-07724-2
O. Auciello, D.M. Aslam, Review on advances in microcrystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies. J. Mater. Sci. 56(12), 7171–7230 (2021). https://doi.org/10.1007/s10853-020-05699-9
L. Zhao, P. Tang, D. Luo, M.I. Dar, F.T. Eickemeyer et al., Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Sci. Adv. 8(35), eabo3733 (2022). https://doi.org/10.1126/sciadv.abo3733
W.D. Callister Jr., D.G. Rethwisch, Materials science and engineering: an introduction (John wiley & sons, Hoboken, 2020), pp.106–109
Y. Zou, X. Bai, S. Kahmann, L. Dai, S. Yuan et al., A practical approach toward highly reproducible and high-quality perovskite films based on an aging treatment. Adv. Mater. 36(1), 2307024 (2024). https://doi.org/10.1002/adma.202307024
Z. Chu, M. Yang, P. Schulz, D. Wu, X. Ma et al., Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8(1), 2230 (2017). https://doi.org/10.1038/s41467-017-02331-4
Y. Zhou, O.S. Game, S. Pang, N.P. Padture, Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J. Phys. Chem. Lett. 6(23), 4827–4839 (2015). https://doi.org/10.1021/acs.jpclett.5b01843
M.U. Rothmann, J.S. Kim, J. Borchert, K.B. Lohmann, C.M. O’Leary et al., Atomic-scale microstructure of metal halide perovskite. Science 370(6516), 5940 (2020). https://doi.org/10.1126/science.abb5940
S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15(1), 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
T. Xiao, M. Hao, T. Duan, Y. Li, Y. Zhang et al., Elimination of grain surface concavities for improved perovskite thin-film interfaces. Nat. Energy 9(8), 999–1010 (2024). https://doi.org/10.1038/s41560-024-01567-x
J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
D.W. DeQuilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon et al., Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348(6235), 683–686 (2015). https://doi.org/10.1126/science.aaa5333
Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang et al., Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat. Energy 9(5), 592–601 (2024). https://doi.org/10.1038/s41560-024-01491-0
Y. Zhou, L.M. Herz, A.K. Jen, M. Saliba, Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7(9), 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5
L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15(1), 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
K. Almasabi, X. Zheng, B. Turedi, A.Y. Alsalloum, M.N. Lintangpradipto et al., Hole-transporting self-assembled monolayer enables efficient single-crystal perovskite solar cells with enhanced stability. ACS Energy Lett. 8(2), 950–956 (2023). https://doi.org/10.1021/acsenergylett.2c02333
N. Tsvetkov, D. Koo, D. Kim, H. Park, H. Min, Advances in single-crystal perovskite solar cells: from materials to performance. Nano Energy 130, 110069 (2024). https://doi.org/10.1016/j.nanoen.2024.110069
W. Li, Y. Ma, S. Yang, J. Gong, S. Zhang et al., Nanoscopic study of the compositions, structures, and electronic properties of grain boundaries in Cu(InGa)Se2 photovoltaic thin films. Nano Energy 33, 157–167 (2017). https://doi.org/10.1016/j.nanoen.2017.01.041
D.-Y. Son, J.-W. Lee, Y.J. Choi, I.-H. Jang, S. Lee et al., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016). https://doi.org/10.1038/nenergy.2016.81
T.-X. Qin, E.-M. You, M.-X. Zhang, P. Zheng, X.-F. Huang et al., Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light Sci. Appl. 10(1), 84 (2021). https://doi.org/10.1038/s41377-021-00524-7
V.L. Pool, B. Dou, D.G. Van Campen, T.R. Klein-Stockert, F.S. Barnes et al., Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD. Nat. Commun. 8, 14075 (2017). https://doi.org/10.1038/ncomms14075
X. Wang, Y. Sun, Y. Wang, X.-C. Ai, J.-P. Zhang, Lewis base plays a double-edged-sword role in trap state engineering of perovskite polycrystals. J. Phys. Chem. Lett. 13(6), 1571–1577 (2022). https://doi.org/10.1021/acs.jpclett.2c00167
Y. Wang, Y. Cheng, C. Yin, J. Zhang, J. You et al., Manipulating crystal growth and secondary phase PbI2 to enable efficient and stable perovskite solar cells with natural additives. Nano-Micro Lett. 16(1), 183 (2024). https://doi.org/10.1007/s40820-024-01400-w
Y. Kutes, Y. Zhou, J.L. Bosse, J. Steffes, N.P. Padture et al., Mapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscale. Nano Lett. 16(6), 3434–3441 (2016). https://doi.org/10.1021/acs.nanolett.5b04157
M.I. Saidaminov, K. Williams, M. Wei, A. Johnston, R. Quintero-Bermudez et al., Multi-cation perovskites prevent carrier reflection from grain surfaces. Nat. Mater. 19(4), 412–418 (2020). https://doi.org/10.1038/s41563-019-0602-2
W. Tian, R. Cui, J. Leng, J. Liu, Y. Li et al., Limiting perovskite solar cell performance by heterogeneous carrier extraction. Angew. Chem. Int. Ed. 55(42), 13067–13071 (2016). https://doi.org/10.1002/anie.201606574
P. Jia, L. Qin, D. Zhao, Y. Tang, B. Song et al., The trapped charges at grain boundaries in perovskite solar cells. Adv. Funct. Mater. 31(49), 2107125 (2021). https://doi.org/10.1002/adfm.202107125
L. Zhang, B. Lv, H. Yang, R. Xu, X. Wang et al., Quantum-confined stark effect in the ensemble of phase-pure CdSe/CdS quantum dots. Nanoscale 11(26), 12619–12625 (2019). https://doi.org/10.1039/C9NR03061A
S. Wang, J. Leng, Y. Yin, J. Liu, K. Wu et al., Ultrafast dopant-induced exciton auger-like recombination in Mn-doped perovskite nanocrystals. ACS Energy Lett. 5(1), 328–334 (2020). https://doi.org/10.1021/acsenergylett.9b02678
K. Wu, G. Liang, Q. Shang, Y. Ren, D. Kong et al., Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 137(40), 12792–12795 (2015). https://doi.org/10.1021/jacs.5b08520
C. Chakraborty, K.M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier et al., Quantum-confined stark effect of individual defects in a van der waals heterostructure. Nano Lett. 17(4), 2253–2258 (2017). https://doi.org/10.1021/acs.nanolett.6b04889
X. Chen, R.T. Pekarek, J. Gu, A. Zakutayev, K.E. Hurst et al., Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces 12(36), 40339–40346 (2020). https://doi.org/10.1021/acsami.0c11474
X. Yan, B. Wu, C. Chen, F. Sun, H. Bao et al., Elucidating the impact of electron accumulation in quantum-dot light-emitting diodes. Nano Lett. 24(42), 13374–13380 (2024). https://doi.org/10.1021/acs.nanolett.4c03967
J. Leng, J. Liu, J. Zhang, S. Jin, Decoupling interfacial charge transfer from bulk diffusion unravels its intrinsic role for efficient charge extraction in perovskite solar cells. J. Phys. Chem. Lett. 7(24), 5056–5061 (2016). https://doi.org/10.1021/acs.jpclett.6b02309